JPH04187758A - Production of transparent conductive-surface polymeric film - Google Patents

Production of transparent conductive-surface polymeric film

Info

Publication number
JPH04187758A
JPH04187758A JP31575390A JP31575390A JPH04187758A JP H04187758 A JPH04187758 A JP H04187758A JP 31575390 A JP31575390 A JP 31575390A JP 31575390 A JP31575390 A JP 31575390A JP H04187758 A JPH04187758 A JP H04187758A
Authority
JP
Japan
Prior art keywords
film
metal
sulfide
polymeric film
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31575390A
Other languages
Japanese (ja)
Inventor
Hideyuki Miyamoto
秀幸 宮本
Shigeaki Mizogami
溝上 恵彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP31575390A priority Critical patent/JPH04187758A/en
Publication of JPH04187758A publication Critical patent/JPH04187758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To easily obtain a conductive-surface polymeric film having excellent conductivity and transparency by converting the metal layer formed on the polymeric film surface into a sulfide layer. CONSTITUTION:A metal is deposited on the surface of a polymeric film to form a thin-film layer excellent in adhesion, which is then treated with gaseous hydrogen sulfide. Consequently, the metal is converted into its sulfide without the adhesion and homogeneity being damaged, and a polymeric film having excellent transparency and surface conductivity is obtained. Since the thickness of the deposited metal is freely controlled by this method, the resistance of the sulfide thin film layer is freely changed, and a conductive-surface polymeric film having desired performance is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は透明な表面導電性高分子膜の製造方法の改良に
関するものである。さらに詳しくいえば、本発明は、例
えば機器の帯電防止、電子材料、電磁波シールド材料、
高分子電極などとして有用な、透明性、導電性の金属硫
化物層を有する透明な表面導電性高分子膜を製造する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to an improvement in a method for producing a transparent surface-conductive polymer film. More specifically, the present invention is applicable to, for example, antistatic equipment, electronic materials, electromagnetic shielding materials,
The present invention relates to a method for manufacturing a transparent surface conductive polymer film having a transparent and conductive metal sulfide layer, which is useful as a polymer electrode.

従来の技術 近年、導電性高分子膜は、例えば機器の帯電防止、電子
材料、電磁波シールド材料、高分子電極などに利用しう
ろことから、新しい機能性材料として注目されており、
特に透明な表面導電性高分子膜は、高分子膜が本来有す
る好ましい性質、例えば軽量で安価、かつ成形性や安定
性に優れるという性質がそこなわれることなく、導電性
が付与されているため、フレキシブルな透明導電性膜と
して、LCO電極、タッチバネノ呟太陽電池などに幅広
く用いられている。
Background of the Invention In recent years, conductive polymer films have attracted attention as new functional materials, as they can be used for antistatic equipment, electronic materials, electromagnetic shielding materials, polymer electrodes, etc.
In particular, transparent surface-conductive polymer films are endowed with conductivity without sacrificing the inherent desirable properties of polymer films, such as being lightweight, inexpensive, and having excellent formability and stability. It is widely used as a flexible transparent conductive film in LCO electrodes, touch spring solar cells, etc.

このような透明な表面導電性高分子膜としては、例えば
高分子膜表面にインジュウムースズーオキサイド(以下
ITOと略記する)を沈積させて導電性薄膜層を形成さ
せたもの、ポリカーボネート膜に極細金属線を半埋込に
したもの、高分子膜表面に硫化銅を沈積させて導電性薄
膜層を形成させたものなどが知られている。
Examples of such transparent surface-conductive polymer films include those in which indium oxide (hereinafter abbreviated as ITO) is deposited on the surface of a polymer film to form a conductive thin film layer, and ultra-fine conductive films on polycarbonate films. Some are known in which metal wires are semi-embedded, and others in which copper sulfide is deposited on the surface of a polymer film to form a conductive thin film layer.

前記の高分子膜表面にITOを沈積させたものは、透明
な表面導電性高分子膜として代表的なものであって、こ
れまで数多くのものが知られており、例えばLCO電極
や太陽電池電極などに幅広く用いられている。ところで
、金属を高分子膜表面に沈積させた表面導電性高分子膜
においては、透明性を付与するためには、金属薄膜の厚
さを薄くする必要があるが、該膜厚を薄くすると導電性
能が低下するのを免れない。前記ITO沈積表面導電性
高分子膜は、透明性には優れているものの、表面抵抗が
100Ω/′日程度である上、導電性に劣る上、金属イ
ンジュウムが高価であるなどの欠点を有している。
The above-mentioned polymer film with ITO deposited on its surface is a typical transparent surface conductive polymer film, and many types have been known so far, such as LCO electrodes and solar cell electrodes. It is widely used. By the way, in a surface conductive polymer film in which a metal is deposited on the surface of the polymer film, in order to impart transparency, it is necessary to reduce the thickness of the metal thin film. It is inevitable that performance will deteriorate. Although the ITO deposited surface conductive polymer film has excellent transparency, it has drawbacks such as a surface resistance of about 100 Ω/'day, poor conductivity, and expensive metal indium. ing.

また、ポリカーボネート膜に極細金属線を半埋込にした
ものは、透明性を有し、タッチパネルなどの電極に用い
られているが、分解能を向上させるには限界がある。
Furthermore, a polycarbonate film in which ultrafine metal wires are semi-embedded has transparency and is used for electrodes in touch panels, etc., but there is a limit to improving resolution.

一方、高分子膜表面に硫化銅を沈積させたものは、該硫
化銅が安定で、かつ金属鋼より一桁から二桁程度低い電
導度を有する優れた電導体である上、透明性も有するこ
とから好ましいものである。
On the other hand, in polymer films with copper sulfide deposited on the surface, the copper sulfide is stable and is an excellent conductor with a conductivity that is one to two orders of magnitude lower than that of metal steel, and is also transparent. Therefore, it is preferable.

高分子膜表面に硫化銅を沈積させるには、通常銅化合物
と還元性硫黄化合物との混合水溶液中に、高分子膜を浸
せきさせて加熱することにより、硫化銅を生成させ、高
分子膜表面に沈積させる湿式%式% しかしながら、このような湿式法においては、表面導電
性の比較的優れた高分子膜が得られるものの、形成され
る硫化銅薄膜層が薄く、表面抵抗は5Ω/口程度が限界
であって、それ以上の導電性を向上させることが困難で
あった。また、このような湿式法で高分子膜表面に金属
硫化物を沈積させる場合、基材の高分子表面に密着性よ
く沈積する金属硫化物は限られるという問題が生じる。
To deposit copper sulfide on the surface of a polymer membrane, the polymer membrane is usually immersed in a mixed aqueous solution of a copper compound and a reducing sulfur compound and heated to generate copper sulfide. However, although such a wet method yields a polymer film with relatively good surface conductivity, the copper sulfide thin film layer formed is thin and the surface resistance is about 5Ω/mouth. is the limit, and it has been difficult to further improve the conductivity. Further, when metal sulfides are deposited on the surface of a polymer film by such a wet method, there arises a problem that the metal sulfides that can be deposited with good adhesion to the surface of the polymer of the base material are limited.

他方、高分子膜表面に金属を沈積させることは、公知の
方法により容易に可能であるが、得られる金属薄膜層は
、その厚みにより導電性は優れていても透明性に劣った
り、その逆に透明性に優れていても導電性が不十分であ
ったりして、十分に満足しうる透明な表面導電性高分子
膜は得られにくい。
On the other hand, it is easily possible to deposit metal on the surface of a polymer film using known methods, but depending on its thickness, the resulting metal thin film layer may have excellent conductivity but poor transparency, or vice versa. Even if the film has excellent transparency, the conductivity may be insufficient, making it difficult to obtain a fully satisfactory transparent surface conductive polymer film.

発明が解決しようとする課題 本発明は、良好な導電性と透明性を有する表面導電性高
分子膜を簡単な方法で提供することを目的としてなされ
たものである。
Problems to be Solved by the Invention The present invention has been made with the object of providing a surface conductive polymer film having good conductivity and transparency by a simple method.

課題を解決するだめの手段 本発明者らは、好ましい性質を有する透明な表面導電性
高分子膜を開発すべく鋭意研究を重ねた結果、まず高分
子膜表面に金属を沈積させて、密着性に優れた均質な薄
膜層を形成させたのち、硫化水素ガスで処理することに
より、薄膜層の密着性や均質性がそこなわれることなく
、該金属が硫化物に変換され、優れた透明性と表面導電
性を有する高分子膜が得られることを見い出し、この知
見に基づいて本発明を完成するに至った。
Means to Solve the Problem The inventors of the present invention have conducted intensive research to develop a transparent surface-conductive polymer film with desirable properties.The inventors first deposited a metal on the surface of the polymer film to improve its adhesion. After forming a homogeneous thin film layer with excellent transparency, by treating it with hydrogen sulfide gas, the metal is converted to sulfide without damaging the adhesion or homogeneity of the thin film layer, resulting in excellent transparency. It was discovered that a polymer film having surface conductivity could be obtained, and the present invention was completed based on this knowledge.

すなわち、本発明は、高分子膜表面に、金属層を形成さ
せ、次いでこれを硫化水素ガスで処理し、該金属層を硫
化物層に変換させることを特徴とする透明な表面導電性
高分子膜の製造方法を提供するものである。
That is, the present invention provides a transparent surface-conductive polymer characterized in that a metal layer is formed on the surface of a polymer membrane, and then this is treated with hydrogen sulfide gas to convert the metal layer into a sulfide layer. A method for manufacturing a membrane is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明方法において用いられる高分子膜の材質について
は特に制限はなく、従来表面導電性高分子膜に慣用され
ているものの中から任意のものを選択して用いることが
できる。また、該高分子膜の厚さは、通常5〜500μ
mの範囲で選ばれる。
There are no particular restrictions on the material of the polymer membrane used in the method of the present invention, and any material can be selected from those conventionally used for surface conductive polymer membranes. Further, the thickness of the polymer membrane is usually 5 to 500 μm.
selected within the range of m.

本発明方法においては、前記高分子膜表面に、金属層を
形成させる前に、あらかじめプラズマエツチング処理又
はプラズマによるスパッタエツチング処理を施し、該表
面を活性化しておくのが望ましい。この処理により、形
成される薄膜層の密着性はさらに向上する。特にプラズ
マによるスパッタエツチング処理を施すのが有利である
In the method of the present invention, it is desirable to activate the surface of the polymer film by subjecting it to plasma etching treatment or sputter etching treatment using plasma in advance before forming the metal layer on the surface of the polymer film. This treatment further improves the adhesion of the formed thin film layer. In particular, it is advantageous to carry out a sputter etching treatment using plasma.

このプラズマ処理方法については特に制限はなく、従来
プラスチック表面処理に慣用されている方法、例えば高
周波プラズマ処理やマイクロ波プラズマ処理などを用い
ることができるが、特に高周波プラズマ処理が好適であ
る。
This plasma treatment method is not particularly limited, and methods conventionally used for plastic surface treatment, such as high frequency plasma treatment and microwave plasma treatment, can be used, but high frequency plasma treatment is particularly preferred.

高周波プラズマ装置としては、平行平板型のものが好ま
しく、その出方、反応圧力、反応時間については装置条
件、例えば電極面積、極間距離、排気能力などにより異
なり、−概に定めることができないが、通常アルゴンな
どの不活性ガス雰囲気中に、前記高分子基材を置き、1
0〜100mmTorr程度の圧力下に、出力too 
−1000W 、周波数10〜100MHz程度の高周
波を用いてプラズマを発生させることにより、スパッタ
エツチング処理が行われる。処理時間については特に制
限はないが、10〜60分程度で十分である。
As the high-frequency plasma device, a parallel plate type device is preferable, and its output direction, reaction pressure, and reaction time vary depending on the device conditions, such as electrode area, distance between electrodes, exhaust capacity, etc., and cannot be determined generally. , the polymer base material is placed in an inert gas atmosphere such as argon, and 1
Under a pressure of about 0 to 100 mm Torr, the output too
The sputter etching process is performed by generating plasma using a high frequency of -1000 W and a frequency of about 10 to 100 MHz. There is no particular restriction on the treatment time, but about 10 to 60 minutes is sufficient.

次に、このようにしてプラズマによるスパッタエツチン
グ処理により表面が活性化された高分子膜の表面に、例
えば金属を沈積させて所要の金属層を形成させるが、こ
の際用いられる金属については、硫化水素と反応して透
明性及び導電性を有する硫化物に変換できるものであれ
ばよく、特に制限はないが、銅、銀、亜鉛、鉄、ニッケ
ル、コバルト、カドミウムなどの金属が好適である。も
ちろん、これら以外の金属も目的に応じて適宜選ぶこと
ができる。
Next, a desired metal layer is formed by depositing a metal, for example, on the surface of the polymer film whose surface has been activated by sputter etching using plasma. Any metal can be used as long as it can react with hydrogen and convert into a transparent and conductive sulfide, and metals such as copper, silver, zinc, iron, nickel, cobalt, and cadmium are suitable, although there are no particular limitations. Of course, metals other than these can also be selected as appropriate depending on the purpose.

これらの金属の層を、該高分子膜表面に形成させる方法
については特に制限はなく、公知の方法、′例えば真空
蒸着法やスパッタリング法などを用いることができる。
There are no particular limitations on the method of forming these metal layers on the surface of the polymer film, and known methods such as vacuum evaporation and sputtering can be used.

本発明においては、このようにして高分子膜表面に、密
着性に優れI;均質な金属から成る薄膜層を形成させた
のち、硫化水素ガスで処理して、該金属を硫化物に変換
させる。
In the present invention, a thin film layer made of a homogeneous metal with excellent adhesion is thus formed on the surface of the polymer membrane, and then treated with hydrogen sulfide gas to convert the metal into sulfide. .

この処理に用いられる硫化水素ガスは、その濃度に制限
はないが、取扱いの容易さの点から窒素やアルゴンなど
の不活性ガスで希釈したものが好ましく、通常窒素で希
釈された硫化水素濃度が10容量%程度のものが用いら
れる。
There is no limit to the concentration of the hydrogen sulfide gas used in this treatment, but from the viewpoint of ease of handling, it is preferable to dilute it with an inert gas such as nitrogen or argon. About 10% by volume is used.

また、処理温度については、その上限は基材ポリマーの
耐熱温度に左右されるが、通常室温ないし150°Cの
範囲で選ばれ、処理時間は処理温度により左右され、−
概に定めることができないが、通常数十分ないし数時間
程度で十分である。さらに、圧力については特に制限は
ないが、通常大気圧下で処理が行われる。
Regarding the processing temperature, the upper limit depends on the heat resistance temperature of the base polymer, but it is usually selected in the range of room temperature to 150°C, and the processing time depends on the processing temperature.
Although it cannot be determined generally, several tens of minutes to several hours is usually sufficient. Further, although there are no particular restrictions on the pressure, the treatment is usually performed under atmospheric pressure.

このようにして、金属層は硫化物に変換され、表面導電
性と透明性に優れた高分子膜が得られる。
In this way, the metal layer is converted to sulfide, and a polymer film with excellent surface conductivity and transparency is obtained.

発明の効果 本発明方法によると、高分子膜表面に、まず密着性に優
れた均質な金属層を形成させたのち、気相で硫化水素ガ
ス処理を施して、硫化物から成る薄膜層に変換させるこ
とにより、表面が導電性と透明性に優れ、かつ密着性が
良好で均質な薄膜層を有する表面導電性高分子膜を容易
に得ることができる。
Effects of the Invention According to the method of the present invention, a homogeneous metal layer with excellent adhesion is first formed on the surface of a polymer film, and then a hydrogen sulfide gas treatment is performed in the gas phase to convert it into a thin film layer made of sulfide. By doing so, it is possible to easily obtain a surface conductive polymer film having a homogeneous thin film layer with excellent surface conductivity and transparency, and good adhesion.

また、本発明方法によると、沈積金属から成る薄膜層の
厚さを自由にコントロールすることができるため、得ら
れる硫化物から成る薄膜層の抵抗を自在に変えることが
でき、目的に応じた性能の表面導電性高分子膜を供する
ことができる。
In addition, according to the method of the present invention, the thickness of the thin film layer made of deposited metal can be freely controlled, so the resistance of the thin film layer made of sulfide obtained can be freely changed, and the performance can be adjusted according to the purpose. A surface conductive polymer film can be provided.

本発明方法で得られた透明な表面導電性高分子膜は、例
えば機器の帯電防止、電子材料、電磁波シールド材料、
高分子電極などに好適Iこ用いられる。
The transparent surface conductive polymer film obtained by the method of the present invention can be used, for example, in antistatic equipment, electronic materials, electromagnetic shielding materials, etc.
Suitable for use in polymer electrodes, etc.

実施例 次に実施例により本発明をさらに詳細に説明するが、本
発明はこれらの例によってなんら限定されるものではな
い。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 膜厚約50μmのポリエチレンテレフタレートフィルム
を、電極面積50cm5電極間距離8cmの高周波プラ
ズマ装置を用い、アルゴンガス雰囲気中で圧力20 m
Torr、出力600W、周波数13.56MHzの条
件で、20分間高周波によるプラズマスパッタエツチン
グ処理した。このようにして得られt=前処理フィルム
の外観は、元のフィルムとほとんど変わらなかった。
Example 1 A polyethylene terephthalate film with a film thickness of about 50 μm was heated at a pressure of 20 m in an argon gas atmosphere using a high-frequency plasma device with an electrode area of 50 cm and a distance between the electrodes of 8 cm.
High frequency plasma sputter etching treatment was performed for 20 minutes under the conditions of Torr, output of 600 W, and frequency of 13.56 MHz. The appearance of the t=pretreated film thus obtained was almost the same as the original film.

次に、このようにして得られt−前処理フィルムを、通
常の高周波スパッタリング装置の基板側にセットし、タ
ーゲットに純金属銅を使用し、かつアルゴンをスパッタ
ガスに用い、反応条件は圧カQ、1Torr、出力20
0Wに設定した。アルゴンを5mQ/分流し、2.5分
間スパッタリングを行ったところポリエチレンテレフタ
レー)・フィルム表面に、金属銅が沈積して厚さ約0.
8μmの均質な薄膜層が形成された。この薄膜層は密着
性に優れ、スコーチテープ剥離テストでも剥離しなかっ
た。、以下、このものを銅沈積フィルムと称する。
Next, the T-pretreated film obtained in this way was set on the substrate side of an ordinary high-frequency sputtering device, using pure metallic copper as the target and argon as the sputtering gas, and the reaction conditions were pressure and pressure. Q, 1 Torr, output 20
It was set to 0W. When sputtering was performed for 2.5 minutes with argon flowing at 5 mQ/min, metallic copper was deposited on the surface of the polyethylene terephthalate film to a thickness of about 0.0 mm.
A homogeneous thin film layer of 8 μm was formed. This thin film layer had excellent adhesion and did not peel off even in a scorch tape peel test. Hereinafter, this film will be referred to as a copper deposited film.

次に、この銅沈積フィルムをフラスコに入れ、窒素で希
釈された10容量%の硫化水素ガスで置換後、フラスコ
をオイルバスに浸せきして、150℃で1時間処理を行
った。反応終了後、フィルムは透明な緑色に変色してい
た。
Next, this copper deposited film was placed in a flask, and after purging with 10% by volume hydrogen sulfide gas diluted with nitrogen, the flask was immersed in an oil bath and treated at 150° C. for 1 hour. After the reaction was completed, the film turned transparent green.

このようにして処理されたフィルム表面の薄膜のxPS
分析を行ったところ、二価の硫化銅が主成分であること
が判明した。また、このフィルムの表面抵抗は約20/
口であり、可視光線透過率は550nm領域で約20%
であった。ちなみに銅沈積フィルムでは、全く可視光線
は透過しなかった。
xPS of the thin film on the film surface treated in this way
Analysis revealed that the main component was divalent copper sulfide. In addition, the surface resistance of this film is approximately 20/
The visible light transmittance is approximately 20% in the 550 nm region.
Met. By the way, visible light did not pass through the copper deposited film at all.

比較例1 実施例1で得られた銅沈積フィルムを、還元性硫黄化合
物であるポリ硫化アンモニウムの水溶液に浸せきしたと
ころ、金属表面が黒くなっただけで硫化銅への変化は認
められなかった。
Comparative Example 1 When the copper deposited film obtained in Example 1 was immersed in an aqueous solution of polyammonium sulfide, which is a reducible sulfur compound, only the metal surface became black and no change to copper sulfide was observed.

実施例2 実施例1において、硫化水素ガス処理時間を6時間に変
えた以外は、実施例1と同様にして実施し Iこ。
Example 2 The experiment was carried out in the same manner as in Example 1, except that the hydrogen sulfide gas treatment time was changed to 6 hours.

得られたフィルムの表面抵抗は約lΩ/口であり、また
形成された薄膜は、xPS分析の結果、二価硫化銅が主
成分であった。
The surface resistance of the obtained film was about 1Ω/mouth, and xPS analysis revealed that the main component of the formed thin film was divalent copper sulfide.

比較例2 実施例1で得られた銅沈積フィルムを、還元性硫黄化合
物であるチオ硫酸ナトリウムの0.1mol/Q水溶液
中に浸せきし、80°Cに加熱したところ、比較例1と
同様に、フィルムが黒くなるとともに、フィルム上に形
成された薄膜が容易に剥離した。
Comparative Example 2 When the copper deposited film obtained in Example 1 was immersed in a 0.1 mol/Q aqueous solution of sodium thiosulfate, which is a reducing sulfur compound, and heated to 80°C, the same result as in Comparative Example 1 was obtained. , the film turned black and the thin film formed on the film peeled off easily.

実施例3 実施例1において、金属として純ニッケルを用いた以外
は、実施例1と同様にして実施した。得られた硫化ニッ
ケル薄膜層は暗黄色透明であり、また、xPS分析の結
果、Ni52に近い組成であった。
Example 3 A test was carried out in the same manner as in Example 1 except that pure nickel was used as the metal. The obtained nickel sulfide thin film layer was dark yellow and transparent, and as a result of xPS analysis, it had a composition close to Ni52.

このフィルムの表面抵抗は350Ω/口であり、光線透
過率は600nm領域で約10%であった。
The surface resistance of this film was 350Ω/hole, and the light transmittance was about 10% in the 600 nm region.

比較例3 実施例3において、硫化水素ガスの代りに、ポリ硫化ア
ンモニウム水溶液を用いて処理したところ、やはり表面
が黒くなるだけで、硫化二・7ケルへの変換は認められ
なかった。
Comparative Example 3 In Example 3, when a polyammonium sulfide aqueous solution was used instead of hydrogen sulfide gas, the surface only became black and no conversion to 2.7K sulfide was observed.

Claims (1)

【特許請求の範囲】 1 高分子膜表面に、金属層を形成させ、次いでこれを
硫化水素ガスで処理し、該金属層を硫化物層に変換させ
ることを特徴とする透明な表面導電性高分子膜の製造方
法。 2 使用する高分子膜がスパッタエッチング処理により
、表面活性化させたものである請求項1記載の透明な表
面導電性高分子膜の製造方法。
[Scope of Claims] 1. A transparent surface conductive high film characterized by forming a metal layer on the surface of a polymer film, and then treating this with hydrogen sulfide gas to convert the metal layer into a sulfide layer. Method for manufacturing molecular membranes. 2. The method for producing a transparent surface-conductive polymer film according to claim 1, wherein the surface of the polymer film used is activated by sputter etching.
JP31575390A 1990-11-22 1990-11-22 Production of transparent conductive-surface polymeric film Pending JPH04187758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31575390A JPH04187758A (en) 1990-11-22 1990-11-22 Production of transparent conductive-surface polymeric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31575390A JPH04187758A (en) 1990-11-22 1990-11-22 Production of transparent conductive-surface polymeric film

Publications (1)

Publication Number Publication Date
JPH04187758A true JPH04187758A (en) 1992-07-06

Family

ID=18069135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31575390A Pending JPH04187758A (en) 1990-11-22 1990-11-22 Production of transparent conductive-surface polymeric film

Country Status (1)

Country Link
JP (1) JPH04187758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659681B2 (en) 2013-11-01 2017-05-23 Samsung Electronics Co., Ltd. Transparent conductive thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659681B2 (en) 2013-11-01 2017-05-23 Samsung Electronics Co., Ltd. Transparent conductive thin film

Similar Documents

Publication Publication Date Title
US6849165B2 (en) Indium-tin oxide (ITO) layer and method for producing the same
Minami et al. Highly conductive and transparent zinc oxide films prepared by rf magnetron sputtering under an applied external magnetic field
JP2003297150A (en) Transparent electrically conductive laminate and manufacturing method therefor
JPS63908A (en) Manufacture of transparent conducting film
WO2004065656A1 (en) Ito thin film, film-forming method of same, transparent conductive film and touch panel
CN104810114B (en) High transmission rate flexible polyimide substrate ITO conductive film and preparation method and application
Chiang et al. Deposition of high-transmittance ITO thin films on polycarbonate substrates for capacitive-touch applications
CN106756789A (en) A kind of compound transparent electricity conductive film and preparation method thereof
CN107731352B (en) Flexible electronic glass transparent conductive oxide film circuit preparation method
CN106893984B (en) Enhance the preparation method of the tin-doped indium oxide based coextruded film of visible light wave range transmission
JPH04187758A (en) Production of transparent conductive-surface polymeric film
CN113667952B (en) Magnetron sputtering flexible copper-clad substrate and preparation method thereof
Liao et al. Electroless deposition of pure copper film on carbon fabric substrate using hydrazine as reducing agent
CN114231903A (en) Niobium oxide/silver nanowire double-layer structure flexible transparent conductive film and preparation method thereof
CN113061837A (en) Preparation method of high-transparency p-type cuprous iodide conductive film
Shahiduzzaman et al. Thin film deposition method for ZnO nanosheets using low-temperature microwave-excited atmospheric pressure plasma jet
Izumi et al. Electron-assisted deposition and interface control of naphthalenediimide derivative thin films
JPH0554733A (en) Manufacture of surface conductive transparent vapor deposition film coated body
Ou et al. Characterization of Al-Doped ZnO transparent conducting thin film prepared by off-axis magnetron sputtering
JPS6280918A (en) Manufacturing transparent conductive film
JP5756834B2 (en) Transfer film, method for producing the same, and method for producing transparent conductive laminate
JPH04192218A (en) Method for manufacturing surface conductive high polymer material
KR20170132990A (en) Method for preparing of metal electrode using ultra violet illumination
TW380363B (en) Forming method for electromagnetic interference shielding film
Panidharaa et al. High conducting room temperature RF magnetron ITO sputtering on flexible substrates for optoelectronics