JPH04187752A - Composite surface treatment - Google Patents

Composite surface treatment

Info

Publication number
JPH04187752A
JPH04187752A JP2317043A JP31704390A JPH04187752A JP H04187752 A JPH04187752 A JP H04187752A JP 2317043 A JP2317043 A JP 2317043A JP 31704390 A JP31704390 A JP 31704390A JP H04187752 A JPH04187752 A JP H04187752A
Authority
JP
Japan
Prior art keywords
surface treatment
workpiece
plasma
treatment method
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2317043A
Other languages
Japanese (ja)
Inventor
Hisao Hirono
広野 久雄
Yasuhiro Nakao
靖宏 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2317043A priority Critical patent/JPH04187752A/en
Publication of JPH04187752A publication Critical patent/JPH04187752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To make it possible to reform the surface layer of a light alloy where the setting of conditions has been difficult in the surface treatment in which the additive of ceramic powder or the different kind of metal powder is mixed into the molten part by removing an oxide film at the treated part with the reversed-polarity current of an AC plasma arc. CONSTITUTION:A work W consisting of a light alloy such as an Al alloy is positioned on a holder, a plasma torch 2 is approached to the work, and an arc is generated between an electrode 8 and the part of the work W to be treated in the atmosphere replaced by the plasma gas. The part is cleaned by a reversed-polarity current, and the penetration is increased by the straight- polarity current. Consequently, the oxide film on the surface of the work W is cleaned off, and the concentrated melting of the internal base material is smoothly performed. A ceramic powder 18 is simultaneously discharged from a powdery material transport pipe 14.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラズマアークを用いて、アルミ合金材或い
はマグネシウム合金材等の軽合金の表面を再溶融し、溶
融部に例えば耐摩耗性合金粉末等を分散含有させて表面
層を改質せしめるような表面処理法の改良に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention uses a plasma arc to remelt the surface of a light alloy such as an aluminum alloy or a magnesium alloy, and the molten part is coated with a wear-resistant alloy, for example. This invention relates to improvements in surface treatment methods in which the surface layer is modified by dispersing powder or the like.

(従来の技術) 従来、例えば鋳鉄、アルミ合金その他の金属材料の表面
の改質方法として、本出願人は特開昭60−70136
号に示されるような表面処理方法を提案している。この
処理方法は、プラズマアークによってワーク表面に溶融
部を生じさせ、この溶融部に異種のセラミック或いは金
属等の粉末を混入させて、処理表面層の耐摩耗性の向上
を図ろうとするものである。
(Prior Art) As a conventional method for modifying the surface of cast iron, aluminum alloy, and other metal materials, the present applicant has disclosed Japanese Patent Application Laid-Open No. 60-70136.
proposed a surface treatment method as shown in the issue. This treatment method aims to improve the wear resistance of the treated surface layer by creating a molten zone on the surface of the workpiece using a plasma arc and mixing powders of different types of ceramics or metals into this molten zone. .

一方例えば金属材料の表面を溶融させて溶接する溶接機
として、プラズマアークを利用した交流プラズマ溶接機
が知られており、この溶接機では、電極をマイナス、母
材をプラスにした正極電流で集中的な溶込みがなされ、
逆に電極をプラス、母材をマイナスにした逆極電流で表
面のクリーニング作用が行なわれることが知られている
On the other hand, for example, an AC plasma welding machine that uses a plasma arc is known as a welding machine that melts and welds the surface of metal materials.This welding machine uses a concentrated positive current, with the electrode being negative and the base metal being positive. The integration has been made,
On the other hand, it is known that a surface cleaning action can be performed using a reverse polarity current in which the electrode is positive and the base material is negative.

(発明が解決しようとする課題) ところで、前述の特開昭60−70136号のようなワ
ークの表面処理法において、特にアルミ合金のように表
面に硬い酸化皮膜が形成される場合には、安定した溶融
が得られにくいという問題かあった。
(Problem to be Solved by the Invention) By the way, in the surface treatment method for a workpiece as described in the above-mentioned Japanese Patent Application Laid-Open No. 60-70136, it is difficult to stabilize the workpiece, especially when a hard oxide film is formed on the surface, such as with aluminum alloy. There was a problem that it was difficult to obtain a certain degree of melting.

一つまりこのようなアルミ合金表面の酸化皮膜(A+2
OS)は耐火性であり、例えば母材の融点660℃に較
べて酸化皮膜の融点は、はるかに高い2050℃程度で
あることから、酸化皮膜処理のため単にプラズマ電流の
出力を上げるだけでは、内部の母材自体が溶けだす可能
性があり、安定した条件で処理するためには、そのコン
トロールが極めテ難かしかった。
In other words, the oxide film on the surface of such an aluminum alloy (A+2
OS) is refractory, and the melting point of the oxide film is about 2050°C, which is much higher than the melting point of the base material, for example, 660°C. Therefore, simply increasing the plasma current output for oxide film treatment will not work. There is a possibility that the internal base material itself will start to melt, and it is extremely difficult to control this in order to process under stable conditions.

(課題を解決するための手段) かかる課題を解決するため、本発明は、プラズマ溶接機
で知られる逆極性のクリーニング作用を活用することと
した。すなわち溶融部にセラミック粉末又は異種の金属
粉末の添加材を混入せしめるようにした表面処理法にお
いて、交流プラズマアークの逆極性電流によりワーク表
面の処理部の酸化皮膜を除去するとともに、正極性電流
で該処理部の母材の溶融と添加材の混入処理を行なう。
(Means for Solving the Problem) In order to solve the problem, the present invention makes use of the reverse polarity cleaning action known from plasma welding machines. In other words, in a surface treatment method in which additives such as ceramic powder or different metal powders are mixed into the molten part, the oxide film on the treated part of the workpiece surface is removed by the reverse polarity current of an AC plasma arc, and the oxide film is removed by the positive polarity current. The base material in the processing section is melted and additives are mixed in.

又、第2実施例では、直流プラズマアークの逆極性電流
によりワーク表面の処理部の酸化皮膜を除去するととも
に、アーク電流の出力及び粉末搬送ガスの圧力を制御し
て再溶融部に添加材を混入する。
In addition, in the second embodiment, the oxide film on the treated part of the workpiece surface is removed by the reverse polarity current of the DC plasma arc, and the additive material is added to the remelted part by controlling the output of the arc current and the pressure of the powder carrier gas. Mixed.

又、処理中ワークの一部又は全部を冷却媒体で冷却する
ようにした。そして添加材として、Al2O3、S i
 C,B N、 T i B等のいずれか1種類とした
Further, part or all of the workpiece during processing is cooled with a cooling medium. And as additives, Al2O3, Si
One of the types is C, BN, T i B, etc.

(作用) 軽合金部材の溶融処理に伴ない、プラズマアークの逆極
性電流によって表面の酸化皮膜を除去し−っつ処理する
ことが出来、母材の再溶融が極めて円滑になされる。こ
のためセラミック粉末又は金属粉末の混入分散処理が安
定した状態下で行なわれる。この際、熱伝導性のよいワ
ークの一部又は全部を冷却しながら処理すると、ワーク
は略均熱化し、処理層の深さ等の溶融条件が略均−化さ
れて品質も安定する。
(Function) When a light alloy member is melted, the oxide film on the surface can be removed by the reverse polarity current of the plasma arc, and the base material can be remelted extremely smoothly. Therefore, the mixing and dispersion treatment of ceramic powder or metal powder is carried out under stable conditions. At this time, if a part or all of the workpiece having good thermal conductivity is processed while being cooled, the workpiece becomes approximately uniformly heated, the melting conditions such as the depth of the processing layer are approximately equalized, and the quality is stabilized.

(実施例) 本発明の複合化表面処理法の実施例について添付した図
面に基づき説明する。
(Example) An example of the composite surface treatment method of the present invention will be described based on the attached drawings.

第1図は交流プラズマ処理による処理装置の全体構成図
、第2図はワークの処理部の1例を示す斜視図、第3図
はトーチ先端の拡大図である。
FIG. 1 is an overall configuration diagram of a processing apparatus using AC plasma processing, FIG. 2 is a perspective view showing an example of a workpiece processing section, and FIG. 3 is an enlarged view of the tip of a torch.

第1図に示すように処理装置1は、プラズマトーチ2と
ワーク母材に交流電源を供給するための交流プラズマ電
源3と、トーチ2先端に例えばセラミック粉末等の添加
材を供給するためのセラミック供給装置4を備え、交流
プラズマ電源3、セラミック供給装置4は制御装置5に
接続されている。そしてプラズマトーチ2は自動送り機
構6に取り付けられており、制御装置5によって自動送
り可能とされる。
As shown in FIG. 1, the processing apparatus 1 includes a plasma torch 2, an AC plasma power supply 3 for supplying AC power to the workpiece base material, and a ceramic for supplying additives such as ceramic powder to the tip of the torch 2. A supply device 4 is provided, and the AC plasma power supply 3 and the ceramic supply device 4 are connected to a control device 5. The plasma torch 2 is attached to an automatic feeding mechanism 6, and can be automatically fed by the control device 5.

このような処理装置1によって、例えば第2図に示すよ
うな車両のエンジン構成部品であるロッカーアーム等の
ワークWの動弁カム摺動面に表面処理を施す訳であるが
、まずプラズマトーチ2の細部について第3図に基づき
説明する。
Such a processing device 1 is used to perform surface treatment on the sliding surface of a valve train cam of a work W such as a rocker arm, which is a component of a vehicle engine, as shown in FIG. 2. First, a plasma torch 2 is used. The details will be explained based on FIG.

プラズマトーチ2はノズル7の中心に電極8を備え、こ
の電極8の周囲にはプラズマガス通路9が設けられてい
る。又、ノズル7先端にはガス通路孔10が設けられる
とともに、内部には冷却水路11も設けられている。
The plasma torch 2 includes an electrode 8 at the center of a nozzle 7, and a plasma gas passage 9 is provided around the electrode 8. Further, a gas passage hole 10 is provided at the tip of the nozzle 7, and a cooling water channel 11 is also provided inside.

一方このノズル7の周囲はシールドキャップ12によっ
て覆われており、このシールドキャップ12とノズル7
間の空間がシールドガス通路13として構成されている
On the other hand, the periphery of this nozzle 7 is covered with a shield cap 12, and this shield cap 12 and the nozzle 7
The space between them is configured as a shield gas passage 13.

又ノズル7先端には粉末材搬送パイプ14の吐出口が臨
んでいる。こうして構成したプラズマトーチ2の電極8
をワークWに近接して臨ませ、プラズマガスで置換した
ふん囲気中で電極8とワークWの処理部との間に交流電
源でアークを発生させて、処理部の再溶融を行なうが、
そのメカニズムについて更に詳述する。つまりワークW
側の母材が陰極で電極8が陽極の逆極性においては、ア
ークのなかの流れる電子が電極8に向い、逆にガスイオ
ンが母材に向けて流れて、イオンの衝撃を受けた母材表
面の酸化皮膜等が広い範囲で破壊されるいわゆるクリー
ニング作用が行なわれる。又反対に母材側が陽極で電極
8が陰極となる正極性においては、金属蒸気及びガスイ
オンが電極に向い、逆に電子が母材表面に強く衝撃して
集中的な溶込みが行なわれる。そしてこの集中的な溶込
みが行なわれた溶融部Rに、粉末材搬送パイプ14から
粉末搬送ガスによって送られる添加材としてのセラミッ
ク粉末18を導いて混入させ表面改質処理を行なう。そ
してプラズマトーチ2を走査させて粒子分散層Cを形成
する。
Further, the discharge port of the powder material conveying pipe 14 faces the tip of the nozzle 7. Electrode 8 of plasma torch 2 configured in this way
is placed close to the workpiece W, and an arc is generated between the electrode 8 and the processing section of the workpiece W using an AC power source in an atmosphere substituted with plasma gas to remelt the processing section.
The mechanism will be explained in further detail. In other words, work W
In the case of reverse polarity, where the base material on the side is the cathode and the electrode 8 is the anode, the electrons flowing in the arc are directed toward the electrode 8, and conversely, the gas ions flow toward the base material, and the base material is bombarded by the ions. A so-called cleaning action is performed in which the oxide film on the surface is destroyed over a wide range. On the other hand, in the case of positive polarity in which the base material side is the anode and the electrode 8 is the cathode, metal vapor and gas ions are directed toward the electrode, and conversely, electrons strongly impact the base material surface, resulting in intensive penetration. Ceramic powder 18 as an additive is introduced and mixed into the molten zone R where the intensive penetration has been carried out by the powder conveying gas from the powder conveying pipe 14 to perform a surface modification treatment. Then, the particle dispersed layer C is formed by scanning the plasma torch 2.

一方、第2図に示すようにこのワークWを保持する保持
台15には冷却通路16が設けられている。そしてこの
冷却通路16には、水又はエア等の冷却媒体が導かれワ
ークWの処理部の下方を冷却している。
On the other hand, as shown in FIG. 2, a cooling passage 16 is provided in the holding table 15 that holds the workpiece W. A cooling medium such as water or air is introduced into the cooling passage 16 to cool the lower part of the processing section of the workpiece W.

こうして構成した処理装置による処理方法の概要は次の
通りである。
The outline of the processing method using the processing apparatus configured in this way is as follows.

第2図に示すようにアルミ合金或いはマグネシウム合金
等の軽合金からなるワークWを保持台15上に位置決め
するとプラズマトーチ2が近接し、放電アークを発生さ
せて表面処理が開始される。
As shown in FIG. 2, when a workpiece W made of a light alloy such as an aluminum alloy or a magnesium alloy is positioned on the holding table 15, the plasma torch 2 approaches and generates a discharge arc to start surface treatment.

つまり放電アーク中にプラズマガスを通すことによりプ
ラズマ状態を発生させ、逆極性電流で処理部のクリーニ
ングを行ないながら正極性電流で溶込みを増加させる。
In other words, a plasma state is generated by passing plasma gas through a discharge arc, and while cleaning the treated area with a reverse polarity current, penetration is increased with a positive polarity current.

勿論このパルス周波数、交流周波数は可変であり、又正
、負の電流値、パルス幅、クリーニング幅等の諸元は変
更可能である。
Of course, this pulse frequency and AC frequency are variable, and specifications such as positive and negative current values, pulse width, cleaning width, etc. can be changed.

このためアルミ合金材等の表面の酸化皮膜は、クリーニ
ング作用で除去され、内部の母材の集中的な溶融が円滑
になされる。そしてこれと併行して粉末材搬送パイプ1
4からセラミック粉末18を吐出する。このセラミック
粉末18は、例えば粉末サイズ05〜100μm1粉末
搬送ガスによる粉末搬送量5〜30 g/min、キャ
リアガス量1〜5跣/minであり、この粉末の搬送速
度をシールドガス流速より太き目に設定することによっ
て、ワークWの溶融部Rに導く。そして溶融部Rでは流
動攪拌によって粉末が内部に均一に分散され、例えば1
〜40容量%に分散した粒子分散層Cが得られる。そし
てこのプラズマトーチ2は例えば第2図破線に示すよう
に走査され、この間保持台15の冷却通路16には冷却
媒体が流通されている。このため熱伝導性のよいアルミ
合金等のワークの処理部の温度は略均熱化されて、例え
ば表面から1〜5 mmの深さ範囲で略均−な処理がな
される。
Therefore, the oxide film on the surface of the aluminum alloy material, etc. is removed by the cleaning action, and the internal base material is smoothly and intensively melted. And in parallel with this, powder material conveying pipe 1
Ceramic powder 18 is discharged from 4. This ceramic powder 18 has a powder size of 05 to 100 μm, a powder conveyance amount of 5 to 30 g/min by a powder carrier gas, a carrier gas amount of 1 to 5 feet/min, and the powder conveyance speed is set to be greater than the shielding gas flow rate. It is guided to the molten part R of the workpiece W by setting it in the same direction. Then, in the melting zone R, the powder is uniformly dispersed inside by fluidized stirring, for example, 1
A particle-dispersed layer C having particles dispersed at ~40% by volume is obtained. The plasma torch 2 is scanned, for example, as shown by the broken line in FIG. 2, and during this time a cooling medium is flowing through the cooling passage 16 of the holding table 15. For this reason, the temperature of the processing portion of a workpiece made of aluminum alloy or the like having good thermal conductivity is approximately equalized, and processing is performed approximately uniformly within a depth range of, for example, 1 to 5 mm from the surface.

又、セラミック粉末等の添加材は、例えばアルミナ(A
1.03)、炭化ケイ素(SiC)、窒化ホウ素(BN
) 、ホウ化チタン(TiB)のうちいずれか1種類で
ある。
Additionally, additives such as ceramic powder, for example, alumina (A
1.03), silicon carbide (SiC), boron nitride (BN
), titanium boride (TiB).

次に第4図はアルミ合金材のシリンダバレル等の円筒状
ワークWの内部を処理するようにしたものの構成作用図
であり、例えばワークWを回転させながらプラズマトー
チ2を上下に送って内面処理を行なう。そしてワークW
の外周から任意の手段で冷却する。
Next, FIG. 4 is a configuration diagram of a device for processing the inside of a cylindrical workpiece W such as a cylinder barrel made of aluminum alloy material. For example, while rotating the workpiece W, the plasma torch 2 is sent up and down to treat the inner surface. Do this. And work W
Cool by any means from the outer periphery.

ところで、以上のような複合化処理は直流プラズマアー
クによって行なうことも出来る。すなわちワーク側を陰
極にして、プラズマアークの逆極性電流により表面の酸
化被膜を除去した後、アーク電流の出力をあげて溶込み
を増加させ、更に粉末搬送ガスの圧力もあげて再溶融部
にセラミック粉末等に添加材を混入せしめるものである
。そし、てこの場合も同様の効果を得ることが出来る。
Incidentally, the above-described compounding treatment can also be performed using a DC plasma arc. That is, after using the workpiece side as a cathode and removing the oxide film on the surface using the reverse polarity current of the plasma arc, the output of the arc current is increased to increase penetration, and the pressure of the powder carrier gas is also increased to reach the remelted part. Additives are mixed into ceramic powder, etc. A similar effect can be obtained in the case of a lever.

尚、本発明の処理方法は、以上のロッカーアーム、シリ
ンダバレルの他例えばシリンダブロックのシリンダ内面
に耐摩耗性、耐熱性等を付与するためにも広く適用出来
るものである。
The treatment method of the present invention can be widely applied not only to the above-mentioned rocker arm and cylinder barrel but also to impart wear resistance, heat resistance, etc. to the inner surface of the cylinder of a cylinder block, for example.

(発明の効果) 以上のように本発明の複合化処理方法は、従来では極め
て条件設定等が困難であったアルミ合金等の軽合金の表
層の改質が可能となり、機械的強度、例えばヤング率、
引張り応力、耐摩耗性等を向上させることが出来る。
(Effects of the Invention) As described above, the composite treatment method of the present invention makes it possible to modify the surface layer of light alloys such as aluminum alloys, which was extremely difficult to set conditions in the past, and improve mechanical strength, such as young rate,
Tensile stress, wear resistance, etc. can be improved.

又、必要最小限の部分のみの表面改質が容易であること
から、例えば従来プリフォーム成形した繊維成形体等を
アルミ合金中に鋳込んで必要な強度等を確保していたよ
うな工程が不要となり、工程の短縮、コスト安等といっ
た面で効果がある。
In addition, since it is easy to modify the surface of only the minimum necessary parts, the process of conventionally casting a preformed fiber molded body into an aluminum alloy to ensure the necessary strength, etc., is now possible. This eliminates the need for this process, which is effective in shortening the process and reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は処理装置の全体構成図、第2図はワークの処理
部の1例を示す斜視図、第3図はトーチ先端の拡大図、
第4図はワークの処理部の他の例を示す斜視図である。 尚、同図中、1は処理装置、2はプラズマトーチ、8は
電極、14は粉末材搬送パイプ、16は冷却通路、18
はセラミック粉末を示す。 第1図
Fig. 1 is an overall configuration diagram of the processing device, Fig. 2 is a perspective view showing an example of a workpiece processing section, Fig. 3 is an enlarged view of the tip of the torch,
FIG. 4 is a perspective view showing another example of the workpiece processing section. In addition, in the figure, 1 is a processing device, 2 is a plasma torch, 8 is an electrode, 14 is a powder material conveying pipe, 16 is a cooling passage, and 18
indicates ceramic powder. Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)軽合金部材の表面をプラズマアークで再溶融し、
この溶融部にセラミック粉末又は異種の金属粉末の添加
材を混入せしめて表面を改質するようにした表面処理法
において、この方法は、交流プラズマアークの逆極性電
流によりワーク表面の処理部の酸化皮膜を除去するとと
もに、正極性電流で該処理部の母材の再溶融と前記添加
材の混入処理を行なうことを特徴とする複合化表面処理
法。
(1) Remelting the surface of the light alloy member with a plasma arc,
In a surface treatment method that modifies the surface by mixing additives such as ceramic powder or different metal powders into this molten part, this method oxidizes the treated part of the workpiece surface using a reverse polarity current of an AC plasma arc. A composite surface treatment method characterized by removing the film, remelting the base material of the treated portion with a positive current, and mixing the additive.
(2)軽合金部材の表面をプラズマアークで再溶融し、
この溶融部にセラミック粉末又は異種の金属粉末の添加
材を混入せしめて表面を改質するようにした表面処理法
において、この方法は、直流プラズマアークの逆極性電
流によりワーク表面の処理部の酸化皮膜を除去するとと
もに、アーク電流の出力及び粉末搬送ガスの圧力を制御
して再溶融部に添加材を混入することを特徴とする複合
化表面処理法。
(2) Remelting the surface of the light alloy member with a plasma arc,
In a surface treatment method that modifies the surface by mixing additives such as ceramic powder or different metal powders into this molten part, this method oxidizes the treated part of the workpiece surface using a reverse polarity current of a DC plasma arc. A composite surface treatment method characterized by removing the film and mixing additives into the remelting zone by controlling the output of the arc current and the pressure of the powder carrier gas.
(3)前記処理は、少なくともワークの一部又は全部を
冷却媒体によって冷却しながら行なうことを特徴とする
請求項第1又は請求項第2に記載の複合化表面処理法。
(3) The composite surface treatment method according to claim 1 or 2, wherein the treatment is performed while at least part or all of the workpiece is cooled with a cooling medium.
(4)前記添加材は、Al_2O_3,SiC,BN,
TiB等のいずれか1種類としたことを特徴とする請求
項第1又は請求項第2に記載の複合化表面処理法。
(4) The additive material is Al_2O_3, SiC, BN,
The composite surface treatment method according to claim 1 or 2, characterized in that one of TiB and the like is used.
JP2317043A 1990-11-21 1990-11-21 Composite surface treatment Pending JPH04187752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2317043A JPH04187752A (en) 1990-11-21 1990-11-21 Composite surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2317043A JPH04187752A (en) 1990-11-21 1990-11-21 Composite surface treatment

Publications (1)

Publication Number Publication Date
JPH04187752A true JPH04187752A (en) 1992-07-06

Family

ID=18083782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2317043A Pending JPH04187752A (en) 1990-11-21 1990-11-21 Composite surface treatment

Country Status (1)

Country Link
JP (1) JPH04187752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202923A (en) * 2007-01-23 2008-09-04 Nikko Kinzoku Kk Furnace body water cooling structure for flash smelting furnace
JP2010185098A (en) * 2009-02-10 2010-08-26 Mitsubishi Electric Corp Iron-based material and surface treatment method for iron-based material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202923A (en) * 2007-01-23 2008-09-04 Nikko Kinzoku Kk Furnace body water cooling structure for flash smelting furnace
JP2010185098A (en) * 2009-02-10 2010-08-26 Mitsubishi Electric Corp Iron-based material and surface treatment method for iron-based material

Similar Documents

Publication Publication Date Title
Triantafyllidis et al. Surface treatment of alumina-based ceramics using combined laser sources
WO2014003123A1 (en) Steel slag reduction method
KR20080066590A (en) Apparatus and method for deep groove welding
US4970091A (en) Method for gas-metal arc deposition
US3975184A (en) Method and apparatus for production of high quality powders
US5061527A (en) Method and apparatus for spray coating of refractory material to refractory construction
US20100288399A1 (en) Device and method for remelting metallic surfaces
CN106141189B (en) A kind of surface modifying method of discharge plasma sintering amorphous alloy coating
JPH04187752A (en) Composite surface treatment
US2907866A (en) Electric arc welding of steel
US5052331A (en) Apparatus for gas-metal arc deposition
RU2699599C1 (en) Method of steel surface hardening
CN208238527U (en) A kind of plasma metal smelt reduction apparatus improving product purity
JPH1027687A (en) Plasma melting furnace
JPH09316624A (en) Posttreating method for sprayed coating film
JP3174931B2 (en) Electric furnace oxygen injection equipment
EP1210201B1 (en) Welding apparatus and method
JPH0139993B2 (en)
JPH04276058A (en) Manufacture of dispersion plated steel sheet and torch to be used
JPH04187377A (en) Manufacture of compounding treating cylinder block
WO2002081758A1 (en) Improved inoculant
JPH04187360A (en) Manufacture of composite treated sleeve-inserted cylinder block
JPH0328514B2 (en)
RU2190034C2 (en) Method of smelting alloys from oxide-containing materials
JP2589309B2 (en) Surface modification method for aluminum-based members