JPH04187503A - Magnesium-based hydrogen storage material and production thereof - Google Patents

Magnesium-based hydrogen storage material and production thereof

Info

Publication number
JPH04187503A
JPH04187503A JP2311579A JP31157990A JPH04187503A JP H04187503 A JPH04187503 A JP H04187503A JP 2311579 A JP2311579 A JP 2311579A JP 31157990 A JP31157990 A JP 31157990A JP H04187503 A JPH04187503 A JP H04187503A
Authority
JP
Japan
Prior art keywords
magnesium
hydrogen storage
metal
highly active
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2311579A
Other languages
Japanese (ja)
Inventor
Hayao Imamura
今村 速夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2311579A priority Critical patent/JPH04187503A/en
Publication of JPH04187503A publication Critical patent/JPH04187503A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE:To easily obtain at low cost the title lightweight material with high initial activity and large hydrogen storage per weight by preparing an ammonia solution with metallic magnesium dissolved therein followed by exhaustedly removing the volatile substances to effect deposition of highly active metallic magnesium. CONSTITUTION:Metallic magnesium vapor and ammonia gas are mixed and cooled and then put to temperature rise to effect dissolving the metallic magnesium, thus obtaining an ammonia solution. This solution is then freed from the volatile substances present through exhaustion to effect deposition of highly active metallic magnesium. The objective hydrogen storage material is then produced by incorporation of this highly active metallic magnesium as the essential ingredient. For further activation, the above highly active metallic magnesium can be carried on an activated carbon carrier, or deposited on metallic powder selected from nickel, cobalt, copper and mixtures thereof.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はマグネシウム系水素貯蔵材及びその製造方法に
関し、更に詳細には、初期活性が高く、軽量で、且つ重
量当たりの水素貯蔵量が大きいマグネシウム系水素貯蔵
材及びその製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a magnesium-based hydrogen storage material and a method for producing the same, and more particularly, the present invention relates to a magnesium-based hydrogen storage material and a method for producing the same. The present invention relates to a magnesium-based hydrogen storage material and a method for producing the same.

〈従来の技術〉 近年、タリンエネルギーとして、水素が脚光を浴び、そ
の貯蔵、運搬方法について種々研究が進められている。
<Conventional Technology> In recent years, hydrogen has been in the spotlight as a form of Tallinn energy, and various studies are underway on its storage and transportation methods.

しかしながら、現在のところ、水素を貯蔵する技術とし
ては高圧ボンベ又は液体水素による方法に依存している
のが実状である。
However, at present, the technology for storing hydrogen relies on methods using high-pressure cylinders or liquid hydrogen.

また金属水素化物を利用して、水素を貯蔵する技術が開
発されており、例えば作業性に優れた希土類金属−遷移
金属系合金又は安価なT1−遷移金属系合金の開発が主
に行なわれている。
In addition, technology to store hydrogen using metal hydrides has been developed, and for example, rare earth metal-transition metal alloys with excellent workability or inexpensive T1-transition metal alloys have been mainly developed. There is.

しかしながら、希土類金属を含む合金では、重量当りの
水素貯蔵量が小さく、高価であるという欠点があり、ま
たT1系合金では活性が小さく、水素の貯蔵、放出を繰
り返すと、微粉化が生し、水素貯蔵には適さないという
欠点がある。
However, alloys containing rare earth metals have the disadvantage of having a small hydrogen storage capacity per weight and are expensive, and T1 alloys have low activity, and repeated storage and release of hydrogen causes pulverization. The disadvantage is that it is not suitable for hydrogen storage.

一方マグネシウム金属は、軽量であり、水素貯蔵量の大
きな金属であることが知られているが、水素放出温度が
高く、特に活性が低いために水素を貯蔵させる場合、高
温高圧下にて行なわなくてはならないという欠点がある
。そこで、このような欠点を改善するために、マグネシ
ウム−遷移金属系合金についても提案されているが、重
量当りの水素貯蔵量が不十分であるのが実状である。
On the other hand, magnesium metal is known to be lightweight and have a large hydrogen storage capacity, but its hydrogen release temperature is high and its activity is particularly low. It has the disadvantage that it should not be used. In order to improve these drawbacks, magnesium-transition metal alloys have also been proposed, but the reality is that their hydrogen storage capacity per weight is insufficient.

〈発明が解決しようとする課題〉 本発明の目的は、軽量で、重量当りの水素貯蔵量が大き
く、水素化速度が早く、且つ安価で高活性なマグネシウ
ム系水素貯蔵材及びその製造方法を提供することにある
<Problems to be Solved by the Invention> An object of the present invention is to provide a magnesium-based hydrogen storage material that is lightweight, has a large hydrogen storage capacity per weight, has a fast hydrogenation rate, and is inexpensive and highly active, and a method for producing the same. It's about doing.

〈課題を解決するための手段〉 本発明によれば、マグネシウム金属を溶解させてなるア
ンモニア溶液から析出させて得られる高活性マグネシウ
ム金属を含有するマグネシウム系水素貯蔵材が提供され
る。
<Means for Solving the Problems> According to the present invention, there is provided a magnesium-based hydrogen storage material containing highly active magnesium metal obtained by precipitation from an ammonia solution in which magnesium metal is dissolved.

また本発明によれば、マグネシウム金属蒸気とアンモニ
アガスとを混合し冷却した後、昇温して、マグネシウム
金属を溶解させてなるアンモニア溶液を得、次いで、揮
発性物質を排気除去することにより、高活性マグネシウ
ム金属を析出させることを特徴とするマグネシウム系水
素貯蔵材の製造方法が提供される。
Further, according to the present invention, magnesium metal vapor and ammonia gas are mixed, cooled, and then heated to obtain an ammonia solution in which magnesium metal is dissolved, and then volatile substances are removed by exhaust. A method for producing a magnesium-based hydrogen storage material is provided, which is characterized by precipitating highly active magnesium metal.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明のマグネシウム系水素貯蔵材は、マグネシウム金
属を溶解させてなるアンモニア溶液から析出させて得ら
れる高活性マグネシウム金属を必須の成分として含み、
好ましくは、該高活性マグネシウム金属100g当りの
水素貯蔵量が3〜7.6gである高活性マグネシウム金
属を含有する。
The magnesium-based hydrogen storage material of the present invention contains as an essential component a highly active magnesium metal obtained by precipitation from an ammonia solution in which magnesium metal is dissolved,
Preferably, the highly active magnesium metal contains 3 to 7.6 g of hydrogen storage per 100 g of the highly active magnesium metal.

前記高活性マグネシウム金属は、粒状若しくは微粒子状
であるのが好ましく、水素化が表面反応律速の点からも
粒径は小さいほうが望ましい。
The highly active magnesium metal is preferably in the form of granules or fine particles, and the particle size is preferably small from the viewpoint of rate-limiting surface reaction in hydrogenation.

本発明のマグネシウム系水素貯蔵材では、高活性マグネ
シウム金属をそのまま水素貯蔵材として用いることがで
きるが、該高活性マグネシウム金属を、更に高活性化す
るために、例えば高活性マグネシウム金属を、活性炭担
体上に担持させたり、またニッケル、コバルト、銅及び
これらの混合物から成る群より選択される金属粉上に、
前記高活性マグネシウム金属を析出させたり、更には前
記金属粉を活性炭に担持されてなる金属担持活性炭上に
、前記高活性マグネシウム金属を析出させたりすること
ができる。この際前記活性炭は、平均粒径20〜50μ
であるのが好ましく、また前記金属粉の粒径は0.02
〜0.1μであるのが望ましい。前記金属粉を用いる場
合には、高活性マグネシウムを析出させて、マグネシウ
ム−ニッケル、マグネシウム−コバルト又はマグネシウ
ム−銅等の二元系合金とするのが最も好ましい。
In the magnesium-based hydrogen storage material of the present invention, highly active magnesium metal can be used as it is as a hydrogen storage material, but in order to further activate the highly active magnesium metal, for example, highly active magnesium metal can be used as a hydrogen storage material on an activated carbon carrier. on a metal powder selected from the group consisting of nickel, cobalt, copper and mixtures thereof;
The highly active magnesium metal can be precipitated, or the highly active magnesium metal can be deposited on metal-supported activated carbon in which the metal powder is supported on activated carbon. At this time, the activated carbon has an average particle size of 20 to 50 μm.
It is preferable that the particle size of the metal powder is 0.02
It is desirable that it be ~0.1μ. When using the metal powder, it is most preferable to precipitate highly active magnesium to form a binary alloy such as magnesium-nickel, magnesium-cobalt, or magnesium-copper.

本発明において、水素貯蔵材である前記高活性マグネシ
ウム金属を製造するには、まず、マグネシウム金属を溶
解させてなるアンモニア溶液を調製する。該アンモニア
溶液は、例えば、マグネシウム金属蒸気を、アンモニア
ガスと混合し、好ましくは一196℃以下、特に好まし
くは−146〜−196℃の温度に冷却し、共縮合した
後、好ましくは−78〜−33,4℃の温度に5〜ユO
分間かけて昇温することにより得ることができる。
In the present invention, in order to produce the highly active magnesium metal which is a hydrogen storage material, first, an ammonia solution in which magnesium metal is dissolved is prepared. The ammonia solution is prepared, for example, by mixing magnesium metal vapor with ammonia gas, cooling the mixture to a temperature of preferably -196°C or lower, particularly preferably -146 to -196°C, cocondensing the mixture, and then cocondensing the mixture to a temperature of preferably -78 to -196°C. -33,4℃ temperature
It can be obtained by raising the temperature over a period of minutes.

この際前記マグネシウム金属蒸気とアンモニアガスとの
配合割合は、金属の分散性を向上させるために、1:1
0〜15であるのが好ましく、またアンモニアガスを過
剰にして、1:50−100とすることもできる。
At this time, the mixing ratio of the magnesium metal vapor and ammonia gas is 1:1 in order to improve the dispersibility of the metal.
The ratio is preferably 0 to 15, and the ratio can be 1:50 to 100 by adding excess ammonia gas.

次に得られたマグネシウム金属を溶解させてなるアンモ
ニア溶液から高活性マグネシウム金属を析出させるには
、前記マグネシウム金属を溶解させてなるアンモニア溶
液から、揮発性物質を排気除去することにより行うこと
ができる。また該排気除去する前に、例えばテトラヒド
ロフラン等の有機溶媒を、好ましくは、前記マグネシウ
ム金属を溶解させてなるアンモニア溶液100重量部に
対して1.000〜3000重量部添加し、30〜60
分間かけて撹拌混合することもできる。該排気除去は、
公知の例えばロータリーポンプ等により行って、好まし
くは高活性マグネシウムを2〜log/時間の速度で析
出させるのが望ましい。
Next, highly active magnesium metal can be precipitated from the ammonia solution obtained by dissolving the magnesium metal by exhausting and removing volatile substances from the ammonia solution obtained by dissolving the magnesium metal. . Further, before the exhaust removal, preferably 1.000 to 3000 parts by weight of an organic solvent such as tetrahydrofuran is added to 100 parts by weight of the ammonia solution in which the magnesium metal is dissolved.
It is also possible to stir and mix for a minute. The exhaust removal is
Preferably, highly active magnesium is precipitated at a rate of 2 to log/hour using a known method such as a rotary pump.

また高活性マグネシウム金属を活性炭担体上に担持させ
るには、例えば前記マグネシウム金属を溶解させてなる
アンモニア溶液に、活性炭を添加、混合後、揮発性物質
を排気除去し、好ましくは高活性マグネシウムを5〜L
og/時間の速度で活性炭上に担持させれば良い。この
際活性炭の仕込み量は、前記溶液中に存在するマグネシ
ウム金属に対し、20〜50倍量の範囲であるのが望ま
しい。
Further, in order to support highly active magnesium metal on an activated carbon carrier, for example, activated carbon is added to an ammonia solution prepared by dissolving the magnesium metal, and after mixing, volatile substances are removed by exhaust. ~L
It may be supported on activated carbon at a rate of 0.5 oz/hour. At this time, the amount of activated carbon charged is preferably in the range of 20 to 50 times the amount of magnesium metal present in the solution.

更に前記金属粉上に高活性マグネシウム金属を析出させ
るには、例えば前記マグネシウム金属を溶解させてなる
アンモニア溶液に、ニッケル、コバルト、銅及びこれら
の混合物から成る群より選択される前記金属粉を添加、
混合後、揮発性物質を排気除去し、好ましくは、高活性
マグネシウムを2〜Log/時間の速度で、前記金属粉
上に析出させれば良い。この際前記金属粉の仕込み量は
、前記溶液中に存在するマグネシウム金属に対して0.
01〜0.1倍量の範囲であるのが好ましい。
Further, in order to precipitate highly active magnesium metal on the metal powder, for example, the metal powder selected from the group consisting of nickel, cobalt, copper, and mixtures thereof is added to an ammonia solution in which the magnesium metal is dissolved. ,
After mixing, volatile substances are evacuated and highly active magnesium is preferably deposited on the metal powder at a rate of 2 to Log/hour. At this time, the amount of the metal powder charged is 0.0% relative to the magnesium metal present in the solution.
The amount is preferably in the range of 0.01 to 0.1 times.

更にまた、前記金属粉を活性炭に担持させてなる金属担
持活性炭上に、高活性マグネシウム金属を析出させるに
は、例えば、予め含浸法等の公知の方法により、前記金
属粉を活性炭に担持させ、次いで前記マグネシウム金属
を溶解させてなるアンモニア溶液に前記金属担持活性炭
を添加、混合後、揮発性物質を排気除去し、好ましくは
高活性マグネシウムを5〜10g/時間の速度で析出さ
せれば良い。この際前記金属粉の配合量は、活性炭10
0重量部に対して、1〜10重量部であるのが好ましく
、また、前記金属担持活性炭の仕込み量は、前記溶液中
に存在するマグネシウム金属に対して、0.5〜10倍
量の範囲であるのが望ましい。更に前記活性炭及び/又
は金属粉を用いて水素貯蔵材を調製する場合においても
、テトラヒドロフラン等の有機溶媒を使用して行うこと
ができる。
Furthermore, in order to precipitate highly active magnesium metal on the metal-supported activated carbon obtained by supporting the metal powder on activated carbon, for example, the metal powder is supported on the activated carbon in advance by a known method such as an impregnation method, Next, the metal-supported activated carbon is added to the ammonia solution prepared by dissolving the magnesium metal, and after mixing, volatile substances are removed by exhaust, and highly active magnesium is preferably precipitated at a rate of 5 to 10 g/hour. At this time, the blending amount of the metal powder is 10% of activated carbon.
The amount of the metal-supported activated carbon is preferably 1 to 10 parts by weight relative to 0 parts by weight, and the amount of the metal-supported activated carbon is in the range of 0.5 to 10 times the amount of magnesium metal present in the solution. It is desirable that Furthermore, even when preparing a hydrogen storage material using the activated carbon and/or metal powder, an organic solvent such as tetrahydrofuran can be used.

〈発明の効果〉 本発明のマグネシウム系水素貯蔵材は、特定の高活性マ
グネシウム金属を含有するので、高活性であり、重量当
りの水素貯蔵量が大きく、しかも水素化速度が早く、且
つ従来の希土類系水素吸蔵合金に比して安価で軽量であ
る。また本発明の製造方法では、前記特定の高活性マグ
ネシウム金属を含むマグネシウム系水素貯蔵材を容易に
得ることができる。
<Effects of the Invention> Since the magnesium-based hydrogen storage material of the present invention contains a specific highly active magnesium metal, it is highly active, has a large amount of hydrogen storage per weight, and has a faster hydrogenation rate than the conventional one. It is cheaper and lighter than rare earth hydrogen storage alloys. Furthermore, according to the production method of the present invention, a magnesium-based hydrogen storage material containing the specific highly active magnesium metal can be easily obtained.

〈実施例〉 以下本発明を実施例及び比較例により、更に詳細に説明
するが本発明はこれらに限定されるものではない。
<Examples> The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

去膚目1 マグネシウムの蒸発源としてタングステンヒーターを備
えたガラス製の反応装置を用い、反応系を10−5To
rr以下に排気後、反応装置を液体窒素に浸漬し、冷却
した。その後、マグネシウム蒸発用ヒーターに電流を流
して0.3gのマグネシウムを30分間かけて蒸発させ
、同時にアンモニアガスを6g/時間で導入しながら、
装置し液体窒素で一196℃に冷却しつづけた。反応終
了後、5分間で装置を一78℃まで昇温し、マグネシウ
ム金属を溶解させてなるアンモニア溶液を得、これに脱
水、精製したテトラヒドロフラン溶媒10gを加え、十
分撹拌することによって、マグネシウム液体アンモニア
テトラヒドロフラン溶液を得た。次いで得られた溶液か
ら揮発性物質を排気により除去し、5g/時間の速度で
平均粒径0.03μのマグネシウム金属微粒子を析出さ
せ、0.25gのマグネシウム系水素貯蔵材を得た。
Skin removal 1 Using a glass reactor equipped with a tungsten heater as a magnesium evaporation source, the reaction system was heated to 10-5 To
After evacuation to below rr, the reactor was immersed in liquid nitrogen and cooled. Then, current was applied to the magnesium evaporation heater to evaporate 0.3 g of magnesium over 30 minutes, while at the same time introducing ammonia gas at 6 g/hour.
The apparatus was kept cooled to -196°C with liquid nitrogen. After the reaction is completed, the temperature of the apparatus is raised to -78°C in 5 minutes to obtain an ammonia solution in which magnesium metal is dissolved. To this, 10 g of dehydrated and purified tetrahydrofuran solvent is added, and by stirring thoroughly, magnesium liquid ammonia is obtained. A tetrahydrofuran solution was obtained. Volatile substances were then removed from the resulting solution by evacuation, and magnesium metal fine particles with an average particle size of 0.03 μm were precipitated at a rate of 5 g/hour to obtain 0.25 g of a magnesium-based hydrogen storage material.

得られたマグネシウム系水素貯蔵材を、ガラス製定容装
置に仕込み、200℃、400Torrの条件下、水素
反応速度を測定した9その結果を第1図に示す。
The obtained magnesium-based hydrogen storage material was charged into a glass constant volume device, and the hydrogen reaction rate was measured under conditions of 200° C. and 400 Torr.9 The results are shown in FIG.

比較例1 平均粒径5μの市販のマグネシウム粉について、実施例
1と同様に水素反応速度を測定したところ反応は全く起
こらなかった。その結果を第1図に示す。
Comparative Example 1 When the hydrogen reaction rate was measured in the same manner as in Example 1 using commercially available magnesium powder with an average particle size of 5 μm, no reaction occurred at all. The results are shown in FIG.

実施例2 実施例1と同様に調製したマグネシウム液体アンモニア
溶液20ccに、平均粒径50μの活性炭を1.5g加
え、良く混合した後、揮発性物質を排気により除去し、
5g/時間の速度で平均粒径0.02μのマグネシウム
金属微粒子を析出させ、1.6gのマグネシウム系水素
貯蔵材を得た。得られたマグネシウム系水素貯蔵材につ
いて、実施例1と同様に水素反応速度を測定した。その
結果を第1図に示す。
Example 2 1.5 g of activated carbon with an average particle size of 50 μm was added to 20 cc of a magnesium liquid ammonia solution prepared in the same manner as in Example 1, and after mixing well, volatile substances were removed by evacuation.
Magnesium metal fine particles having an average particle size of 0.02 μm were precipitated at a rate of 5 g/hour to obtain 1.6 g of a magnesium-based hydrogen storage material. Regarding the obtained magnesium-based hydrogen storage material, the hydrogen reaction rate was measured in the same manner as in Example 1. The results are shown in FIG.

夫胤叢lコニ 実施例1と同様に調製したマグネシウム液体アンモニア
溶液20ccに、平均粒径0.02μのニッケル0.0
2g(実施例3)、平均粒径0.04μのコバルト0.
0175g (実施例4)又は平均粒径o、05μの銅
0.018g (実施例5)を夫々添加混合後、揮発性
物質を排気により除去し、5g/時間の速度で平均粒径
0.03μのマグネシウム金属微粒子を夫々の金属表面
に析出させてマグネシウム系水素貯蔵材を得た。得られ
たマグネシウム系水素貯蔵材の量は、実施例3で0.4
0g、実施例4で0.35g、実施例5で0.36gで
あった。夫々の水素貯蔵材について、実施例1と同様に
水素反応速度を測定した。その結果を第2図に示す。
To 20 cc of a magnesium liquid ammonia solution prepared in the same manner as in Example 1, 0.0 cc of nickel with an average particle size of 0.02 μ was added.
2g (Example 3), cobalt 0.2g with an average particle size of 0.04μ.
After adding and mixing 0.0175 g of copper (Example 4) or 0.018 g of copper with an average particle size o, 05 μm (Example 5), volatile substances were removed by exhaust gas, and the average particle size was 0.03 μm at a rate of 5 g/hour. A magnesium-based hydrogen storage material was obtained by depositing magnesium metal fine particles on the surface of each metal. The amount of the magnesium-based hydrogen storage material obtained was 0.4 in Example 3.
0 g, 0.35 g in Example 4, and 0.36 g in Example 5. The hydrogen reaction rate of each hydrogen storage material was measured in the same manner as in Example 1. The results are shown in FIG.

末り叢且二立 平均粒径o、02μのニッケル0.021g(実施例6
)、平均粒径0.04μのコバルト0.019g (実
施例7)又は平均粒径0.05μの銅0.020g (
実施例8)を夫々含浸法により、平均粒径50μの活性
炭に担持させ、夫々2gの金属が担持された活性炭を得
た。次いで得られた夫々の金属が担持された活性炭を、
実施例1と同様に調製したマグネシウム液体アンモニア
溶液20ccに添加混合した後、揮発性物質を排気によ
り除去し、5g/時間の速度で平均粒径0.02μのマ
グネシウム金giL微粒子を、夫々の金属が担持された
活性炭上に析出させて、マグネシウム系水素貯蔵材を得
た。得られたマグネシウム系水素貯蔵材の量は、実施例
6で2.1g、実施例7で1.9g、実施例8で2.0
gであった。
0.021 g of nickel with end cluster and binary average particle size o, 02μ (Example 6
), 0.019 g of cobalt with an average grain size of 0.04 μ (Example 7) or 0.020 g of copper with an average grain size of 0.05 μ (
Example 8) were each supported on activated carbon having an average particle size of 50 μm by an impregnation method to obtain activated carbon each supporting 2 g of metal. Next, the obtained activated carbon supported with each metal was
After adding and mixing to 20 cc of a magnesium liquid ammonia solution prepared in the same manner as in Example 1, volatile substances were removed by evacuation, and magnesium gold giL fine particles with an average particle size of 0.02 μ were added to each metal at a rate of 5 g/hour. was deposited on activated carbon supported on it to obtain a magnesium-based hydrogen storage material. The amount of the magnesium-based hydrogen storage material obtained was 2.1 g in Example 6, 1.9 g in Example 7, and 2.0 g in Example 8.
It was g.

夫々の水素貯蔵材について、実施例1と同様に水素反応
速度を測定した。その結果を第3図に示す。
The hydrogen reaction rate of each hydrogen storage material was measured in the same manner as in Example 1. The results are shown in FIG.

第1,2及び3図の結果より、高活性マグネシウム金属
を含む本発明のマグネシウム系水素貯蔵材は、特に高活
性を示し、重量当りの水素貯蔵量も大きいことが判った
From the results shown in Figures 1, 2 and 3, it was found that the magnesium-based hydrogen storage material of the present invention containing highly active magnesium metal exhibited particularly high activity and a large amount of hydrogen storage per weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1、実施例2で得られたマグネシウム系
水素貯蔵材及び比較例1のマグネシウムの水素化反応速
度を示すクラブ、第2図は実施例3、実施例4及び実施
例5で得られたマグネシウム系水素貯蔵材の水素化反応
速度を示すグラフ、第3図は実施例6、実施例7及び実
施例8で得られたマグネシウム系水素貯蔵材の水素化反
応速度を示すグラフである。 特許出願人  三徳金属工業株式会社 代理人弁理士  酒  井     −同      
 兼   坂       真岡       兼  
 坂       繁俳t 1呵(hr) 第1図 1.0 、          。 ;              1 「          1 □ へ   に 第2図
Figure 1 shows the hydrogenation reaction rate of magnesium in the magnesium-based hydrogen storage materials obtained in Example 1 and Example 2 and Comparative Example 1, and Figure 2 shows the hydrogenation reaction rate of magnesium in Example 3, Example 4, and Example 5. FIG. 3 is a graph showing the hydrogenation reaction rate of the magnesium-based hydrogen storage materials obtained in Example 6, Example 7, and Example 8. It is. Patent applicant: Santoku Metal Industry Co., Ltd. Representative patent attorney: Sakai
cum saka moka cum
Saka Shigehai t 1 呵 (hr) Figure 1 1.0. ; 1 `` 1 □ to Figure 2

Claims (1)

【特許請求の範囲】 1)マグネシウム金属を溶解させてなるアンモニア溶液
から析出させて得られる高活性マグネシウム金属を含有
するマグネシウム系水素貯蔵材。 2)前記高活性マグネシウム金属を活性炭担体上に担持
させてなることを特徴とする請求項1記載のマグネシウ
ム系水素貯蔵材。 3)ニッケル、コバルト、銅及びこれらの混合物から成
る群より選択される金属粉上に、前記高活性マグネシウ
ム金属を析出させてなることを特徴とする請求項1記載
のマグネシウム系水素貯蔵材。 4)ニッケル、コバルト、銅及びこれらの混合物から成
る群より選択される金属粉を活性炭に担持させてなる金
属担持活性炭上に、前記高活性マグネシウム金属を析出
させてなることを特徴とする請求項1記載のマグネシウ
ム系水素貯蔵材。 5)マグネシウム金属蒸気とアンモニアガスとを混合し
冷却した後、昇温して、マグネシウム金属を溶解させて
なるアンモニア溶液を得、次いで揮発性物質を排気除去
することにより、高活性マグネシウム金属を析出させる
ことを特徴とするマグネシウム系水素貯蔵材の製造方法
[Scope of Claims] 1) A magnesium-based hydrogen storage material containing highly active magnesium metal obtained by precipitation from an ammonia solution in which magnesium metal is dissolved. 2) The magnesium-based hydrogen storage material according to claim 1, wherein the highly active magnesium metal is supported on an activated carbon carrier. 3) The magnesium-based hydrogen storage material according to claim 1, wherein the highly active magnesium metal is deposited on metal powder selected from the group consisting of nickel, cobalt, copper, and mixtures thereof. 4) A claim characterized in that the highly active magnesium metal is precipitated on metal-supported activated carbon, which is formed by supporting activated carbon with metal powder selected from the group consisting of nickel, cobalt, copper, and mixtures thereof. 1. The magnesium-based hydrogen storage material according to 1. 5) After mixing and cooling magnesium metal vapor and ammonia gas, the temperature is raised to obtain an ammonia solution in which magnesium metal is dissolved, and then highly active magnesium metal is precipitated by exhausting and removing volatile substances. A method for producing a magnesium-based hydrogen storage material, characterized by:
JP2311579A 1990-11-19 1990-11-19 Magnesium-based hydrogen storage material and production thereof Pending JPH04187503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2311579A JPH04187503A (en) 1990-11-19 1990-11-19 Magnesium-based hydrogen storage material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2311579A JPH04187503A (en) 1990-11-19 1990-11-19 Magnesium-based hydrogen storage material and production thereof

Publications (1)

Publication Number Publication Date
JPH04187503A true JPH04187503A (en) 1992-07-06

Family

ID=18018938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2311579A Pending JPH04187503A (en) 1990-11-19 1990-11-19 Magnesium-based hydrogen storage material and production thereof

Country Status (1)

Country Link
JP (1) JPH04187503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163603A (en) * 1999-12-08 2001-06-19 Sanyo Electric Co Ltd Metal hydride and manufacturing method thereof
CN113355517A (en) * 2021-05-31 2021-09-07 云南罗平锌电股份有限公司 Method for harmlessly treating and recycling magnesium fluoride waste acid in zinc smelting process
CN114132906A (en) * 2022-01-04 2022-03-04 浙江大学 Nano nitrogen hydride and in-situ preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163603A (en) * 1999-12-08 2001-06-19 Sanyo Electric Co Ltd Metal hydride and manufacturing method thereof
CN113355517A (en) * 2021-05-31 2021-09-07 云南罗平锌电股份有限公司 Method for harmlessly treating and recycling magnesium fluoride waste acid in zinc smelting process
CN114132906A (en) * 2022-01-04 2022-03-04 浙江大学 Nano nitrogen hydride and in-situ preparation method and application thereof
CN114132906B (en) * 2022-01-04 2023-09-22 浙江大学 Nano nitrogen hydride, in-situ preparation method and application thereof

Similar Documents

Publication Publication Date Title
US7259124B2 (en) Hydrogen storage composite and preparation thereof
JP4490510B2 (en) Leached microcrystalline material, process for its production and its use in the energy field
Ivanov et al. Magnesium mechanical alloys for hydrogen storage
Imamura et al. Hydrogen absorption of Mg-Based composites prepared by mechanical milling: Factors affecting its characteristics
EP0501930B1 (en) Electrocatalyst for anode
US7208437B2 (en) Catalyst and method for its manufacture
US4368143A (en) Composition for the storage of hydrogen and method of making the composition
JP2002526658A (en) Lithium-based hydrogen storage composition
US4798718A (en) Method of preparing active magnesium-hydride of magnesium hydrogen-storer systems
Imamura et al. Hydriding characteristics of Mg-based composites prepared using a ball mill
US20020137628A1 (en) Method for low temperature preparation of a noble metal alloy
CN1212419C (en) Non-crystal rare-earht-Mg based hydrogen bearing alloy and its preparing process
US5199972A (en) Method of preparing active magnesium-hydride or magnesium hydrogen-storer systems
JPH04187503A (en) Magnesium-based hydrogen storage material and production thereof
Slattery The hydriding-dehydriding characteristics of La2Mg17
US20040259725A1 (en) Method for the synthesis of a fuel cell electrocatalyst
CN1177075C (en) Non-crystal rare-earth and Mg base hydrogen bearing alloy and its preparing process
US5800638A (en) Ultrafine particle of quasi-crystalline aluminum alloy and process for producing aggregate thereof
JP4793900B2 (en) Hydrogen storage material and method for producing the same
IL127511A (en) Method of making metal composite materials
JPS62130208A (en) Production of finely divided metal powder
CA2325262C (en) Highly activated hydrogen containing material and method for producing the material
US3647551A (en) Method of making a porous carbon material
Imamura et al. Preparation and hydriding properties of magnesium-containing hydrogen storage materials chemically deposited from a homogeneous phase
US5130047A (en) Getter-composition for lightsources