JPH04187240A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH04187240A
JPH04187240A JP2316323A JP31632390A JPH04187240A JP H04187240 A JPH04187240 A JP H04187240A JP 2316323 A JP2316323 A JP 2316323A JP 31632390 A JP31632390 A JP 31632390A JP H04187240 A JPH04187240 A JP H04187240A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
base material
activated alumina
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2316323A
Other languages
Japanese (ja)
Inventor
Hisanori Itou
寿記 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2316323A priority Critical patent/JPH04187240A/en
Publication of JPH04187240A publication Critical patent/JPH04187240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To maintain purifying performance and hydrogen sulfide controlling performance over a long period of time by coating the surface of the base material of a carrier with a catalyst carrying layer consisting of Fe-Ti double oxide and activated alumina, and supporting a catalytic metal on the supporting layer. CONSTITUTION:The surface of the base material of a carrier is coated with a catalyst carrying layer consisting of Fe-Ti double oxide such as FeTiO2 or FeTiO3 and activated alumina such as gamma-Al2O4 mixed preferably in about 0.005-0.4 weight ratio of the double oxide to the activated alumina. A catalytic metal such as Pt or Rh is then deposited on the catalyst supporting layer. Purifying performance and hydrogen sulfide controlling performance can be maintained over a long period of time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内燃機関の排気系に配置され排気ガスを浄化
する排気ガス浄化用触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exhaust gas purifying catalyst that is disposed in an exhaust system of an internal combustion engine and purifies exhaust gas.

[従来の技術] 排気ガス浄化用触媒としては、従来一般に、担体基材表
面に活性アルミナからなる触媒担持層を形成し、その触
媒担持層に白金、ロジウム、パラジウムなどの触媒金属
を担持させたものが知られている。この排気ガス浄化用
触媒は、排気ガス中に含まれる炭化水素(HC>および
−酸化炭素(Co)を酸化して浄化し、窒素化合物(N
Ox>を還元することにより浄化している。
[Prior art] Conventionally, exhaust gas purification catalysts have been produced by forming a catalyst support layer made of activated alumina on the surface of a carrier base material, and supporting a catalyst metal such as platinum, rhodium, or palladium on the catalyst support layer. something is known. This exhaust gas purification catalyst oxidizes and purifies hydrocarbons (HC> and -carbon oxides (Co) contained in exhaust gas, and converts nitrogen compounds (N
It is purified by reducing Ox>.

ところで硫黄を含む燃料を用いた場合、排気ガス中には
亜硫酸ガス(802)が含まれている。
By the way, when fuel containing sulfur is used, the exhaust gas contains sulfur dioxide gas (802).

この亜硫酸ガスは触媒担持層に吸着され蓄積される。し
かしながら、ある条件下では触媒表面で還元反応が生じ
、触媒からの排出ガス中に悪臭を発する硫化水素ガスが
含まれる場合があった。例えばエンジンの高負荷時にお
いては、触媒の過熱を防止するために、2次空気の導入
停止あるいは燃料増量などの制御が行なわれる。この際
、触媒コンバータ内の排気ガスの空燃比(A/F)が燃
料(F)が過剰のリッチ雰囲気となり、担持層に吸着し
ていた亜硫酸ガスは還元されて硫化水素(H2S)とな
る反応が生じることが知られている。
This sulfur dioxide gas is adsorbed and accumulated on the catalyst support layer. However, under certain conditions, a reduction reaction occurs on the surface of the catalyst, and the exhaust gas from the catalyst may contain hydrogen sulfide gas that gives off a bad odor. For example, when the engine is under high load, controls such as stopping the introduction of secondary air or increasing the amount of fuel are performed in order to prevent the catalyst from overheating. At this time, the air-fuel ratio (A/F) of the exhaust gas in the catalytic converter becomes a rich atmosphere with excess fuel (F), and the sulfur dioxide gas adsorbed on the support layer is reduced and reacts to become hydrogen sulfide (H2S). is known to occur.

この反応は触媒床温度が600 ’C以上の高温の場合
に生じやすく、燃料中の硫黄の含有量が多い場合などの
悪条件が重なると、悪臭を発する排出ガスが排出される
場合がある。
This reaction tends to occur when the catalyst bed temperature is at a high temperature of 600'C or higher, and under adverse conditions such as a high sulfur content in the fuel, foul-smelling exhaust gas may be emitted.

そこで例えば特開昭63−116742号公報には、耐
火性の担体基材に△、Oと、Ceと、Co。
For example, Japanese Patent Application Laid-Open No. 63-116742 discloses the use of Δ, O, Ce, and Co as a fire-resistant carrier base material.

NiおよびFeの少なくとも一種と、1−aとを含む酸
化物コート層を形成し、この酸化物コート層にPt、P
d、Rhの少なくとも一種の貴金属を担持させl−12
3の発生を抑制した排気ガス浄化用触媒が開示されてい
る。
An oxide coat layer containing at least one of Ni and Fe and 1-a is formed, and Pt, P
d, supporting at least one noble metal of Rh l-12
An exhaust gas purifying catalyst that suppresses the generation of No. 3 has been disclosed.

[発明が解決しようとする課題] 上記した公報に開示された排気ガス浄化用触媒の機能は
、HC,Co、NOXを浄化するとともにH2Sの排出
を抑制することとしている。すなわちこの触媒には、F
e、N i、Coの少なくとも一種よりなる金属が単独
で酸化物として含有され、これらの金属酸化物によりH
2Sの排出を抑制することとしている。しかしながらこ
れらの金属は、アルミナと焼結し易い。このため熱履歴
によりこれらの金属が含まれるアルミナと焼結し、アル
ミナの結晶形態、金属元素の結晶形態が変化するため、
浄化性能の低下、硫化水素抑制性能の低下が生じるとい
う不具合があった。
[Problems to be Solved by the Invention] The function of the exhaust gas purifying catalyst disclosed in the above-mentioned publication is to purify HC, Co, and NOX, and to suppress the emission of H2S. In other words, this catalyst contains F
A metal consisting of at least one of e, Ni, and Co is contained alone as an oxide, and these metal oxides
The aim is to suppress 2S emissions. However, these metals tend to sinter with alumina. For this reason, these metals sinter with the alumina containing them due to thermal history, and the crystal form of alumina and the crystal form of the metal elements change.
There were problems such as a decrease in purification performance and a decrease in hydrogen sulfide suppression performance.

本発明はこのような事情に鑑みてなされたものであり、
浄化性能及び硫化水素抑制性能を長期間維持することを
目的とする。
The present invention was made in view of these circumstances, and
The purpose is to maintain purification performance and hydrogen sulfide suppression performance for a long period of time.

[課題を解決するための手段] 本発明の排気ガス浄化用触媒は、担体基材と、担体基材
表面に被覆された触媒担持層と、触媒担持層に担持され
た触媒金属とよりなる排気ガス浄化用触媒において、 触媒担持層は、鉄とチタンの複合酸化物と活性アルミナ
とより構成されていることを特徴とする。
[Means for Solving the Problems] The exhaust gas purifying catalyst of the present invention comprises a carrier base material, a catalyst support layer coated on the surface of the carrier base material, and a catalyst metal supported on the catalyst support layer. In the gas purification catalyst, the catalyst support layer is composed of a composite oxide of iron and titanium and activated alumina.

担体基材としては、ハニカム形状のモノリス担体基材、
ペレット状担体基材、メタル担体基材など、従来公知の
ものをそのまま用いることができる。その材質も、コー
ジェライト、ムライト、アルミナ、スピネルなどのセラ
ミックス、フェライト鋼などの耐熱性金属など、従来と
同様のものを利用できる。
As the carrier base material, a honeycomb-shaped monolith carrier base material,
Conventionally known materials such as pellet carrier base materials and metal carrier base materials can be used as they are. The same materials as conventional ones can be used, such as ceramics such as cordierite, mullite, alumina, and spinel, and heat-resistant metals such as ferritic steel.

本発明の最大の特徴は触媒担持層の構成にある。The most important feature of the present invention lies in the structure of the catalyst support layer.

すなわち触媒担持層は、鉄とチタンとの複合酸化物と活
性アルミナとより構成されている。活性アルミナとして
は例えばγ−A、0203が用いられる。また鉄とチタ
ンとの複合酸化物としては、例えばFeT i 02 
、FeT i 03などが用いられる。この触媒担持層
は、複合酸化物粉末と活性アルミナ粉末とを混合し、焼
成して形成される。ここで複合酸化物粉末は、酸化鉄に
チタン化合物を溶解させた溶液を吸収させ、乾燥、焼成
して作製することができる。また酸化チタン粉末に鉄化
合物を溶解させた溶液を吸収させて作製することもでき
るし、チタン化合物と鉄化合物の両方を溶解させた溶液
から鉄とチタンを共沈させ、この共沈物から作製するこ
ともできる。
That is, the catalyst support layer is composed of a composite oxide of iron and titanium and activated alumina. For example, γ-A, 0203 is used as the activated alumina. Further, as a composite oxide of iron and titanium, for example, FeT i 02
, FeT i 03, etc. are used. This catalyst support layer is formed by mixing composite oxide powder and activated alumina powder and firing the mixture. Here, the composite oxide powder can be produced by absorbing a solution in which a titanium compound is dissolved in iron oxide, followed by drying and firing. It can also be produced by absorbing a solution in which an iron compound is dissolved in titanium oxide powder, or it can be produced by co-precipitating iron and titanium from a solution in which both titanium and iron compounds are dissolved. You can also.

鉄とチタンとの複合酸化物と活性アルミナとの混合比は
種々選択することができるが、重量比で、複合酸化物/
活性アルミナ−0,005〜0.4の範囲が特に好まし
い。複合酸化物が活性アルミナより極端に多くなると、
触媒金属の担持量が減少し触媒性能が低下してしまう。
Various mixing ratios can be selected between the composite oxide of iron and titanium and activated alumina, but in terms of weight ratio, the composite oxide/activated alumina
The range of activated alumina from 0.005 to 0.4 is particularly preferred. When the amount of complex oxide exceeds the amount of activated alumina,
The amount of catalytic metal supported decreases, resulting in deterioration of catalytic performance.

また複合酸化物が極端に少なすぎると、硫化水素の抑制
が困難となる。
Furthermore, if the amount of composite oxide is too small, it will be difficult to suppress hydrogen sulfide.

上記触媒担持層には従来と同様に触媒金属が担持されて
いる。触媒金属としては、白金、ロジウム、パラジウム
が代表的であり、このうちの少なくとも一種を用いるの
がよい。その他、イリジウム、ルテニウム、オスミウム
などの貴金属、あるいはクロム、ニッケル、バナジウム
、銅、コバルト、マンガンなどの卑金属を添加すること
もできる。この触媒金属は、上記触媒担持層に担持され
ている。その担持量は、目的とする性能、コストなどの
条件により、従来と同様に種々選択することができる。
A catalyst metal is supported on the catalyst support layer as in the conventional case. Typical examples of the catalytic metal include platinum, rhodium, and palladium, and it is preferable to use at least one of these. In addition, noble metals such as iridium, ruthenium, and osmium, or base metals such as chromium, nickel, vanadium, copper, cobalt, and manganese can also be added. This catalyst metal is supported on the catalyst support layer. The supported amount can be variously selected depending on conditions such as desired performance and cost, as in the past.

[発明の作用および効果] 本発明の排気ガス浄化用触媒では、触媒担持層に鉄とチ
タンの複合酸化物が含まれている。すなわち触媒担持層
は、活性アルミナ粉末と複合酸化物粉末とから形成され
るため、焼成時あるいは使用時に各金属元素とアルミナ
との反応が抑制される。したがって熱履歴をうけても結
晶形態が変化しないため、初期の浄化性能及び硫化水素
抑制性能が長期間維持される。
[Operations and Effects of the Invention] In the exhaust gas purifying catalyst of the present invention, a composite oxide of iron and titanium is contained in the catalyst support layer. That is, since the catalyst supporting layer is formed from activated alumina powder and composite oxide powder, the reaction between each metal element and alumina is suppressed during firing or use. Therefore, the crystalline form does not change even when subjected to thermal history, so the initial purification performance and hydrogen sulfide suppression performance are maintained for a long period of time.

すなわち本発明の排気ガス浄化用触媒は、触媒担持層に
Fe−Ti複合酸化物を含むので、リーン側で硫黄分を
トラップするのは勿論、リッチ側でも硫黄分を効率良く
トラップする。さらにリッチ側では硫黄と結合するH2
をトラップするので、H2Sをほとんど発生させない。
That is, since the exhaust gas purifying catalyst of the present invention contains the Fe-Ti composite oxide in the catalyst support layer, it not only traps sulfur content on the lean side but also efficiently traps sulfur content on the rich side. Furthermore, on the rich side, H2 combines with sulfur.
Since it traps H2S, almost no H2S is generated.

したがって本発明の排気ガス浄化用触媒によれば、初期
と同等の浄化性能を長期間維持することができ、高い浄
化性能を示すとともに、H2Sの発生が抑制される。
Therefore, according to the exhaust gas purifying catalyst of the present invention, it is possible to maintain the same purification performance as the initial level for a long period of time, exhibit high purification performance, and suppress the generation of H2S.

[実施例] (実施例1) 以下、製造方法を説明することにより本実施例の排気ガ
ス浄化用触媒の構成の説明に代える。
[Example] (Example 1) Hereinafter, the manufacturing method will be explained instead of explaining the structure of the exhaust gas purifying catalyst of this example.

三塩化チタン水溶液(三塩化チタン13.4重量%)と
酸化鉄粉末80重量部とを接触させ、その後100°C
で乾燥し、続いて750℃で1時間焼成して鉄とチタン
の複合酸化物粉末を形成する。
Titanium trichloride aqueous solution (titanium trichloride 13.4% by weight) and 80 parts by weight of iron oxide powder were brought into contact, and then heated at 100°C.
The powder is then dried at 750° C. for 1 hour to form a composite oxide powder of iron and titanium.

この粉末中には、鉄とチタンがモル比でFe:Ti=1
:1の割合で含まれている。
This powder contains iron and titanium in a molar ratio of Fe:Ti=1
: Contained at a ratio of 1.

この複合酸化物粉末にγ−アルミナ粉末、硝酸アルミニ
ウム溶液、酸化セリウム粉末、アルミナゾルおよび水を
加え、十分に混合撹拌してスラリーとする。このスラリ
ーをコージェライト質ハニカム担体基材に接触させて余
分なスラリーを吹き飛ばした後、100℃で乾燥し次い
で700℃で1時間焼成して触媒担持層を形成する。そ
してさらにジニトロジアンミン白金溶液及び塩化ロジウ
ム水溶液を接触させ、焼成して白金及びロジウムを担持
させて、実施例1の排気ガス浄化用触媒を得る。
γ-alumina powder, aluminum nitrate solution, cerium oxide powder, alumina sol, and water are added to this composite oxide powder and thoroughly mixed and stirred to form a slurry. This slurry is brought into contact with a cordierite honeycomb carrier base material and excess slurry is blown off, then dried at 100°C and then fired at 700°C for 1 hour to form a catalyst support layer. Further, the dinitrodiammine platinum solution and the rhodium chloride aqueous solution are brought into contact and calcined to support platinum and rhodium, thereby obtaining the exhaust gas purifying catalyst of Example 1.

この触媒の組成は担体基材1ρ橋り、アルミナ120C
I、セリウム0.3モル、鉄0.1モル、チタン0.1
モル、白金1.O(J及びロジウム0゜20である。
The composition of this catalyst is: carrier base material 1ρ bridge, alumina 120C
I, cerium 0.3 mol, iron 0.1 mol, titanium 0.1
Mol, platinum 1. O (J and rhodium 0°20.

(実施例2) 三塩化チタン溶液と酸化鉄粉末と混合するのに代えて、
硝酸鉄水溶液と酸化チタン粉末とを接触させ焼成して複
合酸化物粉末を形成したこと以外は実施例1と同様にし
て本実施例の触媒を得た。
(Example 2) Instead of mixing titanium trichloride solution and iron oxide powder,
A catalyst of this example was obtained in the same manner as in Example 1, except that a composite oxide powder was formed by bringing an iron nitrate aqueous solution into contact with a titanium oxide powder and firing the mixture.

この触媒の組成は実施例1と同様である。The composition of this catalyst is the same as in Example 1.

(実施例3) 複合酸化物粉末を形成するのに、三塩化チタンと塩化鉄
を1:1のモル比で溶解した水溶液にアンモニア水を徐
々に加え、チタンと鉄を共沈させる。そしてこの共沈物
を焼成して複合酸化物粉末としたこと以外は実施例1と
同様にして本実施例の触媒を得た。この触媒の組成は実
施例1と同様である。
(Example 3) To form a composite oxide powder, aqueous ammonia is gradually added to an aqueous solution in which titanium trichloride and iron chloride are dissolved in a molar ratio of 1:1 to co-precipitate titanium and iron. A catalyst of this example was obtained in the same manner as in Example 1 except that this coprecipitate was calcined to obtain a composite oxide powder. The composition of this catalyst is the same as in Example 1.

(実施例4) ジニトロジアンミン白金の代わりに塩化パラジウムを用
い、白金の代わりにパラジウムを担持させたこと以外は
実施例1と同様である。この場合パラジウムの担持量は
担体基材1.11当り1.0gであり、他の成分は実施
例1と同様である。
(Example 4) The same as Example 1 except that palladium chloride was used instead of dinitrodiammine platinum and palladium was supported instead of platinum. In this case, the amount of palladium supported was 1.0 g per 1.11 of the carrier base material, and the other components were the same as in Example 1.

(実施例5) 白金の代わりにパラジウムを担持させたこと以外は実施
例2と同様にして排気ガス浄化用触媒を得た。パラジウ
ムの担持量は担体基材1ρ当り1゜0gであり、他の成
分は実施例1と同様である。
(Example 5) An exhaust gas purifying catalyst was obtained in the same manner as in Example 2 except that palladium was supported instead of platinum. The amount of palladium supported was 1.0 g per 1.rho. of the carrier base material, and the other components were the same as in Example 1.

(実施例6) 白金の代わりにパラジウムを担持させたこと以外は実施
例3と同様である。パラジウムの担持量は担体基材1ρ
当り1.0CIであり、他の成分は実施例1と同様であ
る。
(Example 6) The same as Example 3 except that palladium was supported instead of platinum. The amount of palladium supported is 1ρ on the carrier base material.
The other components are the same as in Example 1.

(比較例1) 複合酸化物粉末を用いず、その代わりに酸化鉄粉末を用
いたこと以外は実施例1と同様である。
(Comparative Example 1) The same as Example 1 except that the composite oxide powder was not used and iron oxide powder was used instead.

この触媒の組成は、チタン以外は実施例1と同一である
The composition of this catalyst was the same as in Example 1 except for titanium.

(比較例2) 白金の代わりにパラジウムを担持させたこと以外は比較
例1と同様である。この触媒の組成は、チタン以外は実
施例4と同一である。
(Comparative Example 2) Same as Comparative Example 1 except that palladium was supported instead of platinum. The composition of this catalyst was the same as in Example 4 except for titanium.

(試験例〉 上記各実施例及び比較例の触媒(1,3J))を、20
00cc、直列4気筒エンジンの排気系に接続し、入ガ
ス温度600℃、A/F=13.0で1時間運転した後
、A/F=15.0に切換えて5分間その状態を維持し
、その間の触媒通過ガス中の平均硫化水素温度を測定し
た。その結果を第1表に示す。第1表より実施例の触媒
では、比較例の触媒に比べて硫化水素の濃度が格段に低
くなっていることかわかる。これは鉄とチタンとの複合
酸化物粉末を用いたことに起因していることか明らかで
ある。
(Test Example) The catalysts (1,3 J) of each of the above Examples and Comparative Examples were
00cc, connected to the exhaust system of an in-line 4-cylinder engine, operated for 1 hour at an inlet gas temperature of 600°C and A/F = 13.0, then switched to A/F = 15.0 and maintained that state for 5 minutes. During this period, the average hydrogen sulfide temperature in the gas passing through the catalyst was measured. The results are shown in Table 1. It can be seen from Table 1 that the concentration of hydrogen sulfide is much lower in the catalysts of Examples than in the catalysts of Comparative Examples. This is clearly due to the use of composite oxide powder of iron and titanium.

第1表 (耐久試験) 上記各実施例及び比較例の触媒(1,3,0〉を、20
00cc直列4気筒エンジンの排気系に接続し、入ガス
温度900°C,A/F=14.6で200時間運転し
た。その後A/F=14.6で劣化した各触媒の温度特
性を測定した。その結果を第1表に示す。第1表より実
施例の触媒は炭化水素の50%浄化温度が比較例に比べ
て低くなっており、耐久性能が優れていることがわかる
。これは鉄とチタンとの複合酸化物粉末を用いたことに
起因していることが明らかである。
Table 1 (Durability test) Catalysts (1, 3, 0) of each of the above examples and comparative examples were
It was connected to the exhaust system of a 00cc inline 4-cylinder engine and operated for 200 hours at an input gas temperature of 900°C and an A/F = 14.6. Thereafter, the temperature characteristics of each catalyst degraded at A/F=14.6 were measured. The results are shown in Table 1. From Table 1, it can be seen that the catalysts of the Examples have a lower 50% hydrocarbon purification temperature than the Comparative Examples, and have excellent durability. It is clear that this is due to the use of composite oxide powder of iron and titanium.

特許出願人  トヨタ自動車株式会社Patent applicant: Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)担体基材と、 該担体基材表面に被覆された触媒担持層と、該触媒担持
層に担持された触媒金属とよりなる排気ガス浄化用触媒
において、 前記触媒担持層は、鉄とチタンの複合酸化物と活性アル
ミナとより構成されていることを特徴とする排気ガス浄
化用触媒。
(1) In an exhaust gas purifying catalyst comprising a carrier base material, a catalyst support layer coated on the surface of the carrier base material, and a catalytic metal supported on the catalyst support layer, the catalyst support layer is made of iron and An exhaust gas purification catalyst characterized by being composed of a titanium composite oxide and activated alumina.
JP2316323A 1990-11-20 1990-11-20 Catalyst for purification of exhaust gas Pending JPH04187240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2316323A JPH04187240A (en) 1990-11-20 1990-11-20 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316323A JPH04187240A (en) 1990-11-20 1990-11-20 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH04187240A true JPH04187240A (en) 1992-07-03

Family

ID=18075852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316323A Pending JPH04187240A (en) 1990-11-20 1990-11-20 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH04187240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094645A (en) * 2006-10-10 2008-04-24 Uchiya Thermostat Kk Method for manufacturing hydrogen generating medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094645A (en) * 2006-10-10 2008-04-24 Uchiya Thermostat Kk Method for manufacturing hydrogen generating medium

Similar Documents

Publication Publication Date Title
US4957896A (en) Catalyst for purification of exhaust gases
US5073532A (en) Catalyst for purifying exhaust gases from internal combustion engines and method of making the catalyst
JP5210306B2 (en) Three-way catalyst
JPS63162043A (en) Catalyst for cleaning exhaust gas
JP5982987B2 (en) Exhaust gas purification catalyst containing exhaust gas purification catalyst material
JPH09500570A (en) Layered catalyst composite
EP0696470B1 (en) Catalysts for cleaning exhaust gases
JPH10174866A (en) Catalyst for purifying waste gas
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH07108172A (en) Exhaust gas purifying catalyst and production therefor
JP4852595B2 (en) Exhaust gas purification catalyst
JP3247956B2 (en) Exhaust gas purification catalyst
JPH04187240A (en) Catalyst for purification of exhaust gas
JPH08281071A (en) Waste gas purifying method and waste gas purifying catalyst
JPH02191548A (en) Catalyst for purification of exhaust gas
JPH0857315A (en) Catalyst for purification of exhaust gas
JPH0871424A (en) Catalyst for purification of exhaust gas
JPS61181538A (en) Catalyst for purifying exhaust gas
JPH04180835A (en) Production of catalyst for purifying exhaust gas
JP5641585B2 (en) Exhaust gas purification catalyst
JPH0372947A (en) Catalyst for purifying exhaust gas
JP2001058131A (en) Catalyst for exhaust gas treatment
JPH08294626A (en) Catalyst for purifying exhaust gas
JP2966675B2 (en) Exhaust treatment method
JP2745644B2 (en) Exhaust gas purification catalyst