JPH0418622B2 - - Google Patents

Info

Publication number
JPH0418622B2
JPH0418622B2 JP59031115A JP3111584A JPH0418622B2 JP H0418622 B2 JPH0418622 B2 JP H0418622B2 JP 59031115 A JP59031115 A JP 59031115A JP 3111584 A JP3111584 A JP 3111584A JP H0418622 B2 JPH0418622 B2 JP H0418622B2
Authority
JP
Japan
Prior art keywords
diaphragm
electrode
layer
catalyst
catalyst electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59031115A
Other languages
Japanese (ja)
Other versions
JPS60173454A (en
Inventor
Juko Fujita
Hisashi Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP59031115A priority Critical patent/JPS60173454A/en
Publication of JPS60173454A publication Critical patent/JPS60173454A/en
Publication of JPH0418622B2 publication Critical patent/JPH0418622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 本発明は、酸素センサーあるいは水素センサー
等の気体センサーに関するものであり、その目的
とするところは隔膜−触媒電極接合体の接合強度
をより堅牢にするとともに、センサーの応答速度
をより速くせんとするにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas sensor such as an oxygen sensor or a hydrogen sensor, and its purpose is to make the bonding strength of a diaphragm-catalyst electrode assembly more robust and to improve the response of the sensor. The goal is to increase speed.

酸素センサーあるいは水素センサー等の気体セ
ンサーにはさまざまな方式のものがあるが、本発
明は、ガルバニ電池式(燃料電池式)およびポー
ラログラフ式の気体センサーに関するものであ
る。
Although there are various types of gas sensors such as oxygen sensors and hydrogen sensors, the present invention relates to galvanic cell type (fuel cell type) and polarographic type gas sensors.

気体センサーは、ガルバニ電池式にしろ、ポー
ラログラフ式にしろ、カソードとアノードと電解
液と検知気体の拡散を制御するための高分子膜か
らなる隔膜とで構成されているのが普通である。
検知気体が酸素である場合には、カソードが酸素
検知極となり、アノードか鉛などの卑金属から構
成される。これに対し、検知気体が水素の場合に
は、アノードが水素検知極となり、カソードに
は、β型二酸化鉛などの金属酸化物が用いられ
る。酸素検知極および水素検知極はそれぞれ酸素
の電解還元および水素の電解酸化に与かる一種の
触媒電極となる。
Gas sensors, whether galvanic cell type or polarographic type, are usually composed of a cathode, an anode, an electrolyte, and a diaphragm made of a polymer membrane for controlling the diffusion of the detected gas.
When the sensing gas is oxygen, the cathode serves as the oxygen sensing electrode, and the anode is composed of a base metal such as lead. On the other hand, when the detection gas is hydrogen, the anode serves as a hydrogen detection electrode, and a metal oxide such as β-type lead dioxide is used as the cathode. The oxygen sensing electrode and the hydrogen sensing electrode serve as a type of catalytic electrode that participates in the electrolytic reduction of oxygen and the electrolytic oxidation of hydrogen, respectively.

従来の気体センサーの構造を大別すると、隔膜
と触媒電極とが単に接触しているだけのタイプと
一体に接合されているタイプとに分類することが
できる。前者の場合には、触媒電極は金属片から
構成され、検知気体はまず隔膜を透過し、次いで
隔膜と触媒電極との間に形成される電解液膜中に
溶解していつて触媒電極表面上で反応に与かる。
したがつて、常時隔膜と触媒電極との接触状態を
一定に保ち、液膜の厚さが変らないようにするこ
とが肝要である。ところが、検知気体を含む雰囲
気の圧力が変化したり、相対湿度が変化すると隔
膜と触媒電極との接触状態が変化するという問題
がある。また、隔膜と触媒電極との接触状態を一
定にしようとすれば、細心の注意が必要となり、
それだけ気体センサーの製造工数が多くなるとい
う問題がある。
The structures of conventional gas sensors can be broadly classified into types in which the diaphragm and catalyst electrode are simply in contact with each other and types in which they are integrally joined. In the former case, the catalytic electrode is composed of a metal piece, and the sensing gas first permeates through the diaphragm, then dissolves in the electrolyte film formed between the diaphragm and the catalytic electrode, and is then deposited on the surface of the catalytic electrode. Affects the reaction.
Therefore, it is important to maintain constant contact between the diaphragm and the catalyst electrode at all times so that the thickness of the liquid film does not change. However, there is a problem in that when the pressure of the atmosphere containing the detection gas changes or the relative humidity changes, the contact state between the diaphragm and the catalyst electrode changes. Also, if you want to maintain a constant contact state between the diaphragm and the catalyst electrode, you will need to be extremely careful.
There is a problem in that the number of man-hours required to manufacture the gas sensor increases accordingly.

このような観点からみると、後者のように隔膜
と触媒電極とを一体に接合した構造にする方が有
利である。従来、隔膜と触媒電極とを一体に接合
するためには、隔膜の片面に、触媒金属を蒸着す
るかあるいはスパツタリングするという方法が採
用されているが、隔膜材料として、特にポリ4フ
ツ化エチレン、4フツ化エチレン−6フツ化エチ
レン共重合体あるいは4フツ化エチレン−エチレ
ン共重合体などのフツ素樹脂を用いた場合には、
隔膜と触媒金属との接合強度が弱く、触媒金属が
隔膜から剥離しやすいという難点がみられた。
From this point of view, it is more advantageous to use the latter structure in which the diaphragm and the catalyst electrode are integrally joined. Conventionally, in order to join the diaphragm and the catalyst electrode together, a method has been adopted in which a catalyst metal is vapor-deposited or sputtered on one side of the diaphragm. When using a fluororesin such as tetrafluoroethylene-hexafluoroethylene copolymer or tetrafluoroethylene-ethylene copolymer,
The problem was that the bond strength between the diaphragm and the catalytic metal was weak, and the catalytic metal easily peeled off from the diaphragm.

本発明は、実質的にほとんど孔のないフツ素樹
脂膜からなる隔膜を第1層とし、4フツ化エチレ
ン−6フツ化プロピレン共重合体の多孔層からな
る接合層を第2層とし、触媒粉末とフツ素樹脂結
着剤との混合層からなる触媒電極層を第3層とし
た隔膜−触媒電極接合体を採用することによつ
て、上述の如き触媒電極の剥離の問題を解決しよ
うとするものである。すなわち、かかる構成を採
用すると、フツ素樹脂結着剤が触媒粉末を強固に
結着し、触媒電極と隔膜とを4フツ化エチレン−
6フツ化プロピレン共重合体の接合層が強固に接
合する役目を果す。
In the present invention, the first layer is a diaphragm made of a fluororesin membrane with virtually no pores, the second layer is a bonding layer made of a porous layer of tetrafluoroethylene-hexafluoropropylene copolymer, and the catalyst By adopting a diaphragm-catalyst electrode assembly in which the third layer is a catalyst electrode layer made of a mixed layer of powder and a fluororesin binder, we attempted to solve the above-mentioned problem of peeling of the catalyst electrode. It is something to do. That is, when such a configuration is adopted, the fluororesin binder firmly binds the catalyst powder and connects the catalyst electrode and the diaphragm to the tetrafluoroethylene-
The bonding layer of hexafluorinated propylene copolymer serves as a strong bond.

一般に隔膜表面が平滑なため隔膜と触媒電極と
を直接接合しようとしても首尾よくいかないのに
対し、接合層が多孔性であると接合強度が増大す
る。また、接合材料として、特に、4フツ化エチ
レン−6フツ化プロピレン共重合体が効果的なの
は、この樹脂が水懸濁液状もしくは有機溶媒懸濁
液状で市販されているため、多孔性の接合層を形
成する際、隔膜か触媒電極のどちらかか双方に塗
着しやすいし、又、ポリ4フツ化エチレンなどと
比較すると、加熱したとき溶融粘度がはるかに小
さいため、より付着力が大きいためである。
Generally, since the surface of a diaphragm is smooth, attempts to directly bond the diaphragm and the catalyst electrode do not work, whereas if the bonding layer is porous, the bonding strength increases. In addition, tetrafluoroethylene-hexafluoropropylene copolymer is particularly effective as a bonding material because this resin is commercially available in the form of an aqueous suspension or an organic solvent suspension. When forming a diaphragm, it is easy to apply to either the diaphragm or the catalyst electrode, and compared to polytetrafluoroethylene, it has a much lower melt viscosity when heated, so it has a stronger adhesive force. It is.

一方、本発明の第二の目的は、気体センサーの
応答速度をより速くせんとするにある。すなわ
ち、従来の触媒電極は、通例撥水性をもつていな
いために、検知気体は一旦電解液中に溶けてい
き、しかるのちに触媒電極表面に到達した反応種
が電極反応に与るというメカニズムで反応が進行
していた。このような反応では検知気体の液中へ
の溶解過程が律速段階であつたため、一般に気体
センサーの90%応答に15秒前後を要していた。こ
れに対して、本発明のように、触媒電極が撥水性
をもつている場合には、反応は検知気体と電解液
と触媒電極との三相界面で起り、気体の液中への
溶解過程がないために、その反応速度が速くな
る。
On the other hand, a second object of the present invention is to increase the response speed of the gas sensor. In other words, since conventional catalytic electrodes do not usually have water repellency, the sensing gas is temporarily dissolved in the electrolyte, and then the reactive species that reach the surface of the catalytic electrode take part in the electrode reaction. A reaction was underway. In such a reaction, the rate-limiting step was the dissolution of the detected gas into the liquid, so it generally took around 15 seconds for the gas sensor to reach 90% response. On the other hand, when the catalyst electrode has water repellency as in the present invention, the reaction occurs at the three-phase interface between the sensing gas, the electrolyte, and the catalyst electrode, and the reaction occurs during the dissolution process of the gas into the liquid. Because there is no , the reaction speed becomes faster.

本発明における隔膜材料としては、ポリ4フツ
化エチレン、4フツ化エチレン−6フツ化エチレ
ン共重合体、4フツ化エチレン−エチレン共重合
体等のフツ素樹脂が適している。触媒粉末として
は、検知気体にもよるが、白金、ロジウム、パラ
ジウムの如き白金族金属、金あるいは銀が適して
いる。また、カーボンあるいはカーボンに上述の
金属を担持したものも使用できる。触媒電極層の
接着剤としては、ポリ4フツ化エチレン、4フツ
化エチレン−6フツ化プロピレン共重合体、4フ
ツ化エチレン−エチレン共重合体等のフツ素樹脂
が適している。
As the diaphragm material in the present invention, fluororesins such as polytetrafluoroethylene, tetrafluoroethylene-hexafluoroethylene copolymer, and tetrafluoroethylene-ethylene copolymer are suitable. Suitable catalyst powders are platinum group metals such as platinum, rhodium, palladium, gold or silver, depending on the gas to be detected. Further, carbon or carbon supporting the above-mentioned metals can also be used. Suitable adhesives for the catalyst electrode layer include fluororesins such as polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, and tetrafluoroethylene-ethylene copolymer.

隔膜−接合層−触媒電極三重層接合体を制作す
る方法としては、フツ素樹脂膜からなる隔膜の片
面に4フツ化エチレン−6フツ化プロピレン共重
合体の水懸濁液もしくは有機溶媒懸濁液を塗着
し、一旦乾燥してからその上に触媒粉末とフツ素
樹脂の水懸濁液もしくは有機溶媒懸濁液との混合
懸濁液を塗着し、乾燥し、プレスしたのち、250
〜350℃の温度で加熱する方法が効果的である。
プレスの工程で同時加熱してもよい。あるいは接
合層の上に触媒電極層を形成する際、あらかじめ
触媒粉末とフツ素樹脂結着剤との混合物でシート
状にしたものを圧着してもよい。また、接合層は
あらかじめ触媒電極層上に形成してもよい。
A method for producing a triple layer assembly of diaphragm-bonding layer-catalyst electrode is to apply an aqueous suspension or an organic solvent suspension of tetrafluoroethylene-hexafluoropropylene copolymer on one side of a diaphragm made of a fluororesin membrane. After applying the liquid and once drying, apply a mixed suspension of catalyst powder and fluororesin water suspension or organic solvent suspension on it, dry it, press it, and then
A method of heating at a temperature of ~350°C is effective.
It may be heated simultaneously during the pressing process. Alternatively, when forming the catalyst electrode layer on the bonding layer, a sheet made of a mixture of catalyst powder and a fluororesin binder may be formed in advance and then pressure-bonded. Further, the bonding layer may be formed on the catalyst electrode layer in advance.

以下、本発明の一実施例について詳述する。 An embodiment of the present invention will be described in detail below.

実施例:第1図は本発明の一実施例にかかるガル
バニ電池式酸素センサーの断面構造略図であ
る。は隔膜−触媒電極接合体であり、厚さが
25μの4フツ化エチレン−6フツ化プロピレン
共重合体の膜からなる隔膜2と4フツ化エチレ
ン−6フツ化プロピレン共重合体の多孔層から
なる接合層3と触媒としての金粉末と結着剤と
してのポリ4フツ化エチレンとの混合物からな
る触媒電極4とから構成されている。5は鉛電
極、6は酢酸と酢酸カリウムと酢酸鉛の混合水
溶液からなる電解液である。これらの各センサ
ー構成要素はポリプロピレン製のホルダー7に
固定もしくは収納されている。
Embodiment: FIG. 1 is a schematic cross-sectional structure diagram of a galvanic cell type oxygen sensor according to an embodiment of the present invention. 1 is a diaphragm-catalyst electrode assembly with a thickness of
A diaphragm 2 made of a 25 μm membrane of ethylene tetrafluoride-propylene hexafluoride copolymer, a bonding layer 3 made of a porous layer of ethylene tetrafluoride-propylene hexafluoride copolymer, and gold powder as a catalyst and binding. It is composed of a catalyst electrode 4 made of a mixture with polytetrafluoroethylene as an agent. 5 is a lead electrode, and 6 is an electrolytic solution consisting of a mixed aqueous solution of acetic acid, potassium acetate, and lead acetate. Each of these sensor components is fixed or housed in a holder 7 made of polypropylene.

触媒電極4は正極となり、鉛電極5は負極と
なり、正極と負極との間に抵抗8を接続する
と、抵抗8に流れる電流、換言すると抵抗8の
両端部間の電圧が酸素濃度に比例する。
The catalyst electrode 4 becomes a positive electrode, the lead electrode 5 becomes a negative electrode, and when a resistor 8 is connected between the positive electrode and the negative electrode, the current flowing through the resistor 8, in other words, the voltage between both ends of the resistor 8 is proportional to the oxygen concentration.

比較例:上述の実施例で得られたガルバニ電池式
酸素センサーをAとし、実施例において、触媒
電極として金を蒸着法により隔膜に固着せしめ
た場合の従来型センサーをBとし、触媒電極と
して金板を隔膜に接触せしめた場合の従来型セ
ンサーをCとして、次のような比較試験をおこ
なつた。
Comparative example: The galvanic cell type oxygen sensor obtained in the above example is designated as A, and in the example, a conventional sensor in which gold is fixed to the diaphragm by vapor deposition as a catalyst electrode is designated as B, and gold is used as the catalyst electrode. The following comparative test was conducted using C as a conventional sensor in which the plate was brought into contact with the diaphragm.

まず、上述の各センサーを空気中に30日間お
いた際の抵抗端の出力電圧の経時変化を調べた
ところ第2図に示すような結果が得られた。つ
まり、本発明品Aと従来品Cは出力電圧の変化
がなかつたのに対し、従来品Bは出力電圧が大
幅に低下した。そこで、30日経過後各センサー
を解体して調査したところ、従来品Bの場合に
は金属極が隔膜から部分的に剥離していた。こ
れに対し、本発明品Aおよび従来品Cの場合に
は何ら異常は認められなかつた。この結果か
ら、本発明の場合には従来品に比較して、触媒
電極と隔膜との接合強度がより強いことがわか
る。
First, when each of the above-mentioned sensors was left in the air for 30 days, the change in output voltage at the resistor end over time was investigated, and the results shown in Figure 2 were obtained. In other words, while there was no change in the output voltage of product A of the present invention and conventional product C, the output voltage of conventional product B decreased significantly. Therefore, after 30 days had elapsed, each sensor was disassembled and examined, and in the case of conventional product B, the metal electrode had partially peeled off from the diaphragm. On the other hand, no abnormality was observed in the case of product A of the present invention and conventional product C. This result shows that the bonding strength between the catalyst electrode and the diaphragm is stronger in the case of the present invention than in the conventional product.

次に、応答速度を比較したところ、90%応答
に要した時間は、本発明品Aの場合には8秒、
従来品Bの場合には14秒、従来品Cの場合には
15秒であつた。この結果から、本発明品の応答
速度は従来品のそれより、かなり速いことがわ
かる。
Next, we compared the response speeds and found that the time required for 90% response was 8 seconds for product A of the present invention;
14 seconds for conventional product B, and 14 seconds for conventional product C.
It was hot in 15 seconds. This result shows that the response speed of the product of the present invention is considerably faster than that of the conventional product.

以上詳述せる如く、本発明は隔膜と触媒電極と
の接合強度が大きく、しかも応答速度の速い気体
センサーを提供するもので、その工業的価値極め
て大である。
As described in detail above, the present invention provides a gas sensor with a high bonding strength between a diaphragm and a catalyst electrode and a fast response speed, and has extremely high industrial value.

なお、本発明の気体センサーは液中に溶存して
いる気体の濃度を測定するためにも適用され得
る。
Note that the gas sensor of the present invention can also be applied to measure the concentration of gas dissolved in a liquid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかるガルバニ電
池式酸素センサーの断面構造略図、第2図は本発
明の一実施例にかかるガルバニ電池式酸素センサ
ーA,従来品Bおよび従来品Cの出力電圧の経時
変化を比較した図である。 ……隔膜−触媒電極接合体、2……隔膜、3
……接合層、4……触媒電極、5……鉛極、6…
…電解液、7……ホルダー、8……抵抗。
Fig. 1 is a schematic cross-sectional structure diagram of a galvanic cell type oxygen sensor according to an embodiment of the present invention, and Fig. 2 is an output of galvanic cell type oxygen sensors A, conventional product B, and conventional product C according to an embodiment of the present invention. FIG. 3 is a diagram comparing voltage changes over time. 1 ... diaphragm-catalyst electrode assembly, 2... diaphragm, 3
...Joining layer, 4...Catalyst electrode, 5...Lead electrode, 6...
...electrolyte, 7...holder, 8...resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 フツ素樹脂からなる隔膜を第1層とし、4フ
ツ化エチレン−6フツ化プロピレン共重合体の多
孔層からなる接合層を第2層とし、触媒粉末とフ
ツ素樹脂結着剤との混合層からなる触媒電極層を
第3層とした隔膜−触媒電極接合体をそなえてな
ることを特徴とする気体センサー。
1 A diaphragm made of a fluororesin is used as the first layer, a bonding layer made of a porous layer of tetrafluoroethylene-hexafluoropropylene copolymer is used as a second layer, and a catalyst powder and a fluororesin binder are mixed. A gas sensor comprising a diaphragm-catalyst electrode assembly having a catalyst electrode layer as a third layer.
JP59031115A 1984-02-20 1984-02-20 Gas sensor Granted JPS60173454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59031115A JPS60173454A (en) 1984-02-20 1984-02-20 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59031115A JPS60173454A (en) 1984-02-20 1984-02-20 Gas sensor

Publications (2)

Publication Number Publication Date
JPS60173454A JPS60173454A (en) 1985-09-06
JPH0418622B2 true JPH0418622B2 (en) 1992-03-27

Family

ID=12322399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59031115A Granted JPS60173454A (en) 1984-02-20 1984-02-20 Gas sensor

Country Status (1)

Country Link
JP (1) JPS60173454A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226572A (en) * 1986-03-27 1987-10-05 Shin Kobe Electric Mach Co Ltd Manufacture of gas diffusion electrode

Also Published As

Publication number Publication date
JPS60173454A (en) 1985-09-06

Similar Documents

Publication Publication Date Title
CA2197385C (en) Electrochemical sensors having improved selectivity and enhanced sensitivity
JPS6358149A (en) Biosensor
JPH0658338B2 (en) Biosensor
JPH0136062B2 (en)
JPS63182559A (en) Production of enzyme electrode
JPS5816697B2 (en) Enzyme electrode and its manufacturing method
JPH0418622B2 (en)
JP2502665B2 (en) Biosensor
JP2596017B2 (en) Biosensor
JPH0418623B2 (en)
JPH0445780B2 (en)
JPH0333226B2 (en)
JPS60173453A (en) Gas sensor
JPS585642A (en) Enzyme electrode
JPH0417380B2 (en)
JPS6254154A (en) Oxygen partial-pressure measuring electrode device and membrane used for said device
JPS60200155A (en) Preparation of diaphragm-catalyst bonding unit for gas sensor
JP3089311B2 (en) Polaro-type flammable gas sensor
JPS6116020B2 (en)
JPS63139244A (en) Glucose sensor
JPS60210758A (en) Galvanic battery type oxygen sensor
JPS60238753A (en) Galvanic cell type oxygen sensor
JPH02245651A (en) Oxygen electrode and making thereof
JPS60210757A (en) Galvanic battery type oxygen sensor
JPS63144249A (en) Biosensor