JPS60210757A - Galvanic battery type oxygen sensor - Google Patents

Galvanic battery type oxygen sensor

Info

Publication number
JPS60210757A
JPS60210757A JP59066974A JP6697484A JPS60210757A JP S60210757 A JPS60210757 A JP S60210757A JP 59066974 A JP59066974 A JP 59066974A JP 6697484 A JP6697484 A JP 6697484A JP S60210757 A JPS60210757 A JP S60210757A
Authority
JP
Japan
Prior art keywords
diaphragm
electrode
oxygen sensor
carbon fiber
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59066974A
Other languages
Japanese (ja)
Other versions
JPH0358464B2 (en
Inventor
Yuko Fujita
藤田 雄耕
Hisashi Kudo
工藤 寿士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP59066974A priority Critical patent/JPS60210757A/en
Publication of JPS60210757A publication Critical patent/JPS60210757A/en
Publication of JPH0358464B2 publication Critical patent/JPH0358464B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To obtain an oxygen sensor of which the response speed is accelerated by the perfect reduction of O2, by integrally connecting a catalytic electrode to the single surface of a diaphragm made of a fluorocarbon resin and pressing a carbon fiber having a paper like form and a metal collector having a reticulated structure to the opposite side of the connected surface of the catalytic electrode. CONSTITUTION:A drilled plate 1 made of polyethylene, a porous polytetrafuloroethylene membrane 2 and an integrally connected body consisting of a diaphragm 4 made of a copolymer of F2C=CF2 and F2C=CF-CF3 and a catalytic electrode 5 comprising gold are successively stacked and, next, a carbon fiber 6 having a paper or mat like shape, a metal collector 7 made of Ti having a reticulated or expanded structure and filter paper 9 are superposed thereon while a holder main body and a lid 3, both of which are made of polyethylene are threaded and pressed, in such a state that an O- ring 3 is arranged between the drilled plate 1 and the main body 12, to fabricate an oxygen sensor. The delamination of the diaphragm 2 and the electrode 5 is prevented by the carbon fiber 6 and the collector 7 and the perfect reduction of O2 transmitting through the diaphragm 2 by the O2-reducing catalytic action of the carbon fiber 6 is performed to accelerate a speed for making output constant. Therefore, the sensor having an accelerated reaction speed to the concn. of circumferential O2 is obtained.

Description

【発明の詳細な説明】 本発明は、ガルバニ電池式酸素センサーに関するもので
あり、その目的とするところは、隔膜と触媒電極とを一
体に接合した接合体を用いるガルバニ電池式酸素センサ
ーの応答速度をより速くぜんとするにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a galvanic cell type oxygen sensor, and its object is to improve the response speed of a galvanic cell type oxygen sensor using an assembly in which a diaphragm and a catalyst electrode are integrally joined. It helps you feel refreshed faster.

ガルバニ電池式酸素センサーは、正極としての触媒電極
と負極としての鉛電極と電解液と酸素は透過するが水は
透過しにくいフッ素樹脂のfit膜から構成されている
のが普通である。
A galvanic cell type oxygen sensor is usually composed of a catalyst electrode as a positive electrode, a lead electrode as a negative electrode, and a fluororesin fit membrane that permeates an electrolytic solution and oxygen but hardly permeates water.

ガルバニ電池式酸素センサーの構造を大別すると、隔膜
と触媒電極とが単に接触しているだけのタイプと両者が
一体に接合されているタイプとに分類することができる
。前者の場合には、触媒電極は金属の円板もしくは円柱
から構成され、検知気体中の酸素はまず隔膜を透過し、
次いで隔膜と触媒電極との間に形成される電解液躾中に
溶解していって触媒電極表面上で反応に与かる。したが
って、常時隔膜と触媒電極との接触状態を一定に保ち、
液膜の厚さが変らないようにすることが肝要である。と
ころが、雰囲気気体の圧力が変化したり、相対湿度が変
化すると、隔膜と触媒電極との接触状態が変化するとい
う問題がある。また隔膜と触媒型・蚤との接触状態を一
定にしようとすれば、細心の注意が必要であり、それだ
けセンサー製造工数が多くなるという問題がある。
The structure of galvanic cell type oxygen sensors can be roughly divided into types in which the diaphragm and catalyst electrode are simply in contact with each other, and types in which the two are integrally joined. In the former case, the catalytic electrode consists of a metal disk or cylinder, and the oxygen in the sensing gas first passes through the diaphragm;
Next, it dissolves into the electrolytic solution formed between the diaphragm and the catalyst electrode and participates in a reaction on the surface of the catalyst electrode. Therefore, the state of contact between the diaphragm and the catalyst electrode is kept constant at all times.
It is important that the thickness of the liquid film remains unchanged. However, there is a problem in that when the pressure of the atmospheric gas changes or the relative humidity changes, the contact state between the diaphragm and the catalyst electrode changes. Furthermore, if the contact state between the diaphragm and the catalytic type/flea is to be maintained constant, careful attention is required, which poses the problem of increasing the number of man-hours required to manufacture the sensor.

このような観点からみると、隔膜と触媒電極とを一体に
接合した構造にする方が有利である。何故なら圧力が変
化して隔膜が膨らんだり、へこんだりしたとしても、触
媒電極も隔膜の変形に追随するからである。隔膜と触媒
電極とを一体に接合づるためには、隔膜の片面に触媒金
属を蒸着するかスパッタリングすることによって固着さ
せ、しかるのちにフッ素樹脂で撥水処理を施すかあるい
は触媒金属粉末とフッ素樹脂結着剤との混合物を隔膜に
接合するのがよい。ところが、このような構造において
は、隔膜を透過してくる酸素のすべてが触媒電極で電解
還元されずに、余剰の酸素が電解液中に溶存していき、
この溶存酸素が再びしかもゆっくりと電解還元反応に与
かるために、酸素センサーの出力がなかなか安定しない
、換言すると応答速度が遅いという難点がみられる。
From this point of view, it is more advantageous to have a structure in which the diaphragm and the catalyst electrode are integrally joined. This is because even if the diaphragm swells or dents due to a change in pressure, the catalyst electrode also follows the deformation of the diaphragm. In order to join the diaphragm and the catalyst electrode together, the catalytic metal is fixed on one side of the diaphragm by vapor deposition or sputtering, and then water-repellent treatment is applied with fluororesin, or catalyst metal powder and fluororesin are bonded together. Advantageously, a mixture with a binder is bonded to the diaphragm. However, in such a structure, all of the oxygen that permeates through the diaphragm is not electrolytically reduced at the catalyst electrode, and excess oxygen dissolves in the electrolyte.
Since this dissolved oxygen again and slowly participates in the electrolytic reduction reaction, the output of the oxygen sensor is difficult to stabilize, or in other words, the response speed is slow.

一方、隔膜と触媒電極とを一体に接合した構造の場合、
集電構造をどうするかがひとつの課題である。従来、例
えば集電体としてのスプリングを触媒電極に押圧すると
いう方法が採用されているが、スプリングと触媒1it
iiの接触状態を一定にするという点に関していえば信
頼性の高いものではない。
On the other hand, in the case of a structure in which the diaphragm and the catalyst electrode are integrally joined,
One issue is what to do with the current collection structure. Conventionally, a method has been adopted in which, for example, a spring as a current collector is pressed against a catalyst electrode, but one
In terms of keeping the contact state constant (ii), it is not reliable.

本発明は上述の2点の問題を改善せんとするものである
。すなわち、本発明は、隔膜−触媒電極接合体の触媒電
極の側に、炭素繊維からなるベーパーマットあるいは織
物を配設し、さらにその隣に集電体としての金属の網も
しくはスクリーンを配設し、これらを押圧するものであ
る。かかる構造を採用すると、まず、炭素繊維は酸素の
還元に対しである程度触媒活性をもっているので、触媒
電極の細孔を還元されないままに通過してくる酸素は、
この炭素繊維上で充分速やかに電解還元され、その結果
として、酸素センサーの応答速度が速くなる。また、炭
素繊維は弾力性をもっているし、電導性にもすぐれてい
るので、金属集電体ともども押圧した際の集電性が良好
となる。カーボン繊維には撥水処理を施してもよい。
The present invention aims to improve the above two problems. That is, in the present invention, a vapor mat or fabric made of carbon fiber is provided on the catalyst electrode side of the diaphragm-catalyst electrode assembly, and a metal net or screen as a current collector is provided next to it. , to press these. If such a structure is adopted, firstly, since carbon fibers have a certain degree of catalytic activity against oxygen reduction, oxygen that passes through the pores of the catalyst electrode without being reduced is
Electrolytic reduction occurs sufficiently quickly on the carbon fibers, and as a result, the response speed of the oxygen sensor becomes faster. Further, since carbon fiber has elasticity and excellent conductivity, it has good current collection properties when pressed together with a metal current collector. Carbon fibers may be subjected to water repellent treatment.

以下本発明の一実施例について詳述する。An embodiment of the present invention will be described in detail below.

実施例:第1図は本発明の一実施例にがかるガルバニ電
池式酸素センサーの断面構造を示す。図において(1)
はポリエチレン類の穿孔板、(2)は多孔性ポリ 4フ
ツ化エチレン膜、(3)はO−リング、(4)は4フッ
化エチレン−67フ化プロピレンコポリマー膜からなる
隔膜、(5)は金からなる触媒電極、(6)は炭素繊維
紙、(7)はエキスパンデッドチタンからなる集電体、
(8)はチタン線からなるリード線、(9)は口紙、(
10)は酢酸と酢酸カリウムと酢酸鉛の混合水溶液から
なる電解液、(11)は多孔性の鉛電極、(12)はポ
リエチレン類のホルダ一本体および(13)はポリエチ
レン類のホルダー蓋である。
Embodiment: FIG. 1 shows a cross-sectional structure of a galvanic cell type oxygen sensor according to an embodiment of the present invention. In the figure (1)
is a perforated plate made of polyethylene, (2) is a porous polytetrafluoroethylene membrane, (3) is an O-ring, (4) is a diaphragm made of a tetrafluoroethylene-67fluoropropylene copolymer membrane, (5) (6) is carbon fiber paper, (7) is a current collector made of expanded titanium,
(8) is a lead wire made of titanium wire, (9) is a cover, (
10) is an electrolytic solution consisting of a mixed aqueous solution of acetic acid, potassium acetate, and lead acetate, (11) is a porous lead electrode, (12) is a polyethylene holder body, and (13) is a polyethylene holder lid. .

隔膜(4)と触媒電極(5)とは一体に接合されている
。ホルダ一本体(12)およびホルダー蓋(13)には
それぞれネジが切られていて、穿孔板(1)、多孔性ポ
リ 4フツ化エチレン膜(2)。
The diaphragm (4) and the catalyst electrode (5) are integrally joined. The holder body (12) and the holder lid (13) are each threaded, and have a perforated plate (1) and a porous polytetrafluoroethylene membrane (2).

O−リング(3)、隔膜(4)、触媒電極(5)。O-ring (3), diaphragm (4), catalyst electrode (5).

炭素繊維紙(6)、集電体(7)および口紙(9)は、
ホルダ一本体(12)とホルダー蓋(13)とのネジ締
めによって押圧され、良好な接触状態が保持される。穿
孔板(1)は押圧端板として機能し、多孔性ポリ 4フ
ツ化エチレン躾(2)は隔膜(4)表面の汚れを防止す
るためのものである。O−リング(3)によって気密、
液密性が確保される。
The carbon fiber paper (6), the current collector (7) and the opening paper (9) are
The holder main body (12) and the holder lid (13) are pressed together by screwing, and a good contact state is maintained. The perforated plate (1) functions as a pressing end plate, and the porous polytetrafluoroethylene plate (2) is for preventing the surface of the diaphragm (4) from becoming dirty. Airtight with O-ring (3),
Liquid tightness is ensured.

以下本発明の効果について説明する。The effects of the present invention will be explained below.

上述の実施例で得られたガルバニ電池式酸素センサーを
Aとし、実施例において炭素繊維紙(6)が収納されて
いない従来品をBとし、それぞれのセンサーの正極と負
極との間に抵抗を接続し、雰囲気気体の酸素濃度を20
%から0%に変化させた際のセンサーの出力電圧の経時
変化を調べたところ本発明のガルバニ電池式酸素センサ
ーAの出力電圧が安定するまでの時間は4分であったの
に対し、従来品Bの場合には10分であった。これは明
らかに本発明における炭素繊維紙の効果をさし示゛すも
のである。
The galvanic cell type oxygen sensor obtained in the above example is designated as A, and the conventional product in which the carbon fiber paper (6) is not housed in the example is designated as B, and a resistance is placed between the positive and negative electrodes of each sensor. Connect and set the oxygen concentration of the atmosphere gas to 20
When we investigated the change over time in the output voltage of the sensor when changing it from % to 0%, we found that it took 4 minutes for the output voltage of the galvanic cell type oxygen sensor A of the present invention to stabilize, whereas that of the conventional sensor In the case of product B, it was 10 minutes. This clearly shows the effect of carbon fiber paper in the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にがかるガルバニ電池式酸素
センサーの断面構造を示す。 1・・・穿孔板、2・・・多孔性ポリ 4フフ化エチレ
ン躾、3・・・0−リング、4・・・隔膜、5・・・触
媒電極、6・・・炭素繊維紙、−7・・・電解液、8・
・・リード線、9・・・口紙、10・・・電解液、11
・・・鉛電極、12・・・ボルダ一本体、13・・・ホ
ルダー蓋 方 1 8
FIG. 1 shows a cross-sectional structure of a galvanic cell type oxygen sensor according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Perforated plate, 2... Porous poly 4-fluorinated ethylene base, 3... O-ring, 4... Diaphragm, 5... Catalyst electrode, 6... Carbon fiber paper, - 7... Electrolyte, 8.
... Lead wire, 9 ... Opening paper, 10 ... Electrolyte, 11
...Lead electrode, 12...Boulder body, 13...Holder lid 1 8

Claims (1)

【特許請求の範囲】[Claims] 1、正極としての触媒電極と負極としての鉛電極と電解
液と隔膜とにより構成されるガルバニ電池式酸素センサ
ーにおいて、フッ素樹脂からなる隔膜の片面に触媒電極
を一体に接合してなる接合体の触媒電極の側に紙状、マ
ット状あるいは織物状の炭素繊維を配設し、さらに網状
、エキスパンデッドメタル状あるいはスクリーン状の金
属集電体を押圧するようにしてなることを特徴とするガ
ルバニ電池式酸素センサー。
1. In a galvanic cell type oxygen sensor composed of a catalytic electrode as a positive electrode, a lead electrode as a negative electrode, an electrolyte, and a diaphragm, the catalytic electrode is integrally bonded to one side of a diaphragm made of fluororesin. A galvanic device characterized in that paper-like, mat-like, or woven carbon fibers are arranged on the side of a catalyst electrode, and a metal current collector in the form of a net, an expanded metal, or a screen is pressed. Battery operated oxygen sensor.
JP59066974A 1984-04-03 1984-04-03 Galvanic battery type oxygen sensor Granted JPS60210757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59066974A JPS60210757A (en) 1984-04-03 1984-04-03 Galvanic battery type oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59066974A JPS60210757A (en) 1984-04-03 1984-04-03 Galvanic battery type oxygen sensor

Publications (2)

Publication Number Publication Date
JPS60210757A true JPS60210757A (en) 1985-10-23
JPH0358464B2 JPH0358464B2 (en) 1991-09-05

Family

ID=13331500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59066974A Granted JPS60210757A (en) 1984-04-03 1984-04-03 Galvanic battery type oxygen sensor

Country Status (1)

Country Link
JP (1) JPS60210757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322837A (en) * 1992-05-22 1993-12-07 Japan Storage Battery Co Ltd Galvanic cell oxygen sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322837A (en) * 1992-05-22 1993-12-07 Japan Storage Battery Co Ltd Galvanic cell oxygen sensor

Also Published As

Publication number Publication date
JPH0358464B2 (en) 1991-09-05

Similar Documents

Publication Publication Date Title
JPH0387010A (en) Electric double layer capacitor
GB1186493A (en) Oxygen Electrode for Electrolytic Cells
JPS60210757A (en) Galvanic battery type oxygen sensor
JPS60210758A (en) Galvanic battery type oxygen sensor
JPS6166957A (en) Electrochemical measuring instrument
JPS60210759A (en) Galvanic battery type oxygen sensor
JPS5967452A (en) Biosensor
JPH0333226B2 (en)
JPH0321482Y2 (en)
JPH07211325A (en) Gas diffusion electrode
JPS60238753A (en) Galvanic cell type oxygen sensor
JPH0738848Y2 (en) Constant potential electrolytic hydrogen sensor
JPS60111146A (en) Electrochemical gas concentration meter
RU99113152A (en) SEALED NICKEL-CADIUM BATTERY
JPS5819475Y2 (en) oxygen concentration meter
JPS594452Y2 (en) Electrode for solid electrolyte fuel cells
JPH0656767U (en) Galvanic battery oxygen sensor
FR2221822A1 (en) Separating membrane for fuel cell - with chemically resistant properties and improved ionic exchange between electrodes
JPH05322837A (en) Galvanic cell oxygen sensor
JP2532334B2 (en) Galvanic battery gas sensor
EP0065402A3 (en) Polarographic oxygen sensor
WO2014174303A1 (en) Fuel cell
JPS60181290A (en) Production of joined diaphragm-catalyst electrode body for oxygen sensor
KR840000671A (en) Ion-exchange membrane electrolysis device and preparation method thereof
JPS6216468U (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees