JPH04186203A - Optical fiber cable - Google Patents

Optical fiber cable

Info

Publication number
JPH04186203A
JPH04186203A JP2316346A JP31634690A JPH04186203A JP H04186203 A JPH04186203 A JP H04186203A JP 2316346 A JP2316346 A JP 2316346A JP 31634690 A JP31634690 A JP 31634690A JP H04186203 A JPH04186203 A JP H04186203A
Authority
JP
Japan
Prior art keywords
optical fiber
resin
coating layer
secondary coating
fiber cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2316346A
Other languages
Japanese (ja)
Other versions
JP2789057B2 (en
Inventor
Yukio Morita
森田 幸男
Katsuhisa Kimura
勝久 木村
Koji Tsuji
辻 貢司
Takashi Kaneko
隆 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2316346A priority Critical patent/JP2789057B2/en
Publication of JPH04186203A publication Critical patent/JPH04186203A/en
Application granted granted Critical
Publication of JP2789057B2 publication Critical patent/JP2789057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain sufficient expansion ratio by using a material having a prescribed melt index as base resin to carry out foaming on foam polyethylene resin formed as a secondary coating layer forming the outermost layer. CONSTITUTION:In an optical fiber cable, five optical fiber conductors 2... and a single tearing cord 3 are arranged around an interposed cord 1 in a pentagram, and this is coated with a hard and highly elastic primary coating layer 4 such as polyamide resin, and a secondary coating layer 5 as the outermost layer is formed on top of it. The optical fiber conductors 2 are constituted, for example, of a glass part having diameter of 0.25mm and consisting of a core and a clad and an ultraviolet hardening type resin layer to coat this, and the secondary coating layer 5 is formed, for example, of foam polyethylene resin, and polyethylene having melt index of 5 - 20g/10 minutes is used as base resin of a foaming material. Thereby, sheath tearing is not occurred in the case of foaming, and further, sufficient expansion ratio can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は光ファイバケーブルに関する。[Detailed description of the invention] [Industrial application field] FIELD OF THE INVENTION The present invention relates to fiber optic cables.

〔従来の技術と発明が解決しようとする課題]ヨーロン
バ特許公開第108590号公報には、ダクト内に空気
を吹き込み、光ファイバケーブルをこのダクトに沿って
空気圧送にて送り込み布設する方法が記載されている。
[Prior Art and Problems to be Solved by the Invention] Yoromba Patent Publication No. 108590 describes a method of blowing air into a duct and feeding and laying an optical fiber cable along the duct by air pressure. ing.

また、特開昭64−88411号公報には、このような
空気圧送に使用する光ファイバケーブルが提案されてい
るが、最外層の二次被覆(外側ンース)を低密度として
発泡樹脂を用いる技術が開示されている。
In addition, Japanese Patent Application Laid-Open No. 64-88411 proposes an optical fiber cable used for such pneumatic transport, but a technology using foamed resin with a low density secondary coating (outer sheath) as the outermost layer is proposed. is disclosed.

しかし、本発明者等が多くの実験を行ってみたが、単に
発泡樹脂を用いただけでは、数100m乃至それ以上の
長いダクト□管状進行路□に圧送することは至難であり
、特に従来の材質では圧送挿入速度□「線速」と呼ぶこ
ともある□が極めて低く、能率は良くないことが分かっ
た。
However, the inventors of the present invention have conducted many experiments and found that it is extremely difficult to pump the material into a long duct □ tubular passage □ that is several hundred meters or more simply by using foamed resin, especially when using conventional materials. It was found that the pressure-feed insertion speed □, also called "linear speed" □, was extremely low and the efficiency was not good.

また、従来、発泡材料のベースレジンとしてメルトイン
デックスが2g/10分以下のものを使用して発泡樹脂
を形成するのが一般的であったが、このような従来のベ
ースレジンでは発泡押出時に二次被覆が亀裂・切損する
という問題がある。
Furthermore, in the past, it was common to form foamed resins using a base resin with a melt index of 2 g/10 minutes or less as a base resin for foaming materials, but with such conventional base resins, there was a There is a problem that the coating may crack or break.

本発明はこのような点に鑑みてなされた発明であって、
二次被覆の亀裂・切損□いわゆるシース切れ□を生ずる
ことを防止し、かつ、所望の十分な発泡度が得られると
共に、圧送挿入速度(線速)が高く、高能率に長い管状
進行路内へ通線出来る光ファイバケーブルを提供するこ
とを目的とする。
The present invention has been made in view of these points, and includes:
It prevents cracks and breaks in the secondary coating □ and so-called sheath cuts □, provides the desired sufficient degree of foaming, has a high pumping insertion speed (linear speed), and has a long tubular path with high efficiency. The purpose of the present invention is to provide an optical fiber cable that can be routed into the interior.

〔課題を解決するための手段〕 本発明は、空気圧送により管状進行路内へ挿入布設する
光ファイバケーブルに於て、最外層を成す二次被覆層が
、発泡ポリエチレン樹脂から形成されると共に、該発泡
ポリエチレン樹脂を発泡成形するベースレジンのメルト
インデックスが、5〜20 g /10分のものを用い
ている。
[Means for Solving the Problems] The present invention provides an optical fiber cable that is inserted and installed into a tubular traveling path by air pressure, in which a secondary coating layer forming the outermost layer is formed from a foamed polyethylene resin, and The base resin used for foam molding the foamed polyethylene resin has a melt index of 5 to 20 g/10 min.

また、最外層を成す二次被覆層を発泡樹脂にて形成する
と共に、該発泡樹脂の泡の平均径を100〜250μm
に設定し、かつ、該発泡樹脂の表面荒さRmaxを10
0 μm以上に設定した。
In addition, the secondary coating layer constituting the outermost layer is formed of a foamed resin, and the average diameter of the bubbles of the foamed resin is 100 to 250 μm.
and set the surface roughness Rmax of the foamed resin to 10.
It was set to 0 μm or more.

さらに、最外層を成す二次被覆層は、発泡材料のベース
レジンのメルトインデックスが5〜20g710分の発
泡ポリエチレン樹脂から、形成され、該発泡ポリエチレ
ン樹脂の泡の平均径を100〜250μmに設定し、か
つ、該発泡ポリエチレン樹脂の表面荒さRs+axを1
00μm以上に設定した。
Furthermore, the secondary coating layer constituting the outermost layer is formed from a foamed polyethylene resin having a melt index of 5 to 20 g710 minutes for the base resin of the foam material, and the average diameter of the foamed polyethylene resin bubbles is set to 100 to 250 μm. , and the surface roughness Rs+ax of the foamed polyethylene resin is 1
It was set to 00 μm or more.

〔作 用〕[For production]

発泡材料のメルトインデックスが、(従来の2g710
分に比較して)十分に大きな値に設定したから、発泡成
形時に、二次被覆の部分的切損(シース切れ)を生しな
い。
The melt index of the foam material is (conventional 2g710)
Since the value is set to a sufficiently large value (compared to 10 minutes), partial breakage of the secondary coating (sheath breakage) will not occur during foam molding.

しかも、空気圧送のためには密度を下げる必要上から十
分な発泡度を要求されるが、メルトインデックスを20
 g /10分以下とすることで、40%以上の発泡度
が得られる。
Moreover, for pneumatic conveyance, a sufficient foaming degree is required due to the need to lower the density, but the melt index is 20.
g/10 minutes or less, a foaming degree of 40% or more can be obtained.

また、二次被覆の中の泡の平均径が100〜250μm
と極めて大きく、表面荒さRtaaxが10011m以
上として、凹凸が著しく表れており、この最外層表面の
著しい凹凸の存在により、空気圧送時、光ファイバケー
ブル表面と、空気流との!擦が著しく増加し、空気流か
ら付与される推進力は増大して、従来不可能であった長
い管状進行路内へ、従来よりも高速で通線可能となる。
In addition, the average diameter of bubbles in the secondary coating is 100 to 250 μm.
It is extremely large, and the surface roughness Rtaax is 10011 m or more, which shows significant unevenness. Due to the presence of significant unevenness on the surface of the outermost layer, during air pressure feeding, the optical fiber cable surface and the air flow! The friction increases significantly and the propulsion force provided by the airflow increases, making it possible to route the wire into long tubular passages at higher speeds than previously possible.

さらに、上記最外層表面の著しい凹凸によって、空気圧
送時、境界層が発生して、管状進行路内面との摩擦は著
しく減少する。
Further, due to the significant irregularities on the surface of the outermost layer, a boundary layer is generated during air pressure feeding, and the friction with the inner surface of the tubular traveling path is significantly reduced.

〔実施例] 以下、実施例について説明すると、第1図に於て、光フ
ァイバケーブルの一実施例の拡大断面図を示し、介在ひ
も1の廻りに5本の光フアイバ心線2・・・と1本の引
裂ひも3を星形に配置し、これに、ポリアミド系樹脂等
の硬くかつ高弾性の一次被覆層4にて被覆する。この上
に最外層を成す二次被覆層5を形成する。
[Example] An example will be described below. FIG. 1 shows an enlarged sectional view of an example of an optical fiber cable, in which five optical fiber core wires 2... and one tear string 3 are arranged in a star shape and covered with a hard and highly elastic primary coating layer 4 made of polyamide resin or the like. A secondary coating layer 5 serving as the outermost layer is formed thereon.

光フアイバ心線2は、例えば0.25m+直径として、
コアとクランドからなるガラス部と、これを被覆する紫
外線硬化型樹脂の層から構成される。例えば、−次被覆
層4と二次被覆層5の外径寸法を各々、1m、2mとす
る。なお、介在ひも1を光フアイバ心線2に置換えるこ
とも自由である。
The optical fiber core wire 2 is, for example, 0.25 m + diameter,
It consists of a glass part consisting of a core and a gland, and a layer of ultraviolet curing resin covering this part. For example, the outer diameter dimensions of the secondary coating layer 4 and the secondary coating layer 5 are 1 m and 2 m, respectively. Note that it is also possible to replace the intervening string 1 with the optical fiber core wire 2.

しかして、二次被覆層5は、例えば、発泡ポリエチレン
樹脂から形成されており、発泡材料のベースレジンとし
てメルトインデックスが5〜20g710分のポリエチ
レンを使用する。
The secondary coating layer 5 is made of, for example, a foamed polyethylene resin, and polyethylene having a melt index of 5 to 20g710 is used as the base resin of the foamed material.

さらに具体的には、アブジカルボンアミドを1.0%含
む上記発泡材料を、30m+φの押出機を用いて、(第
1図の光フアイバ心線2・・・等と一次被覆層4の上か
ら、)発泡押出を行った。成形速度は10■/分であっ
た。
More specifically, the foamed material containing 1.0% of abdicarbonamide was heated using a 30 m + φ extruder (from above the optical fiber core 2 . . . etc. in Fig. 1 and the primary coating layer 4). ,) Foam extrusion was performed. The molding speed was 10/min.

上記範囲のメルトインデックスよりも小さい値のもの及
び大きい値のものを含めて、上記条件で実際に二次被覆
層5を形成した時の、亀裂・切損(シース切れ)のを無
、及び、発泡度を、第1表に示す。但し、−次・二次被
覆層4,5の外径寸法を各々1■、2■に選定した。
No cracking or breakage (sheath breakage) when the secondary coating layer 5 is actually formed under the above conditions, including those with melt index values smaller and larger than the above range, and The degree of foaming is shown in Table 1. However, the outer diameter dimensions of the negative and secondary coating layers 4 and 5 were selected to be 1 inch and 2 inch, respectively.

(以下余白) 第1表 この第1表から次のことが分かる。即ち、ベースレジン
のメルトインデックスが0.3. 2では、製造時にシ
ース切れを発生し、また、メルトインデックスが30で
は、空気圧送用光ファイバケーブルとして十分な発泡度
□40%以上□が得られない。そしてメルトインデック
スが9の場合、最も好適な結果となることが分かる。
(Left below) Table 1 The following can be seen from Table 1. That is, the melt index of the base resin is 0.3. In No. 2, sheath breakage occurs during manufacture, and in addition, with a melt index of 30, a foaming degree of □40% or more cannot be obtained, which is sufficient for use as an optical fiber cable for pneumatic feeding. It can be seen that when the melt index is 9, the most suitable results are obtained.

結局、メルトインデックスが5〜20 g /10分の
ベースレジンを用いて発泡成形すれば、製造時のシース
切れが発生せず、所望の空気圧送に好適な発泡度が得ら
れることが分かった。
In the end, it was found that if foam molding is carried out using a base resin with a melt index of 5 to 20 g/10 minutes, sheath breakage does not occur during production and a foaming degree suitable for desired pneumatic delivery can be obtained.

ところで、第1図でも明らかな如く、二次被覆層5内の
泡の粒径を極めて大きく形成する点及び表面荒さを著し
く粗面に形成する点が、本発明の特徴であり、泡の平均
径(基本径)を100〜250μmとすると共に、表面
荒さRmaxを100μm以上とする。
By the way, as is clear from FIG. 1, the characteristics of the present invention are that the particle size of the bubbles in the secondary coating layer 5 is extremely large and the surface roughness is extremely rough. The diameter (basic diameter) is 100 to 250 μm, and the surface roughness Rmax is 100 μm or more.

泡の基本径が異なる発泡剤を1.0%含み、メルトイン
デックスが10 g /10分のポリエチレンベースレ
ジンを、30閣φ押出機を用いて(前実施例と同様に)
−次被覆層4の上から発泡被覆(線速:Low/分)し
た複数種類の光ファイバケーブル(1)〜(■)□−次
・二次被覆層4,5の外径を各々1鵬52■に選定□に
ついて、圧送実験を行った結果を第2表に示す。圧送実
験は、直径1mに巻き取った、全長500 mで内径6
閣のポリエチレンバイブ□管状進行路□内へ、圧力5k
g/c+Ilの空気を送り込み、空気の流れに乗せて光
ファイバを送り出し、圧送挿入速度(線速)を計測した
。実験結果を第2表に示す。
A polyethylene base resin containing 1.0% of blowing agents with different basic bubble diameters and a melt index of 10 g/10 minutes was prepared using a 30 mm diameter extruder (same as in the previous example).
- Multiple types of optical fiber cables (1) to (■) covered with foam coating (line speed: Low/min) from above the secondary coating layer 4 - The outer diameter of the secondary coating layer 4 and 5 is 1 inch each. Table 2 shows the results of a pressure feeding experiment for □ selected in 52■. In the pressure-feeding experiment, the material was wound to a diameter of 1 m, with a total length of 500 m and an inner diameter of 6.
Inside the cabinet's polyethylene vibe □ tubular passage □, pressure 5k
Air of g/c+Il was sent in, the optical fiber was sent out along with the air flow, and the pressure insertion speed (linear speed) was measured. The experimental results are shown in Table 2.

第2表 この第2表から次のことが分かる。即ち、泡の平均径が
100μm未満の場合には、全く通線が出来ない(試料
l)か、又は、通線出来たとしても線速か低く実用性を
欠く(試料■)かの、いずれかの結果となる。つまり、
実用上は20m/分以上の線速か要望されると考えられ
るが、この線速か、泡の平均径100 μm未満では得
られない。
Table 2 The following can be seen from Table 2. In other words, if the average diameter of the bubbles is less than 100 μm, either the wire cannot be passed at all (sample 1), or even if it is possible to pass the wire, the wire speed is low and it is impractical (sample 2). The result is as follows. In other words,
In practice, it is thought that a linear velocity of 20 m/min or more is required, but this linear velocity cannot be achieved at a bubble average diameter of less than 100 μm.

また、泡の平均径が250μm以上では発泡押出時にシ
ース切れが発生し、製品不良となる(試料■)。他方、
泡の平均径が100〜250μmであったとしても、表
面荒さが100 μm以上にしないと所望の線速か得ら
れない(試料■)。
Furthermore, if the average diameter of the bubbles is 250 μm or more, sheath breakage occurs during foam extrusion, resulting in a product defect (sample ■). On the other hand,
Even if the average diameter of the bubbles is 100 to 250 μm, the desired linear velocity cannot be obtained unless the surface roughness is 100 μm or more (sample ①).

結局、試料IV、 V、 VI、■のように、泡の平均
径を100〜250μm、かつ、表面荒さRmaxを1
00μm以上に、設定することで、十分な通線特性(線
速)が得られる。
In the end, as in samples IV, V, VI, and
By setting the thickness to 00 μm or more, sufficient wire passing characteristics (wire speed) can be obtained.

なお、−次被覆層4の内部の光フアイバ心線2の本数の
増減は自由であると共に、その他の部材1.3の増減(
付加・省略)も自由である。また、二次被覆層5として
ボリュチレン以外の樹脂を用いることも自由である。
Note that the number of optical fiber cores 2 inside the -order coating layer 4 can be increased or decreased at will, and the number of other members 1.3 can be increased or decreased (
addition/omission) is also free. Furthermore, it is also possible to use resins other than volutelene as the secondary coating layer 5.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の構成により、発泡成形時のソース切れが
発生せず、さらに、十分な発泡度が得られる。
With the above-described structure, the present invention does not cause sauce breakage during foam molding, and furthermore, a sufficient degree of foaming can be obtained.

また、光ファイバケーブルの表面の凹凸が著しく多くか
つ大きいために、圧送空気との摩擦力が大となって、空
気流と共に走行し、通線速度が増加して、高能率に挿入
布設作業が出来る。あるいは従来は不可能であった一層
長い管状進入路内へ通線可能となった。また、表面の著
しい凹凸によって、空気圧送時に境界層が発生して、管
状進行路内面との摩擦が減少して、−層上記効果が増大
する。
In addition, since the surface of the optical fiber cable has many and large irregularities, the frictional force with the compressed air increases, causing the cable to travel with the airflow, increasing the wire threading speed and allowing for highly efficient insertion and installation work. I can do it. Alternatively, it has become possible to route the wire into a longer tubular approach path, which was previously impossible. In addition, due to the significant unevenness of the surface, a boundary layer is generated during air pressure feeding, reducing friction with the inner surface of the tubular traveling path and increasing the above-mentioned effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す拡大横断面図である。 2・・・光フアイバ心線、5・・・二次被覆層。 特 許 出 願 人   三菱を線工業株式会社第1図 5:二ンコ フ 〕 U&檀層 −4ニー次摺」1層 FIG. 1 is an enlarged cross-sectional view showing one embodiment of the present invention. 2... Optical fiber core wire, 5... Secondary coating layer. Patent applicant: Mitsubishi Line Industry Co., Ltd. Figure 1 5: Ninko centre ] U & Dan layer -4 Knee Next Print” 1 layer

Claims (1)

【特許請求の範囲】 1、空気圧送により管状進行路内へ挿入布設する光ファ
イバケーブルに於て、最外層を成す二次被覆層が、発泡
ポリエチレン樹脂から形成されると共に、該発泡ポリエ
チレン樹脂を発泡成形するベースレジンのメルトインデ
ックスが、5〜20g/10分のものを用いたことを特
徴とする光ファイバケーブル。 2、空気圧送により管状進行路内へ挿入布設する光ファ
イバケーブルに於て、最外層を成す二次被覆層を発泡樹
脂にて形成すると共に、該発泡樹脂の泡の平均径を10
0〜250μmに設定し、かつ、該発泡樹脂の表面荒さ
Rmaxを100μm以上に設定したことを特徴とする
光ファイバケーブル。 3、空気圧送により管状進行路内へ挿入布設する光ファ
イバケーブルに於て、最外層を成す二次被覆層は、発泡
材料のベースレジンのメルトインデックスが5〜20g
/10分の発泡ポリエチレン樹脂から、形成され、該発
泡ポリエチレン樹脂の泡の平均径を100〜250μm
に設定し、かつ、該発泡ポリエチレン樹脂の表面荒さR
maxを100μm以上に設定したことを特徴とする光
ファイバケーブル。
[Claims] 1. In an optical fiber cable inserted and installed into a tubular traveling path by pneumatic feeding, the outermost secondary coating layer is formed of a foamed polyethylene resin, and the foamed polyethylene resin is An optical fiber cable characterized in that a base resin to be foam-molded has a melt index of 5 to 20 g/10 minutes. 2. In an optical fiber cable that is inserted into a tubular traveling path by pneumatic feeding, the outermost secondary coating layer is formed of foamed resin, and the average diameter of the bubbles of the foamed resin is 10.
An optical fiber cable characterized in that the surface roughness Rmax of the foamed resin is set to 0 to 250 μm, and the surface roughness Rmax of the foamed resin is set to 100 μm or more. 3. In an optical fiber cable that is inserted into a tubular traveling path by pneumatic feeding, the outermost secondary coating layer has a melt index of the foam base resin of 5 to 20 g.
/10 minutes from foamed polyethylene resin, and the average diameter of the foamed polyethylene resin bubbles is 100 to 250 μm.
and the surface roughness R of the foamed polyethylene resin
An optical fiber cable characterized in that the max is set to 100 μm or more.
JP2316346A 1990-11-20 1990-11-20 Fiber optic cable Expired - Fee Related JP2789057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2316346A JP2789057B2 (en) 1990-11-20 1990-11-20 Fiber optic cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316346A JP2789057B2 (en) 1990-11-20 1990-11-20 Fiber optic cable

Publications (2)

Publication Number Publication Date
JPH04186203A true JPH04186203A (en) 1992-07-03
JP2789057B2 JP2789057B2 (en) 1998-08-20

Family

ID=18076090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316346A Expired - Fee Related JP2789057B2 (en) 1990-11-20 1990-11-20 Fiber optic cable

Country Status (1)

Country Link
JP (1) JP2789057B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874262A2 (en) * 1997-04-24 1998-10-28 Alcatel Optical cable and method of manufacturing an optical cable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157307U (en) * 1988-04-21 1989-10-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157307U (en) * 1988-04-21 1989-10-30

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874262A2 (en) * 1997-04-24 1998-10-28 Alcatel Optical cable and method of manufacturing an optical cable
EP0874262A3 (en) * 1997-04-24 1999-11-17 Alcatel Optical cable and method of manufacturing an optical cable

Also Published As

Publication number Publication date
JP2789057B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
US5557703A (en) Optical fibres for blown installation
KR100894073B1 (en) Signal transmitting cable
US4927585A (en) Process for producing highly oriented resin-made reinforcing member
JP3061390B2 (en) Transmission line duct
KR970005421B1 (en) Optical fiber manufacturing apparatus and method
US5467968A (en) Transmission line installation
WO1984000216A1 (en) Coated optical fiber
US7450805B2 (en) Optical fiber unit for air blown installation and manufacturing method thereof
US20080037940A1 (en) Tube for Air Blown Installation and Tube Cable Using the Same
JPH04186203A (en) Optical fiber cable
JPH04186206A (en) Optical fiber cable
JPH04186204A (en) Optical fiber cable
JP3288119B2 (en) Optical fiber unit
JPH04186205A (en) Optical fiber cable
AU766130B2 (en) Optical fibre cable manufacture
JP3083368B2 (en) Optical fiber pumping method
JP4943017B2 (en) Resin coating apparatus and coating method for optical fiber
EP1577691A1 (en) Improved optical fiber cable coatings
JPH09178992A (en) Optical fiber unit for air shoot and production of the same
JP2006178086A (en) Optical fiber cord and manufacturing method thereof
KR100423236B1 (en) A High Speed Drawing Type Coating Device For An Optical Fiber
KR200310315Y1 (en) Optical fiber unit for air blown installation and apparatus for manufacturing the same
JP3540535B2 (en) Optical fiber unit
JPH09138331A (en) Coated optical fiber for pneumatic feeding and its sorting method
JPH07128559A (en) Pipe for wire passing and optical fiber cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees