JPH04185233A - Aerogenerator facility - Google Patents

Aerogenerator facility

Info

Publication number
JPH04185233A
JPH04185233A JP2311412A JP31141290A JPH04185233A JP H04185233 A JPH04185233 A JP H04185233A JP 2311412 A JP2311412 A JP 2311412A JP 31141290 A JP31141290 A JP 31141290A JP H04185233 A JPH04185233 A JP H04185233A
Authority
JP
Japan
Prior art keywords
output
generator
wind power
motor
flywheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2311412A
Other languages
Japanese (ja)
Inventor
Toshinobu Yamamoto
山本 俊伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2311412A priority Critical patent/JPH04185233A/en
Publication of JPH04185233A publication Critical patent/JPH04185233A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To smooth the change of output in variable output operation by providing a flywheel generator/motor, which serves as a motor when the output from an aerogenerator is large and which serves as a generator driven by the kinetic energy stored in the flywheel when the aerogenerator output is small. CONSTITUTION:When a flywheel generator/motor 4A is operated as a generator with Pfw positive, kinetic energy stored in inertia is converted into electrical energy and the rotational speed decreases. When the flywheel generator-motor 4A is operated as a motor with Pfw negative, input from the system is converted into accelerating force to increase the rotational speed and the face is stored as kinetic energy. The flywheel generator-motor 4A thus stores up and transmits the change of output Pg as the kinetic energy of the flywheel and smooths the change of the electric power.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電力系統に接続されて運転される風力発電設備
にかかり、特に小規模の電力系統に接続したときの電力
系統の周波数変動を小さくできる風力発電設備に関する
ものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to wind power generation equipment that is operated while being connected to an electric power system, and particularly relates to a wind power generation facility that is connected to a small-scale electric power system. This relates to wind power generation equipment that can reduce frequency fluctuations.

(従来の技術) 電力系統に接続して運転される風力発電設備の一般的な
構成を第4図に示す。
(Prior Art) FIG. 4 shows a general configuration of wind power generation equipment that is operated while being connected to an electric power system.

第4図において、電力系統1に並列用遮断器2を介して
接続された風力発電設備3は、風車3A、同期発電機3
B、速度発電機3C,風車制御装置3D、出力制御装置
3E、周波数置換装[3F、主変圧器3Gおよびフィル
タ3Hから構成されている。
In FIG. 4, the wind power generation equipment 3 connected to the power system 1 via the parallel circuit breaker 2 includes a wind turbine 3A, a synchronous generator 3
B. Consists of a speed generator 3C, a wind turbine control device 3D, an output control device 3E, a frequency replacement device [3F, a main transformer 3G, and a filter 3H.

風車3Aが風力を受けて回転すると、それに軸結合され
た同期発電機3Bおよび速度発電機3Cが回転し、同期
発電機3Bの回転数が所定の値になると同期発電機3B
に励磁が与えられて同期発電機3Bが電圧を発生し、さ
らに回転が上昇すると出力制御装置3Eが動作を開始し
、周波数置換装[3Fに出力信号が出され、周波数変換
装置3Fはその信号に応じて同期発電機3Bの電圧を電
力系統1の周波数に変換し、主変圧器3Gを通して電力
系統1に送り出す、なおフィルタ3Hは周波数変換装置
3Fによる電圧波形歪みを除去するだめに設けられてい
る。
When the wind turbine 3A rotates in response to wind power, the synchronous generator 3B and speed generator 3C that are shaft-coupled thereto rotate, and when the rotational speed of the synchronous generator 3B reaches a predetermined value, the synchronous generator 3B
Excitation is applied to the synchronous generator 3B, which generates a voltage. When the rotation further increases, the output control device 3E starts operating, and an output signal is output to the frequency conversion device [3F, and the frequency conversion device 3F receives the signal. The voltage of the synchronous generator 3B is converted to the frequency of the power grid 1 according to the frequency of the power grid 1, and is sent to the power grid 1 through the main transformer 3G.The filter 3H is provided to remove voltage waveform distortion caused by the frequency converter 3F. There is.

風力が弱い時は、風車制御袋W3Dは風車3Aが風力を
一番良く受ける状態に固定制御し、出力制御袋[3Eは
速度発電機3Cで得られた回転数信号に従い、回転数が
所定の範囲にあるとき回転数に応じた出力信号を周波数
変換装置3Fに出力する。この状態では、風力発電設備
3から電力系a1に送り出される電力(出力)は全く風
任せとなり、いわゆる可変出力運転となる。
When the wind power is weak, the wind turbine control bag W3D fixedly controls the wind turbine 3A so that it receives the best wind power, and the output control bag [3E controls the rotation speed to a predetermined speed according to the rotation speed signal obtained from the speed generator 3C. When within the range, an output signal corresponding to the rotational speed is output to the frequency converter 3F. In this state, the electric power (output) sent from the wind power generation equipment 3 to the power system a1 is completely left to the wind, resulting in so-called variable output operation.

風力が強くて所定の回転数および定格出力に到達すると
、出力制御装置3Eは出力信号を定格値に保持し、風車
制御装置3Dは風車3Aの風力を制御して回転数が異常
に上昇しないようにし、このため風力が強い場合には風
力発電設備3から電力系統1に送り出される電力は一定
となり、いわゆる一定出力運転となる。従って従来の風
力発電設備では、可変出力運転の範囲を広くするほど、
発電に利用できる風力が多くなる。
When the wind power is strong and reaches a predetermined rotation speed and rated output, the output control device 3E maintains the output signal at the rated value, and the wind turbine control device 3D controls the wind power of the wind turbine 3A to prevent the rotation speed from increasing abnormally. Therefore, when the wind power is strong, the power sent from the wind power generation equipment 3 to the power grid 1 is constant, resulting in so-called constant output operation. Therefore, in conventional wind power generation equipment, the wider the range of variable output operation, the more
More wind power will be available for power generation.

(発明が解決しようとする課題) 一般に、風力発電設備を可変出力運転すると。(Problem to be solved by the invention) Generally, when wind power generation equipment is operated with variable output.

電力系統の総発電電力が変動するので電力系統の周波数
が変化する。この周波数変動はこその電力系統の出力制
御可能な他の発電機の調整で抑制されるが、風力発電設
備の電力系統の総発電電力に占める割合が大きくかつそ
の出力変化が速い場合には、他の発電機の制御で所望の
周波数変動に抑制することができない。
As the total power generated by the power system changes, the frequency of the power system changes. This frequency fluctuation can be suppressed by adjusting other generators that can control the output of the power system, but if the wind power generation equipment accounts for a large proportion of the total power generated by the power system and its output changes rapidly, It is not possible to suppress the frequency fluctuation to the desired level by controlling other generators.

このような不都合を軽減する方法として、風車の特性改
善や(風車十発電機)の慣性を大きくして風力変化に対
する出力の変化を遅くすることが考えられるが、そのた
めには風力の利用率や風車発電機鉄塔の強度の経済性な
どを犠牲にしなければならないという問題がある。
One possible way to alleviate this inconvenience is to improve the characteristics of the wind turbine or increase the inertia of the wind turbine generator to slow down the change in output in response to changes in wind power. There is a problem in that the strength and economy of the wind turbine generator tower must be sacrificed.

本発明は、風力発電設備本体に特別な変更を加えること
なく、出力変動を補償する設備を追加するだけで、可変
出力運転時の出力変動を平滑にして電力系統の周波数変
動を緩和できる。特に小規模の電力系統に適した風力発
電設備を提供することを目的としている。
The present invention can smooth out output fluctuations during variable output operation and alleviate frequency fluctuations in the power system by simply adding equipment to compensate for output fluctuations without making any special changes to the wind power generation equipment itself. The aim is to provide wind power generation equipment particularly suitable for small-scale power systems.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段と作用) 本発明は、従来の風力発電設備にフライホイール発電電
動機を並列接続し、風力発電設備出力の変動分でそのフ
ライホイール発電電動機の入出力を制御するものであり
、風力発電設備本体の出力が増加しているときはフライ
ホイール発電電動機を電動機方向に制御し、風力発電設
備本体の出力が減少しているときはフライホイール発電
電動機を発電機方向に制御し、これによってフライホイ
ール発電電動機を含む風力発電設備の出力変動を緩やか
にして風力発電設備の接続される電力系統の周波数変動
を低減させるものである。
(Means and effects for solving the problems) The present invention connects a flywheel generator motor in parallel to conventional wind power generation equipment, and controls the input and output of the flywheel generator motor based on fluctuations in the output of the wind power generation equipment. When the output of the wind power generation equipment is increasing, the flywheel generator motor is controlled in the direction of the electric motor, and when the output of the wind power generation equipment is decreasing, the flywheel generator motor is controlled in the direction of the generator. As a result, the output fluctuations of the wind power generation equipment including the flywheel generator motor are moderated, and the frequency fluctuations of the power system to which the wind power generation equipment is connected are reduced.

(実施例) 本発明の一実施例を第1図に示す。第1図は従来の第4
図に対して破線で囲んだ出力変動緩慢化設備4が追加さ
れている。
(Example) An example of the present invention is shown in FIG. Figure 1 shows the conventional 4th
Output fluctuation slowing equipment 4, which is surrounded by a broken line, has been added to the figure.

出力変動緩慢化設備4は、慣性の大きい巻線型誘導機4
A、巻線型誘導機4Aの二次電流を制御してその入出力
電力を制御する入出力制御装置4B、 巻線型誘導機4
Aの二次電流制御に必要な回転子位置Sr’Vを検出す
るレゾルバ4C1巻線型誘導機4Aの入出力電力目標値
Prefを入出力制御装置4Bに出力する目標値制御装
置4D、計器用電圧変成器PTIおよび計器用電流変成
器CT1から電圧および電流を入力して風力発電設備本
体3の出力pgを検出し、対応する出力信号pgdを出
力する電力検出器4Eを備えている。
The output fluctuation slowing equipment 4 is a wire-wound induction motor 4 with large inertia.
A, input/output control device 4B that controls the secondary current of the wire-wound induction machine 4A and its input/output power, wire-wound induction machine 4
Resolver 4C that detects the rotor position Sr'V required for secondary current control of A, target value control device 4D that outputs the input/output power target value Pref of the wound induction machine 4A to the input/output control device 4B, instrument voltage A power detector 4E is provided which receives voltage and current from the transformer PTI and the instrument current transformer CT1, detects the output pg of the wind power generation equipment main body 3, and outputs a corresponding output signal pgd.

巻線型誘導機4Aは慣性が大きく、かつ二次電流制御に
よって発電機としても電動機としても動作できる一種の
フライホイール発電電動機として構成されている。
The wound induction machine 4A has a large inertia and is configured as a type of flywheel generator-motor that can operate both as a generator and as an electric motor by controlling the secondary current.

また第2図は目標値制御装置4Dの構成の一例を示すも
ので、4D2は電力信号Pgdを入力してその不完全微
分値PKdを得る不完全微分回路。
Further, FIG. 2 shows an example of the configuration of the target value control device 4D, in which 4D2 is an imperfect differentiation circuit that inputs the power signal Pgd and obtains its incomplete differentiation value PKd.

4D4は発電電動機4Aの回転速度の目標値S ref
を発生する速度目標値発生回路である。またS fvg
は発電電動機4Aの回転速度信号であり。
4D4 is the target value S ref of the rotation speed of the generator motor 4A
This is a speed target value generation circuit that generates a speed target value. Also S fvg
is the rotational speed signal of the generator motor 4A.

これは入出力制御装置4Bの動作過程で回転子位置信号
SFVを変換することによって得られる。また4D5は
速度目標値S refと回転速度信号S firgとの
偏差を求める加算回路、406はその速度偏差信号の大
きさを制限するリミット回路であり。
This is obtained by converting the rotor position signal SFV during the operation process of the input/output control device 4B. Further, 4D5 is an addition circuit that calculates the deviation between the speed target value S ref and the rotational speed signal S filg, and 406 is a limit circuit that limits the magnitude of the speed deviation signal.

リミットされた速度偏差信号がPrsとなる。The limited speed deviation signal becomes Prs.

41)3は信号Pgdと信号prsを図示の極性で合成
する加算回路であり、合成された信号が発電電動機4A
の入出力電力の目標値P refとなる。
41) 3 is an adder circuit that combines the signal Pgd and the signal prs with the polarity shown, and the combined signal is applied to the generator motor 4A.
becomes the target value P ref of the input/output power.

また4D7は出力pgが1−、限に到達したことを検出
する電力り限検出回路、4D9は出力Ptが下限に到達
したことを検出する電力下限回路である。また4丁)8
および4D10はタイマであり、電力上限検出回路4r
〕7および電力下限検出回路4■)9の動作が継続しま
た時に、信号SuPおよび信号sdいを発生する。
Further, 4D7 is a power limit detection circuit that detects that the output pg has reached the 1- limit, and 4D9 is a power lower limit circuit that detects that the output Pt has reached the lower limit. Also 4 guns) 8
and 4D10 is a timer, and power upper limit detection circuit 4r
] 7 and the power lower limit detection circuit 4) 9 continue to operate and generate the signal SuP and the signal sd.

信号SuPおよび信号Sdvは速度目標値発生回路4D
4に入力され、信号Supが来ると速度目標値発生回路
4D4は速度目標値5refを発電電動機4Aの許容速
度範囲の中央より上限側の適切な値にゆっくりと変更し
、信号Sdwが来ると速度目標値S refを許容速度
範囲の中央より下限側の適切な値にゆっくりと変更し、
いずれの信号も来てない時には速度目標値5refを許
容速度範囲のほぼ中央にゆっくりと変更するように構成
されている。
The signal SuP and the signal Sdv are the speed target value generation circuit 4D.
4, and when the signal Sup comes, the speed target value generating circuit 4D4 slowly changes the speed target value 5ref to an appropriate value on the upper limit side from the center of the allowable speed range of the generator motor 4A, and when the signal Sdw comes, the speed Slowly change the target value S ref to an appropriate value on the lower limit side of the center of the allowable speed range,
When no signal is received, the speed target value 5ref is slowly changed to approximately the center of the allowable speed range.

風力発電設備本体2が可変出力運転している状態では出
力Pにが変動し、出力P客に対応した信号Pにdも同じ
ように変動する。信号pgdを不完全微分回路41)2
を通すとその不完全微分値pgdが得られ、二こで信号
P、、8を無視するとPref=−Pgdとなる。
When the wind power generation equipment main body 2 is in variable output operation, the output P fluctuates, and the signal P corresponding to the output P customer also fluctuates in the same way. Incomplete differentiator circuit 41)2 for signal pgd
When passed through, the incomplete differential value pgd is obtained, and if the signals P, . . . 8 are ignored at two points, Pref=-Pgd.

従って、信号Prefを目標値とし7て制御されるフラ
イホイール発電電動機4Aの入出力電力PfVは(Pg
ci)になり、風力発電設備全体から電力系統1に出力
される電力Pt、は、Pt、=Pgdとなる。
Therefore, the input/output power PfV of the flywheel generator motor 4A controlled with the signal Pref as the target value 7 is (Pg
ci), and the power Pt output from the entire wind power generation facility to the power grid 1 is Pt,=Pgd.

簡単のために出力Pgが矩形波的に変動しているとする
と、各部の信号および電力は第3図に示すように変化す
る。
For the sake of simplicity, assuming that the output Pg fluctuates like a rectangular wave, the signals and power of each part change as shown in FIG.

実際には風力発電設備本体2にも慣性があり、かつ出力
制御装[3Eも風車系の回転数変動の許される範囲で出
力Pgが急変しないよう配慮した制御が行オ)れている
ので、出力Pgの変化は完全な矩形波とはならず、少し
緩やかな変動となる。
In reality, the wind power generation equipment main body 2 also has inertia, and the output control device [3E is also controlled to prevent sudden changes in the output Pg within the permissible range of rotational speed fluctuations of the wind turbine system. The change in the output Pg does not become a perfect rectangular wave, but a slightly gentle fluctuation.

出力Pgが矩形波的に変動していると、信号(Pgd)
は出力Pにの立ち」二がりのとき負方向に急変し、出力
Pgの立ち下がりのとき正方向に急変し、出力Pにが一
定のとき減衰する信号となる。電力Pfwは、イコ号(
Pgd)に等しくなるように制御されているので、電力
Pfwと出力Pgとの和である電力PtJは図示のよう
に出力Pgよりその急変部が平滑化された波形となる。
When the output Pg fluctuates like a rectangular wave, the signal (Pgd)
is a signal that suddenly changes in the negative direction when the output P is rising, changes suddenly in the positive direction when the output Pg is falling, and attenuates when the output P is constant. Electric power Pfw is Iko (
Since the power PtJ, which is the sum of the power Pfw and the output Pg, is controlled to be equal to the power Pgd), the power PtJ, which is the sum of the power Pfw and the output Pg, has a waveform in which the abrupt changes are smoother than the output Pg, as shown in the figure.

このように制御された場合のフライホイール発電電動機
4A自体の動作は下記の通りとなる。すなわち前述のよ
うにフライホイール発電電動機4Aは慣性の大きい巻線
型誘導機であり、電力系統1の周波数と巻線型誘導機の
回転速度との差の周波数の二次電流を二次巻線に供給す
ることにより、機器の能力から決まる許容範囲内の任意
の回転速度で運転できる。さらに二次電流の位相を変化
させることによって巻線型誘導機を発電機状態(Pfw
正、電力の流れは第1図の矢印方向)にも、電動機状態
(Pry負、電力の流れは第1図の矢印の逆方向)にも
制御できる。
The operation of the flywheel generator motor 4A itself when controlled in this manner is as follows. That is, as mentioned above, the flywheel generator motor 4A is a wound type induction machine with large inertia, and supplies a secondary current with a frequency equal to the difference between the frequency of the power system 1 and the rotational speed of the wound type induction machine to the secondary winding. This allows operation at any rotational speed within the allowable range determined by the equipment's capabilities. Furthermore, by changing the phase of the secondary current, the wire-wound induction machine is turned into a generator state (Pfw
It is possible to control the motor state (positive, the power flow is in the direction of the arrow in FIG. 1) or the motor state (negative, the power flow is in the opposite direction of the arrow in FIG. 1).

発電機状態(Pfw正)の運転では、慣性に蓄えられた
運動エネルギが電気エネルギに変換されて回転速度は低
下して行き、電動機状態(P fw負)の運転では、系
統からの入力が加速力に変換されて回転速度が上昇し、
運動エネルギとして蓄えられる。このようにフライホイ
ール発電電動機4Aは、出力pgの変動をフライホイー
ル(回転体全体の慣性)の運動エネルギとして蓄えたり
放出したりして電力PtJの変化を平滑化し、発電電動
機4Aの回転速度は電力の出し入れに応じて変動する。
When operating in a generator state (Pfw positive), the kinetic energy stored in the inertia is converted into electrical energy and the rotational speed decreases, and when operating in a motor state (Pfw negative), the input from the grid accelerates. It is converted into force and the rotational speed increases,
Stored as kinetic energy. In this way, the flywheel generator-motor 4A smoothes changes in the electric power PtJ by storing and releasing fluctuations in the output pg as kinetic energy of the flywheel (inertia of the entire rotating body), and the rotational speed of the generator-motor 4A is It fluctuates depending on the input and output of electricity.

フライホイール発電電動機4Aの回転速度は許容範囲内
になければならず、許容上限速度になればもはや電動機
を継続して加速できず、逆に許容下限速度になればもは
や発電機運転を継続して減速できないので、このような
運転限界に達したときの動作制限機能を入出力制御装置
4Bに持たせである。
The rotational speed of the flywheel generator motor 4A must be within a permissible range; if the permissible upper limit speed is reached, the motor cannot continue to accelerate; on the other hand, if the permissible lower limit speed is reached, the generator operation can no longer be continued. Since deceleration is not possible, the input/output control device 4B is required to have an operation restriction function when such an operating limit is reached.

また目標値制御装置t4Dの信号P9は5発電電動機4
Aがその許容速度の限界に達して入出力制御装置4Bで
動作が制限され、電力ptxの変化の平滑化動作が損な
われる機会のないようにするための信号である。
Further, the signal P9 of the target value control device t4D is
This is a signal to prevent the possibility that A reaches the limit of its permissible speed and the operation of the input/output control device 4B is restricted, thereby impairing the smoothing operation of changes in power ptx.

前述のように風力発電設備本体2が可変出力運転してい
る場合の速度目標値S refは発電電動機4Aの許容
範囲のほぼ中央にあり、この速度目標値S Pefと実
回転速度信号Sfvgとの偏差によって作られる信号p
rsは1発電電動機4Aの回転速度を許容速度範囲のほ
ぼ中央にするための電力目標値となり、従って電力目標
値P refには発電電動機4Aの回転速度を許容速度
範囲のほぼ中央にするための電力が含まれ、これによっ
て発電電動機4Aの回転速度を許容速度範囲のほぼ中央
に戻す力が作用する。
As mentioned above, the speed target value S ref when the wind power generation equipment main body 2 is operating with variable output is approximately in the center of the allowable range of the generator motor 4A, and the difference between this speed target value S Pef and the actual rotational speed signal Sfvg is The signal p produced by the deviation
rs is a power target value for bringing the rotational speed of 1 generator motor 4A to approximately the center of the allowable speed range, and therefore, the power target value P ref is a power target value for bringing the rotational speed of 1 generator motor 4A to approximately the center of the allowable speed range. Electric power is included, and this acts as a force to return the rotational speed of the generator motor 4A to approximately the center of the allowable speed range.

一定電力運転が設定時間(タイマ4D8で設定)継続し
たり、出力pgゼロの状態が設定時間(タイマ4D10
で設定)継続したりすると、速度目標値S refが変
更され、発電電動機4Aの回転速度は、次に発生する出
力Pgの変動を緩和するために必要な回転速度変化幅が
より大きくなる値に制御される。
Constant power operation continues for a set time (set by timer 4D8), or the state of zero output pg continues for a set time (set by timer 4D10).
), the speed target value S ref is changed, and the rotation speed of the generator motor 4A is set to a value that increases the rotation speed change range necessary to alleviate the next fluctuation in the output Pg. controlled.

上記の実施例によれば、風力発電設備本体2の出力が変
動しているとき、フライホイール発電電動機が風力発電
設備本体2の出力の変動を補償するように動作し、フラ
イホイール発電電動機を含む風力発電設備全体の出力を
緩慢化し、風力変動の激しい環境でも全体の出力変動が
緩慢化され。
According to the above embodiment, when the output of the wind power generation equipment main body 2 is fluctuating, the flywheel generator motor operates to compensate for the fluctuation in the output of the wind power generation equipment main body 2, and includes the flywheel generator motor. The output of the entire wind power generation facility is slowed down, and even in environments with severe wind fluctuations, the overall output fluctuation is slowed down.

これによって風力発電機の接続された電力系統の周波数
変動が抑制される。
This suppresses frequency fluctuations in the power system to which the wind power generator is connected.

上記の実施例では1発電機として同期機を使用し、その
出力を周波数変換装置を用いて電力系統に接続している
が、電力系統に接続することのできる風力発電設備本体
であれば、この方式に限定されるものではなく、例えば
、本実施例におけるフライホイール発電電動機と同様な
巻線型誘導機として構成してもよい。
In the above example, a synchronous machine is used as one generator, and its output is connected to the power grid using a frequency converter, but if the wind power generation equipment itself can be connected to the power grid, this The system is not limited to this type, and for example, it may be configured as a wound type induction machine similar to the flywheel generator motor in this embodiment.

また本実施例のフライホイール発電電動機は。Furthermore, the flywheel generator motor of this embodiment is as follows.

慣性の大きい巻線型誘導機を使用しているが、風力発電
設備本体の出力変動緩和に必要なエネルギを必要時間貯
蔵し自由にエネルギを出し入れできる装置であればよく
1例えば本実施例における風力発電設備本体と同様に同
期機と周波数変換装置とを組み合わせたものを用いるこ
とが可能であり、さらに超電導コイルと変換器を組み合
わせたエネルギ貯蔵システムS M E S (S u
per−conductiveMagnetic−co
il Energy 5tore)を使用することも可
能である。
Although a wound type induction machine with large inertia is used, any device that can store the energy necessary for mitigating the output fluctuations of the wind power generation equipment for the necessary time and freely input and output the energy may be used.For example, the wind power generation in this example Similar to the equipment itself, it is possible to use a combination of a synchronous machine and a frequency converter, and an energy storage system that combines a superconducting coil and a converter.
per-conductiveMagnetic-co
It is also possible to use il Energy 5tore).

また本実施例のフライホイール発電電動機の制御には、
その速度を所定の値に制御する機能を付加しているが、
フライホイール発電電動機の慣性や設置場所の風力変動
の性質や電力系統の規模によっては、その速度制御機能
は省略することも可能である。
In addition, to control the flywheel generator motor of this embodiment,
A function is added to control the speed to a predetermined value,
Depending on the inertia of the flywheel generator motor, the nature of wind fluctuations at the installation location, and the scale of the power system, the speed control function may be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、風力変動によって
出力が変動する風力発電設備の出力変動を緩慢化するこ
とができるので、風力発電設備を接続した電力系統の周
波数変動を大きくすることが少なくなり、小規模の電力
系統にも接続することができるようになる。
As explained above, according to the present invention, it is possible to slow down the output fluctuations of wind power generation equipment whose output fluctuates due to wind power fluctuations, so it is possible to reduce frequency fluctuations in the power system to which the wind power generation equipment is connected. This makes it possible to connect to small-scale power grids.

特に離島などの小規模電力系統では、発電設備はディー
ゼル発電機によるものが多く、その発電コストが高く、
かつ年間の平均風力が強くて風力発電登行うに適した場
所が多くあるので1本発明を適用した風力発電設備を設
置するとその経済的効果は極めて大きなものとなる。
Especially in small-scale power systems such as those on remote islands, most of the power generation equipment uses diesel generators, and the cost of generating electricity is high.
In addition, there are many places where the annual average wind power is strong and suitable for wind power generation, so installing wind power generation equipment to which the present invention is applied will have an extremely large economic effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図は第1
図における目標値制御装置4Dの詳細を示す構成図、第
3図は本発明の動作を示す説明図、第4図は従来の風力
発電設備の一例を示す系統図である。 1・・・電力系統、    2・・・並列用遮断器3・
・風力発電設備本体、 3A−・・風車3B・・・同期
発電機、  3C・・・速度発電機3D・・・風車制御
装置、3E・・・出力制御装置3F・・・周波数変換装
置、3G・・・主要変圧器3H・・・フィルタ、 4・
・・出力変動緩慢化設備4A・・・フライホイール発電
電動機 4B・入出力側′S装置、4C・・レゾルバ4D・目標
値制御装置、4D1・・・電力検出器4D2・・・不完
全微分回路 4D4・・・速度目標値発生回路 4D3.4D5・・加算回路 4D6・・リミット回路 4D7・・・電力上限検出回路 4D9・・電力下限検出回路 4D8.4D10・・タイマ 代理人 弁理士 猪股祥晃(ほか1名)第1図 第3図 第4図
Fig. 1 is a system diagram showing one embodiment of the present invention, and Fig. 2 is a system diagram showing an embodiment of the present invention.
FIG. 3 is an explanatory diagram showing the operation of the present invention, and FIG. 4 is a system diagram showing an example of conventional wind power generation equipment. 1... Power system, 2... Parallel circuit breaker 3.
・Wind power generation equipment main body, 3A-... Wind turbine 3B... Synchronous generator, 3C... Speed generator 3D... Wind turbine control device, 3E... Output control device 3F... Frequency conversion device, 3G ...Main transformer 3H...Filter, 4.
...Output fluctuation slowing equipment 4A...Flywheel generator motor 4B, input/output side'S device, 4C...Resolver 4D, target value control device, 4D1...Power detector 4D2...Incomplete differential circuit 4D4...Speed target value generation circuit 4D3.4D5...Addition circuit 4D6...Limit circuit 4D7...Power upper limit detection circuit 4D9...Power lower limit detection circuit 4D8.4D10...Timer agent Patent attorney Yoshiaki Inomata ( 1 other person) Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 一定周波数の電力系統に接続されて運転される風力発電
機を備えた風力発電設備において、上記風力発電機の出
力側に並列接続され、風力発電機の出力が大きいときは
電動機となりフライホィールを加速し運動エネルギとし
て蓄えると共に、風力発電機の出力が小さいときは発電
機となりフライホィールに蓄えられた運動エネルギを電
力として出力するフライホィール発電電動機を備えたこ
とを特徴とする風力発電設備。
In a wind power generation facility equipped with a wind power generator connected to a constant frequency power system and operated, the wind power generator is connected in parallel to the output side of the wind power generator, and when the output of the wind power generator is large, it becomes an electric motor and accelerates the flywheel. A wind power generation facility characterized by comprising a flywheel generator-motor that stores the kinetic energy as kinetic energy and also becomes a generator when the output of the wind power generator is small and outputs the kinetic energy stored in the flywheel as electric power.
JP2311412A 1990-11-19 1990-11-19 Aerogenerator facility Pending JPH04185233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2311412A JPH04185233A (en) 1990-11-19 1990-11-19 Aerogenerator facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2311412A JPH04185233A (en) 1990-11-19 1990-11-19 Aerogenerator facility

Publications (1)

Publication Number Publication Date
JPH04185233A true JPH04185233A (en) 1992-07-02

Family

ID=18016897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2311412A Pending JPH04185233A (en) 1990-11-19 1990-11-19 Aerogenerator facility

Country Status (1)

Country Link
JP (1) JPH04185233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054498A (en) * 2001-06-20 2008-03-06 Aloys Wobben Synchronous machine
JPWO2018139004A1 (en) * 2017-01-24 2019-11-14 住友電気工業株式会社 Energy storage system and variable power stable utilization system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054498A (en) * 2001-06-20 2008-03-06 Aloys Wobben Synchronous machine
JPWO2018139004A1 (en) * 2017-01-24 2019-11-14 住友電気工業株式会社 Energy storage system and variable power stable utilization system
JP2022097523A (en) * 2017-01-24 2022-06-30 住友電気工業株式会社 Energy storage system and stable utilization system for variable power

Similar Documents

Publication Publication Date Title
US6600240B2 (en) Variable speed wind turbine generator
EP1007844B1 (en) Variable speed wind turbine generator
US6420795B1 (en) Variable speed wind turbine generator
US8198742B2 (en) Variable speed wind turbine with a doubly-fed induction generator and rotor and grid inverters that use scalar controls
US7659637B2 (en) Variable speed wind power generation system
US6653744B2 (en) Distributed generation drivetrain (DGD) controller for application to wind turbine and ocean current turbine generators
US4742288A (en) Control system for AC motor/generator of secondary AC excitation type
JP2660126B2 (en) Frequency fluctuation suppression device
JPH04185233A (en) Aerogenerator facility
JP2877499B2 (en) Operation control device for wound induction generator
JPH0634626B2 (en) Control device for variable speed turbine generator
JP3398416B2 (en) Frequency converter
JP2891030B2 (en) Secondary excitation device for AC excitation synchronous machine
JPH0595700A (en) Controller for flywheel generator
JP2000308349A (en) Frequency converter
JPH11346440A (en) Received power leveling device
JP3130192B2 (en) Secondary excitation control method for AC excitation synchronous machine
JP2858139B2 (en) Variable speed generator
JP2521646Y2 (en) Voltage control device for main shaft drive generator
JPH0576277B2 (en)
JPS6055879A (en) Secondary side winding slip controlling method of wound-rotor type generator motor
JPS61247298A (en) Operation controlling method for variable speed generator system
AU2004220762B2 (en) Variable speed wind turbine generator
JP2652033B2 (en) Operation control method of variable speed pumped storage power generation system
JPH0454832A (en) Rotary system linkage unit