JPH04185232A - Automatic synchronous closing device - Google Patents

Automatic synchronous closing device

Info

Publication number
JPH04185232A
JPH04185232A JP31365590A JP31365590A JPH04185232A JP H04185232 A JPH04185232 A JP H04185232A JP 31365590 A JP31365590 A JP 31365590A JP 31365590 A JP31365590 A JP 31365590A JP H04185232 A JPH04185232 A JP H04185232A
Authority
JP
Japan
Prior art keywords
voltage
difference
frequency
component
voltages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31365590A
Other languages
Japanese (ja)
Other versions
JP2646845B2 (en
Inventor
Tetsuo Saito
哲夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP31365590A priority Critical patent/JP2646845B2/en
Publication of JPH04185232A publication Critical patent/JPH04185232A/en
Application granted granted Critical
Publication of JP2646845B2 publication Critical patent/JP2646845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To calculate only a component equivalent to half the difference frequency of an in-phase difference voltage waveform, transmit a circuit breaker closing command based on the component, and save a filter to substantially remove the rated frequency component of beat voltage by calculating the sum of square of the in-phase difference voltage. CONSTITUTION:The phase voltages VGu, VGv, VGw of a generator and the bus bar voltages VLu, VLv, and VLw of a power system 3 are used as input signals and the in-phase difference voltages of U-, V-, and W-phases are calculated by subtracters 13, 14, and 15. The sum of square EGL, of the three phases of the in-phase difference voltages is calculated by multipliers 16, 17, and 18 and an adder 19. A voltage correction calculator 20 calculates a low-frequency component value Ex using voltages E1 and E2 with voltage-frequency detection circuits 11 and 12 and judges whether or not ¦E1-E2¦ is lower than a certain value. A closing permission judgement device 22 transmits a breaker closing command when ¦E1-E2¦ and ¦omega1-omega2¦ are not higher than a certain value and the value Ex decreases and becomes not larger than Ez.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、異電源系統を連系する遮断器に対して、こ
の遮断器の両側電源の電圧位相が一致した時点で遮断器
を閉路させる自動同期投入装置に関する。 なお以F各図において同一の勾−号は同一もしくは相当
部分を示す。
The present invention relates to an automatic synchronization closing device for a circuit breaker that connects different power supply systems when the voltage phases of power supplies on both sides of the circuit breaker match. Note that in each figure below, the same sign indicates the same or equivalent part.

【従来の技術】[Conventional technology]

第3図は発電機」と電力系統3とがX断器2を通じて連
系される一般的な系統図を示す。ここで4.5は遮断器
2を挟むそれぞれ発電機1側、電力系統3側の電圧を検
出するための変成器(PT)、6はこの変成器4,5の
それぞれの検出電圧VG。 VLを入力して遮断器2の自動同期投入を行わせる自動
同期投入装置である。 次にこの自動同期投入装置6の動作原理を説明する。第
4図は変成器4と変成器5との同相差電圧波形(ビート
電圧波形)VGLを示す。即ちここで変成器4の二次電
圧VGを VG=  E、  srn  ω、t   −−−−−
−(1)変成器5の二次電圧VLを VL= E2 sin ωzt  −−−−−−−−−
−−−−(2)とし、さらに簡略化のために E I= E Z = 1 、0  −一−−−−−−
−−−−−−(3)とすると、ビート電圧波形VGLは
、 となる。 自動同期投入装置6は第4図における■点、つまり電圧
VCとVLとの位相−故点で遮断器2を閉路すべく、遮
断器2の投入時間(つまり投入に要する時間)Δを秒前
の3点で投入指令を出力するものである。 このため従来は、(4)式を基に位相−故点■および遮
断器2の投入時間Δを秒前の3点を算出すべく補助変成
器4,5の二次回路による和演算、差演算を行い、さら
にほぼ定格周波数であるcos項を除くための整流回路
、フィルタ回路、また判定のだめの微分回路等を多数使
用していた。
FIG. 3 shows a general system diagram in which a generator and a power system 3 are interconnected through an X-disconnector 2. Here, 4.5 is a transformer (PT) for detecting the voltage on the generator 1 side and the power system 3 side, respectively, which sandwich the circuit breaker 2, and 6 is the detected voltage VG of each of the transformers 4 and 5. This is an automatic synchronization device that automatically synchronizes the circuit breaker 2 by inputting VL. Next, the principle of operation of this automatic synchronization device 6 will be explained. FIG. 4 shows an in-phase difference voltage waveform (beat voltage waveform) VGL between transformer 4 and transformer 5. That is, here, the secondary voltage VG of the transformer 4 is VG=E, srn ω, t -----
−(1) Secondary voltage VL of transformer 5 is VL=E2 sin ωzt −−−−−−−−−
----(2), and for further simplification E I= E Z = 1, 0 -1------
-------- (3), the beat voltage waveform VGL is as follows. The automatic synchronous closing device 6 sets the closing time Δ of the circuit breaker 2 (that is, the time required for closing) in seconds in order to close the circuit breaker 2 at point ■ in FIG. The input command is output at three points. For this reason, conventionally, based on equation (4), the sum operation and difference calculation using the secondary circuits of the auxiliary transformers 4 and 5 were performed to calculate the phase-fault point ■ and the closing time Δ of the circuit breaker 2 at three points in seconds. A large number of rectifier circuits, filter circuits, and differentiation circuits for making decisions were used to perform calculations and remove the cosine term, which is approximately the rated frequency.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の自動同期投入装置においては、前述のように補助
変成器4.5の二次回路に多数の端子が必要であると共
に、定格周波数成分を除くためのアナログフィルタ等に
よる位相遅れを補償する必要があった。またディジタル
演算形の自動同期投入装置を採用する場合においては、
演算周期が数m5ecの高速演算器を適用するか、また
はcos項を除くための整流回路、フィルタ回路等を別
置する必要があった。 そこでこの発明は、補助変成器の目的を絶縁および演算
レヘル合わせに限定すると共にフィルタ。 微分回路等を削除し、装置の小型化や性能の向上を図る
と共に、演算周期が十〜数十m5ec程度のディジタル
演算器でも演算可能な自動同期投入装置を提供すること
を課題とする。
In the conventional automatic synchronization device, as mentioned above, the secondary circuit of the auxiliary transformer 4.5 requires a large number of terminals, and it is also necessary to compensate for the phase delay using an analog filter, etc. to remove the rated frequency component. was there. In addition, when using a digital calculation type automatic synchronization device,
It was necessary to apply a high-speed arithmetic unit with an operation cycle of several m5ec, or to separately install a rectifier circuit, a filter circuit, etc. to remove the cosine term. Therefore, the present invention limits the purpose of the auxiliary transformer to insulation and operation level adjustment, and also provides a filter. It is an object of the present invention to provide an automatic synchronization input device that eliminates a differential circuit, etc., reduces the size of the device, improves its performance, and can perform calculations even with a digital calculator with a calculation cycle of about 10 to several tens of m5ec.

【課題を解決するための手段】[Means to solve the problem]

前記の課題を解決するために、請求項1)の自動同期投
入装置は、12つの異なる電源系統(発電機1および電
力系統3など)を連系する遮断器(2など)に対して、
前記の連系される2つの電源系統(以下両側電源という
)の電圧差および周波数差が一定値以下で、且つ該両側
N1jXの電圧位相が一致した時点で前記遮断器を閉路
すべく、投入指令を出力する自動同期投入装置(6など
)であって、 少なくとも前記両側を源の三相電圧の各相それぞれの同
相差電圧の二乗和(EGLなと)を演算することにより
、前記両側電源の和周波数/2(つまり(ω1+ω、)
 /2 )の成分と差周波数/2(つまり (ω1−ω
、)/2)の成分との掛算で表される両側電源の同相差
電圧波形の内の差周波数/2に相当する成分のみを算出
し、この成分を基に前記遮断器の投入指令を出力するJ
ようにし、また請求項2)の自動同期投入装置では、前
記請求項1)の自動同相投入装置において、r前記同相
差電圧の二乗和は必要に応じて前記両側電源間の電圧差
の二乗値(つまり3(E+−Ez) ”/2)の補正が
施される」ようにする。
In order to solve the above problem, the automatic synchronization device according to claim 1) provides for a circuit breaker (such as 2) that interconnects 12 different power supply systems (such as generator 1 and power system 3).
A closing command is issued to close the circuit breaker when the voltage difference and frequency difference between the two interconnected power systems (hereinafter referred to as both-side power supplies) are below a certain value and the voltage phases of both sides N1jX match. An automatic synchronization device (such as 6) that outputs at least the two-side power source by calculating the sum of squares (EGL) of the common-mode difference voltage of each phase of the three-phase voltage of the two-side power source. Sum frequency/2 (that is, (ω1+ω,)
/2 ) component and the difference frequency /2 (that is, (ω1−ω
, )/2) Calculates only the component corresponding to the difference frequency/2 of the in-phase difference voltage waveforms of the power supplies on both sides, and outputs the closing command for the circuit breaker based on this component. J to do
In the automatic in-sync start-up device of claim 2), in the automatic in-sync start-up device of claim 1), the sum of squares of the in-phase difference voltages is, as necessary, the square value of the voltage difference between the power supplies on both sides. (In other words, a correction of 3(E+-Ez) "/2)" is applied.

【作 用】[For use]

(4)弐のcos項(はぼ定格周波数成分)を除く手段
として遮断器両側電源の三相電圧それぞれの同相差電圧
の二乗和を演算する。今、変成器4の二次電圧VCの各
相電圧を 変成器5の二次電圧VLを とし、同相差電圧の三相の各相についての二乗和EGL
を演算すると EGL=(VGLI−VLu)” +(VGv−VLv
)2+(VGw−VLw)”となる。ここで電圧E1お
よびE2は公知の方式で検出可能であるので、Ec+−
を演算することにより容易に(差周波数/2)成分のs
in項のみを算出できることが判る。第2図に(7)弐
から得られたsin項と(4)弐のsin項の波形を示
す。
(4) As a means of removing the second cosine term (the rated frequency component), calculate the sum of squares of the in-phase difference voltages of the three-phase voltages of the power supplies on both sides of the circuit breaker. Now, let each phase voltage of the secondary voltage VC of the transformer 4 be the secondary voltage VL of the transformer 5, and the sum of squares EGL for each of the three phases of the common mode difference voltage
When calculating EGL=(VGLI-VLu)" +(VGv-VLv
)2+(VGw-VLw)". Here, voltages E1 and E2 can be detected by a known method, so Ec+-
By calculating the (difference frequency/2) component s
It can be seen that only the in term can be calculated. FIG. 2 shows the waveforms of the sine term obtained from (7) 2 and the sine term from (4) 2.

【実施例】【Example】

第1図は本発明の一実施例としての要部構成を示すブロ
ック回路図である。 同図において11は変成器4の二次側3相電圧VGu、
VGν、 VGwを入力して、この場合、発電機1側電
源の電圧E、と周波数ω1を検出する電圧周波数検出回
路、12は変成器5の二次側3相電圧V L u 。 VLν、VL−を入力してこの場合電力系統3側電源の
電圧E2と周波数ω2を検出する電圧周波数検出回路で
ある。 この場合、電源電圧E1の検出方法としては、例えばア
ナログ方式の場合、変成器4の二次側3相電圧VGu、
VGν、 VGiyの3相全波整流電圧を検出する方法
が用いられ、ディジタル方式の場合、二次側3相電圧の
2乗和の平均を下式のように求める方法が用いられる。 El−J■面7〒匡7コX訴T)ア1 また電源電圧E2についても一ト記′;源電圧E、の場
合と同様に検出される。 再び第1図に戻り、13は;圧VGuとVLuとの差(
同相差電圧)を求める減算器、14は電圧VGνとVL
νとの(同相差電圧)を求める減算器、15ば電圧VG
−とVLwとの差(同相差電圧)を求める減算器、16
は加算器13の加算結果の二乗を求める掛算器、17は
加算器14の加算結果の二乗を求める掛算器、18は加
算器15の加算結果の二乗を求める掛算器、19は掛算
器16.17.18の出力の和を求める加算器、20は
加算器19の加算結果に電圧周波数検出回路I1.12
の検出電圧E、、 E2の補正を施し後述のExを求め
る電圧補正演算器、21は電圧周波数検出回路11..
12の検出周波数ω1.ω2および遮断器投入時間Δt
を入力して後述のEzを求める周波数補正演算器、22
はEx、 Ezを入力して遮断器投入指令22aを出力
する投入許可判断器である。 このような構成により。発電機の各相電圧VGuνGv
 VG−および電力系統3の母線電圧VLu VLvν
Lwを入力信号とし、減算器13.14.15にてそれ
ぞれU、V、Wの三相各相の同相差電圧を算出する。 そして掛算器16,17.18は、それぞれ前記三相各
相の差電圧の二乗演算を行い、加算器19にて前記(7
)弐のEGLを算出する。電圧補正演算器20は電圧周
波数検出回路lL12により前述のような公知の方式で
検出した電圧E+およびE2を使用して(7)式の右辺
第1項3 (El−、E2)”/2を求め、この値を入
力したEGLから減算して(7)の右辺第2項としての
低周波数成分値EX(”F記(8)式)を算出すると共
にIE、−Effilが一定値以下の判定を行う。 周波数補正演算器21は、電圧周波数検出回路11゜1
2により、公知の方式で検出した周波数ω、およびω2
と遮断器の投入時間Δtから1=−Δを時の低周波数成
分値Ez (下記(9)弐)を算出すると共に1(1)
I −ω21が一定値以下の判定を行う。 投入許可判断器12は、lE+=Ezlおよび1ω1−
ω21が共に一定値以下で、かつEx値が低減中にEx
≦Ezに達した時点で遮断器の投入指令を出力する。
FIG. 1 is a block circuit diagram showing a main part configuration as an embodiment of the present invention. In the same figure, 11 is the secondary side three-phase voltage VGu of the transformer 4,
A voltage frequency detection circuit inputs VGν and VGw and detects the voltage E and frequency ω1 of the generator 1 side power supply in this case, and 12 is the secondary side three-phase voltage V L u of the transformer 5. It is a voltage frequency detection circuit which inputs VLν and VL- and detects the voltage E2 and frequency ω2 of the power supply on the power system 3 side in this case. In this case, as a method of detecting the power supply voltage E1, for example, in the case of an analog method, the secondary side three-phase voltage VGu of the transformer 4,
A method of detecting the three-phase full-wave rectified voltages of VGν and VGiy is used, and in the case of a digital method, a method of finding the average sum of squares of the three-phase voltages on the secondary side as shown in the following equation is used. The power supply voltage E2 is also detected in the same way as the power supply voltage E. Returning to FIG. 1 again, 13 is the difference between the pressures VGu and VLu (
14 is a subtracter for calculating the common mode difference voltage), and 14 is the voltage VGν and VL.
Subtractor for calculating (common mode difference voltage) with ν, 15 voltage VG
- and VLw - subtractor for calculating the difference (common mode difference voltage), 16
17 is a multiplier that squares the addition result of adder 13; 18 is a multiplier that squares the addition result of adder 15; 19 is multiplier 16. 17. An adder that calculates the sum of the outputs of 18; 20 is a voltage frequency detection circuit I1.12 that uses the addition result of the adder 19;
A voltage correction calculator 21 corrects the detected voltages E, E2 and obtains Ex, which will be described later. ..
12 detection frequencies ω1. ω2 and circuit breaker closing time Δt
a frequency correction calculator that calculates Ez, which will be described later, by inputting 22
is a closing permission determination device which inputs Ex and Ez and outputs a circuit breaker closing command 22a. With such a configuration. Generator phase voltage VGuνGv
VG- and the bus voltage of power system 3 VLu VLvν
Using Lw as an input signal, subtracters 13, 14, and 15 calculate in-phase difference voltages of each of the three phases U, V, and W, respectively. The multipliers 16, 17, and 18 each perform a square calculation of the voltage difference between the three phases, and the adder 19 calculates the square of the voltage difference between the three phases.
) Calculate the EGL of 2. The voltage correction calculator 20 calculates the first term 3 (El-, E2)''/2 on the right side of equation (7) using the voltages E+ and E2 detected by the voltage frequency detection circuit LL12 in a known manner as described above. This value is subtracted from the input EGL to calculate the low frequency component value EX (formula (8) in "F") as the second term on the right side of (7), and it is determined that IE, -Effil is below a certain value. I do. The frequency correction calculator 21 includes a voltage frequency detection circuit 11゜1.
2, the frequency ω detected by a known method and ω2
Calculate the low frequency component value Ez (see (9) 2 below) when 1=-Δ from the circuit breaker closing time Δt and 1(1)
It is determined that I - ω21 is below a certain value. The injection permission judger 12 determines that lE+=Ezl and 1ω1−
Ex when both ω21 are below a certain value and the Ex value is decreasing
When ≦Ez is reached, a circuit breaker closing command is output.

【発明の効果】【Effect of the invention】

本発明によれば、2つの異なる電源系統(発電機1およ
び電力系統3など)を連系する遮断器2に対して、前記
の連系される2つの電源系統(以下両側電源という)の
電圧差および周波数差が一定値以下で、且つ該両側電源
の電圧位相が一致した時点で前記遮断器2を閉路すべく
、投入指令を出力する自動同期投入装置6であって、少
なくとも前記両側1gの三相電圧の各相それぞれの同相
差電圧の二乗和EGLを演算し、さらにこの二乗和EG
Lに必要に応して前記両側電源間の電圧差の二乗値(つ
まり3(El−EX) ”/2)の補正を施すことによ
り、前記両側電源の和周波数/2(つまり(ω、+ω、
) /2 )の成分と差周波数/2(つまり(ω1−ω
2)/2)の成分との掛算で表される両側taの同相差
電圧波形の内の差周波数/2に相当する成分のみを算出
し、この成分を基に前記遮断器の投入指令を出力するよ
うにしたので、ビート電圧のほぼ定格周波数成分を除去
するためのフィルタ等が不要となり、シンプルな回路で
自動同期投入装置を提供できる。また同時サンプルホー
ルド機能付のアナログ入力カードを適用することにより
、外部にフィルタ等を設置すること無く演算周期が十〜
数十ll1sec程度のディジタル演算器で機能を満足
することができる。
According to the present invention, for a circuit breaker 2 that interconnects two different power supply systems (generator 1 and power system 3, etc.), the voltage of the two interconnected power supply systems (hereinafter referred to as double-sided power supply) is An automatic synchronization closing device 6 outputs a closing command to close the circuit breaker 2 when the difference and the frequency difference are below a certain value and the voltage phases of the power supplies on both sides match, and the automatic synchronization closing device 6 outputs a closing command to close the circuit breaker 2. Calculate the sum of squares EGL of the in-phase difference voltages of each phase of the three-phase voltage, and further calculate the sum of squares EG
By correcting L by the square value of the voltage difference between the power supplies on both sides (i.e., 3(El-EX)''/2) as necessary, the sum frequency of the power supplies on both sides/2 (i.e., (ω, +ω ,
) /2 ) component and the difference frequency /2 (that is, (ω1−ω
2) Calculate only the component corresponding to the difference frequency /2 of the in-phase difference voltage waveforms on both sides ta expressed by multiplying by the component of /2), and output the closing command for the circuit breaker based on this component As a result, there is no need for a filter or the like to remove approximately the rated frequency component of the beat voltage, and an automatic synchronization device can be provided with a simple circuit. In addition, by applying an analog input card with a simultaneous sample and hold function, the calculation cycle can be increased from 10 to 100 without installing an external filter.
The function can be satisfied with a digital arithmetic unit of about several tens of milliseconds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての要部構成を示すブロ
ック回路図、 第2図は同相差電圧(ビート電圧)の低周波数成分波形
と本発明による検出波形との対比図、第3図は自動同期
投入装置を含む発電所系統の構成例を示す図、 第4図は、遮断器両側の同相差電圧(ビート電圧)波形
を示す図である。 l二発電機、2;遮断器、3:電力系統、4゜5:変成
器、6:自動同期投入装置、11,12:電圧周波数検
出回路、13〜15:減算器、16〜18:掛算器、1
9:加算器、20:電圧補正演算器、21;周波数補正
演算器、22:投入許可判断器、22a:投入指令、Δ
t :遮断器投入時間。
FIG. 1 is a block circuit diagram showing the main part configuration as an embodiment of the present invention, FIG. 2 is a comparison diagram of the low frequency component waveform of the common mode difference voltage (beat voltage) and the detected waveform according to the present invention, and FIG. The figure is a diagram showing an example of the configuration of a power plant system including an automatic synchronization closing device, and FIG. 4 is a diagram showing the in-phase difference voltage (beat voltage) waveform on both sides of the circuit breaker. 12 generator, 2; circuit breaker, 3: power system, 4゜5: transformer, 6: automatic synchronization device, 11, 12: voltage frequency detection circuit, 13-15: subtractor, 16-18: multiplication vessel, 1
9: Adder, 20: Voltage correction calculator, 21; Frequency correction calculator, 22: Closing permission judger, 22a: Closing command, Δ
t: Breaker closing time.

Claims (1)

【特許請求の範囲】 1)2つの異なる電源系統を連系する遮断器に対して、
前記の連系される2つの電源系統(以下両側電源という
)の電圧差および周波数差が一定値以下で、且つ該両側
電源の電圧位相が一致した時点で前記遮断器を閉路すべ
く、投入指令を出力する自動同期投入装置であって、 少なくとも前記両側電源の三相電圧の各相それぞれの同
相差電圧の二乗和を演算することにより、前記両側電源
の和周波数/2の成分と差周波数/2の成分との掛算で
表される両側電源の同相差電圧波形の内の差周波数/2
に相当する成分のみを算出し、この成分を基に前記遮断
器の投入指令を出力することを特徴とする自動同期投入
装置。 2)特許請求範囲第1項に記載の自動同期投入装置にお
いて、前記同相差電圧の二乗和は必要に応じて前記両側
電源間の電圧差の二乗値の補正が施されることを特徴と
する自動同期投入装置。
[Claims] 1) For a circuit breaker that interconnects two different power supply systems,
A closing command is issued to close the circuit breaker when the voltage difference and frequency difference between the two interconnected power systems (hereinafter referred to as both-side power supplies) are below a certain value and the voltage phases of the two-side power supplies match. The automatic synchronization device outputs a component of the sum frequency/2 of the power supplies on both sides and a component of the difference frequency/ Difference frequency in the common mode difference voltage waveform of both power supplies expressed by multiplying by the component of 2/2
An automatic synchronous closing device characterized in that it calculates only a component corresponding to , and outputs a closing command for the circuit breaker based on this component. 2) In the automatic synchronization device according to claim 1, the sum of squares of the in-phase difference voltage is corrected by the square value of the voltage difference between the power supplies on both sides, as necessary. Automatic synchronization input device.
JP31365590A 1990-11-19 1990-11-19 Automatic synchronous feeding device Expired - Fee Related JP2646845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31365590A JP2646845B2 (en) 1990-11-19 1990-11-19 Automatic synchronous feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31365590A JP2646845B2 (en) 1990-11-19 1990-11-19 Automatic synchronous feeding device

Publications (2)

Publication Number Publication Date
JPH04185232A true JPH04185232A (en) 1992-07-02
JP2646845B2 JP2646845B2 (en) 1997-08-27

Family

ID=18043926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31365590A Expired - Fee Related JP2646845B2 (en) 1990-11-19 1990-11-19 Automatic synchronous feeding device

Country Status (1)

Country Link
JP (1) JP2646845B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149915A (en) * 2010-01-25 2011-08-04 Origin Electric Co Ltd Synchronization detecting apparatus
JP2013123293A (en) * 2011-12-09 2013-06-20 Fuji Electric Co Ltd Synchronism detection device
WO2013139862A3 (en) * 2012-03-22 2014-01-16 Alstom Technology Ltd Method for synchronizing a generator with the mains
JP2014016368A (en) * 2013-10-17 2014-01-30 Origin Electric Co Ltd Synchronization detection method
CN107482771A (en) * 2017-08-01 2017-12-15 中国电力科学研究院 A kind of intelligent power method and its intelligent power equipment for supporting power grid operation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149915A (en) * 2010-01-25 2011-08-04 Origin Electric Co Ltd Synchronization detecting apparatus
JP2013123293A (en) * 2011-12-09 2013-06-20 Fuji Electric Co Ltd Synchronism detection device
WO2013139862A3 (en) * 2012-03-22 2014-01-16 Alstom Technology Ltd Method for synchronizing a generator with the mains
EP2651000A3 (en) * 2012-03-22 2014-02-12 Alstom Technology Ltd Method for synchronising a generator with a grid
JP2014016368A (en) * 2013-10-17 2014-01-30 Origin Electric Co Ltd Synchronization detection method
CN107482771A (en) * 2017-08-01 2017-12-15 中国电力科学研究院 A kind of intelligent power method and its intelligent power equipment for supporting power grid operation
CN107482771B (en) * 2017-08-01 2021-08-27 中国电力科学研究院 Intelligent power utilization method supporting stable operation of power grid and intelligent power utilization equipment thereof

Also Published As

Publication number Publication date
JP2646845B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US6861897B1 (en) Active filter for multi-phase AC power system
KR960000802B1 (en) Parallel operation system of ac output inverters
US7944184B2 (en) Static compensator apparatus for HVDC system
US20140043014A1 (en) Phase-locked loop
US20130346004A1 (en) Phase-locked loop
WO2021029313A1 (en) System interconnection power conversion device
JP2008306805A (en) Power conversion device
CN102916596A (en) Input and output power resonance control method of PWM (pulse width modulation) rectifier under voltage unsymmetrical fault
CN102891615A (en) Stable PWM (Pulse-Width Modulation) rectifier output power dead beat control method under unbalanced voltage
JPH04185232A (en) Automatic synchronous closing device
KR101380380B1 (en) Method of adaptive phase tracking depending on the state of power system and system for it
JP2003143860A (en) Control circuit of semiconductor power converter
KR101704377B1 (en) The each phase output voltage controller for 3 phase space vector pulse width modulation inverter
KR20140041100A (en) Method for minimizing non-characteristic harmonics using observer pll of hvdc system
JP4971758B2 (en) Power converter
JPH10313574A (en) Power conversion device and phase-locked control method therefor
CN107408901B (en) Synchronous control device for power converter
JP2006042480A (en) Inverter controller
JP4303433B2 (en) Power converter for grid connection
JP2005003530A (en) Phase detector
JP3958255B2 (en) Phase synchronization detection circuit in generator
JPH08140268A (en) Controller of reactive power compensator
JP2730383B2 (en) Parallel operation control device for AC output converter
JPH07255131A (en) Power conversion equipment and controller of power converter
JPH10111325A (en) Electric power detecting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees