JP2014016368A - Synchronization detection method - Google Patents

Synchronization detection method Download PDF

Info

Publication number
JP2014016368A
JP2014016368A JP2013216214A JP2013216214A JP2014016368A JP 2014016368 A JP2014016368 A JP 2014016368A JP 2013216214 A JP2013216214 A JP 2013216214A JP 2013216214 A JP2013216214 A JP 2013216214A JP 2014016368 A JP2014016368 A JP 2014016368A
Authority
JP
Japan
Prior art keywords
frequency
verification
voltage waveform
source
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013216214A
Other languages
Japanese (ja)
Other versions
JP5698819B2 (en
Inventor
Masaaki Oshima
正明 大島
Shuichi Ushiki
修一 宇敷
Jinbin Zhao
晋斌 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2013216214A priority Critical patent/JP5698819B2/en
Publication of JP2014016368A publication Critical patent/JP2014016368A/en
Application granted granted Critical
Publication of JP5698819B2 publication Critical patent/JP5698819B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a synchronization detection method in which single phase AC voltage is not differentiated directly, which is made less susceptible to an influence of higher harmonic component, in which a case of dividing by zero is eliminated, and is made less likely to become unstable.SOLUTION: A synchronization detection device 130 which implements a synchronization detection method of the present invention, includes: a standard angular frequency ω; a sampler 133 which detects a detection target voltage waveform of a detection target single phase AC voltage source 12; a delay circuit 134 which generates a delayed voltage waveform by delaying time larger than (m-1)π/ωand smaller than mπ/ω(m is a natural number) from the detection target voltage waveform detected by the sampler 133; and an arithmetic unit 135 which uses the detection target voltage waveform detected by the sampler 133, the delayed voltage waveform generated by the delay circuit 134, and a detection source angular frequency ω of a given detection source single phase AC voltage source 11 to compute a frequency difference cosine signal and a frequency difference sine signal taking a difference between a detection target angular frequency ωof the detection target voltage waveform and the detection source angular frequency ω as an angular frequency.

Description

本発明は、同期相手の単相交流電圧源の電圧振幅、自電源との周波数差及び自電源との位相差を検出する同期検定方法に関する。   The present invention relates to a synchronization verification method for detecting a voltage amplitude of a single-phase AC voltage source as a synchronization partner, a frequency difference from a self-power source, and a phase difference from the self-power source.

2つの単相交流電圧源を同期させるためには、同期相手の単相交流電圧源の電圧振幅、自電源との周波数差及び自電源との位相差を検出する必要がある。これらを検出する図4の技術が知られている。   In order to synchronize the two single-phase AC voltage sources, it is necessary to detect the voltage amplitude of the synchronized single-phase AC voltage source, the frequency difference with the own power source, and the phase difference with the own power source. The technique of FIG. 4 for detecting these is known.

この技術は、それぞれの単相交流電圧源に対して、電圧を一定周期ごとにサンプリングし、その1サンプル当たりの変化分(微分値に相当)とその変化分の1サンプル当たりの変化分(2次微分に相当)を計算する。そして導かれた値から、電圧振幅、周波数、及び位相を求めた後、差分を計算している(例えば、特許文献1を参照)。   In this technique, for each single-phase AC voltage source, the voltage is sampled at regular intervals, and the change per sample (corresponding to the differential value) and the change per sample (2 Equivalent to the second derivative). And after calculating | requiring a voltage amplitude, a frequency, and a phase from the derived | led-out value, the difference is calculated (for example, refer patent document 1).

特開昭52−40174号公報Japanese Patent Laid-Open No. 52-40174

しかし、特許文献1に記載される技術は、サンプル電圧値を微分するので、電圧波形に含まれる高調波成分による影響を受け易いという課題があった。さらに周波数の検出に交流値を分母とする割り算を用いているため、ゼロで割る場合に不安定になるという課題があった。   However, since the technique described in Patent Document 1 differentiates the sample voltage value, there is a problem that it is easily affected by the harmonic component included in the voltage waveform. Furthermore, since division using the AC value as the denominator is used for frequency detection, there is a problem that the frequency becomes unstable when dividing by zero.

そこで、前記課題を解決するために、本発明は、高調波成分による影響を受け難く、不安定になり難い同期検定方法を提供することを目的とする。   Therefore, in order to solve the above-described problems, an object of the present invention is to provide a synchronous verification method that is not easily affected by harmonic components and is not easily unstable.

上記目的を達成するために、本発明に係る同期検定方法は、検定対象とする単相交流電圧源の電圧波形と同期検定装置の規準角周波数ωcoを利用して検定対象電圧波形を所定時間を遅らせた遅延電圧波形を作成し、サンプラーが検出した検定対象電圧波形と遅延電圧波形とから、周波数差余弦信号及び周波数差正弦信号を計算することとした。以下の説明において、検定対象単相交流電圧源の単相交流電圧波形を「検定対象電圧波形」、検定元となる単相交流電圧源の単相交流電圧波形を「検定元電圧波形」と記載する。 In order to achieve the above object, the synchronization verification method according to the present invention uses a voltage waveform of a single-phase AC voltage source to be verified and a reference angular frequency ω co of the synchronization verification device for a predetermined time. A delay voltage waveform obtained by delaying the frequency difference is created, and a frequency difference cosine signal and a frequency difference sine signal are calculated from the test target voltage waveform detected by the sampler and the delay voltage waveform. In the following explanation, the single-phase AC voltage waveform of the single-phase AC voltage source to be verified is described as “voltage waveform for verification”, and the single-phase AC voltage waveform of the single-phase AC voltage source that is the verification source is described as “verification-source voltage waveform”. To do.

具体的には、本発明に係る同期検定方法は、検定対象単相交流電圧源の検定対象電圧波形を検出するサンプリング手順と、前記サンプリング手順で検出した前記検定対象電圧波形から(m−1)π/ωcoより大きくmπ/ωcoより小さい(mは自然数、ωcoは規準角周波数)時間を遅らせた遅延電圧波形を作成する遅延手順と、前記サンプリング手順で検出した前記検定対象電圧波形、前記遅延手順で作成した前記遅延電圧波形、及び与えられた検定元単相交流電圧源の検定元角周波数、から前記検定対象電圧波形の検定対象角周波数と前記検定元角周波数との差分を角周波数とする周波数差余弦信号及び周波数差正弦信号を計算する演算手順と、を行う。なお、同期検定装置の規準角周波数ωcoは、検定元角周波数ωと等しくてもよい。 Specifically, the synchronous verification method according to the present invention includes a sampling procedure for detecting a verification target voltage waveform of a verification target single-phase AC voltage source, and (m−1) from the verification target voltage waveform detected by the sampling procedure. a delay procedure for creating a delayed voltage waveform with a delayed time greater than π / ω co and smaller than mπ / ω co (m is a natural number, ω co is a reference angular frequency), and the voltage waveform to be tested detected in the sampling procedure, The difference between the test target angular frequency of the test target voltage waveform and the test source angular frequency is calculated from the delay voltage waveform created by the delay procedure and the test source angular frequency of the given test source single-phase AC voltage source. And a calculation procedure for calculating a frequency difference cosine signal and a frequency difference sine signal as frequencies. The reference angular frequency ω co of the synchronization verification device may be equal to the verification source angular frequency ω.

周波数差余弦信号は、位相差の余弦と検定対象電圧振幅との積であり、周波数差正弦信号は、位相差の正弦と検定対象電圧振幅との積である。この2値を利用して検定対象電圧波形の電圧振幅、検定元電圧波形との周波数差、及び検定元電圧波形との位相差を算出することができる。本発明に係る同期検定方法は、単相交流電圧を直接微分せず、かつ、検定対象電圧波形の実効値がゼロでない限り、ゼロで割ることがない。このため、本発明は、高調波成分による影響を受け難く、不安定になり難い同期検定方法を提供することができる。   The frequency difference cosine signal is the product of the cosine of the phase difference and the voltage amplitude to be tested, and the frequency difference sine signal is the product of the sine of the phase difference and the voltage amplitude to be tested. Using these two values, the voltage amplitude of the voltage waveform to be verified, the frequency difference from the verification source voltage waveform, and the phase difference from the verification source voltage waveform can be calculated. The synchronous verification method according to the present invention does not directly differentiate the single-phase AC voltage and does not divide by zero unless the effective value of the voltage waveform to be verified is zero. For this reason, the present invention can provide a synchronous verification method that is not easily affected by the harmonic component and is not easily unstable.

本発明に係る同期検定方法は、前記遅延手順で、前記遅延電圧波形を前記検定対象電圧波形から(m−1/2)π/ωco時間遅らせることを特徴とする。 The synchronization verification method according to the present invention is characterized in that, in the delay procedure, the delay voltage waveform is delayed by (m−1 / 2) π / ω co time from the verification target voltage waveform.

本発明に係る同期検定方法は、前記演算手順で数1の演算を行うことを特徴とする。

Figure 2014016368
また、ωは規準角周波数ωcoの75%から125%の範囲にある。 The synchronous verification method according to the present invention is characterized in that the calculation of Formula 1 is performed according to the calculation procedure.
Figure 2014016368
Further, ω is in the range of 75% to 125% of the reference angular frequency ω co .

本発明に係る同期検定方法は、前記演算手順で演算する前記周波数差余弦信号及び前記周波数差正弦信号の高周波成分を除去する高周波成分除去手順をさらに行うことが好ましい。前記周波数差余弦信号及び前記周波数差正弦信号の高周波成分を除去することで、より安定して検定対象電圧波形の電圧振幅、検定元電圧波形との周波数差、及び検定元電圧波形との位相差を算出することができる。   In the synchronization verification method according to the present invention, it is preferable to further perform a high frequency component removal procedure for removing the high frequency component of the frequency difference cosine signal and the frequency difference sine signal calculated in the calculation procedure. By removing the high frequency components of the frequency difference cosine signal and the frequency difference sine signal, the voltage amplitude of the voltage waveform to be verified, the frequency difference from the verification source voltage waveform, and the phase difference from the verification source voltage waveform are more stable. Can be calculated.

本発明に係る同期検定方法は、前記演算手順で演算する前記周波数差余弦信号及び前記周波数差正弦信号から、前記検定対象電圧波形の電圧実効値、前記検定対象角周波数と前記検定元角周波数との周波数差、及び前記検定対象電圧波形と前記検定元単相交流電圧波形との位相差を検出する検出手順をさらに行うことを特徴とする。検出手順により検定対象電圧波形の電圧振幅、検定元電圧波形との周波数差、及び検定元電圧波形との位相差を出力することができる。   In the synchronous verification method according to the present invention, the effective voltage value of the verification target voltage waveform, the verification target angular frequency, and the verification source angular frequency are calculated from the frequency difference cosine signal and the frequency difference sine signal calculated in the calculation procedure. And a detection procedure for detecting a phase difference between the verification target voltage waveform and the verification source single-phase AC voltage waveform. According to the detection procedure, the voltage amplitude of the verification target voltage waveform, the frequency difference from the verification source voltage waveform, and the phase difference from the verification source voltage waveform can be output.

本発明に係る同期検定方法は、前記検出手順で、前記電圧実効値V、前記周波数差ω−ω、及び前記位相差φをそれぞれ数2、数3、及び数4で検出する。

Figure 2014016368
ここで、Vsは前記電圧実効値である。
Figure 2014016368
ここで、ωは前記検定対象角周波数である。
Figure 2014016368
In the synchronization verification method according to the present invention, the effective voltage value V S , the frequency difference ω S −ω, and the phase difference φ are detected by the above-described detection procedure using Equations 2, 3, and 4, respectively.
Figure 2014016368
Here, Vs is the voltage effective value.
Figure 2014016368
Here, ω s is the angular frequency to be tested.
Figure 2014016368

本発明は、高調波成分による影響を受け難く、不安定になり難い同期検定方法を提供することができる。また、本発明に係る同期検定方法は、検定対象電圧波形をサンプリングしているので、検定元単相交流電圧源がデジタル制御電源である場合には特に、適用が容易である。さらに、本発明に係る同期検定方法は、図4のように検定元電圧波形と検定対象電圧波形の双方に電圧実効値、周波数及び位相を検出する検出部を設ける必要が無く、実装が容易である。また、本発明に係る同期検定方法は、高周波成分除去手順で高周波成分の影響を除去でき、動作を安定させることができる。   The present invention can provide a synchronous verification method that is not easily affected by the harmonic component and is less likely to become unstable. Moreover, since the synchronous verification method according to the present invention samples the voltage waveform to be verified, it can be easily applied particularly when the verification source single-phase AC voltage source is a digital control power supply. Furthermore, the synchronous verification method according to the present invention does not require a detection unit for detecting the effective voltage value, frequency, and phase in both the verification source voltage waveform and the verification target voltage waveform as shown in FIG. is there. Moreover, the synchronous verification method according to the present invention can remove the influence of the high frequency component by the high frequency component removal procedure, and can stabilize the operation.

検定元単相交流電圧源と検定対象交流電圧源との間で行う同期検定について説明する図である。It is a figure explaining the synchronous test | inspection performed between a test origin single phase alternating voltage source and a test object alternating voltage source. 本発明に係る同期検定方法を実現する同期検定装置を説明する図である。It is a figure explaining the synchronous verification apparatus which implement | achieves the synchronous verification method which concerns on this invention. 本発明に係る同期検定方法での同期検定動作をシミュレートした結果である。It is the result of simulating the synchronization verification operation in the synchronization verification method according to the present invention. 従来の同期検定装置を説明する図である。It is a figure explaining the conventional synchronous verification apparatus.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

まず、同期検定の原理について説明する。図1は、検定元単相交流電圧源11と検定対象交流電圧源12との間で行う同期検定について説明する図である。検定元単相交流電圧源11は、例えば、自律平行運転(APRun)を行うインバータなど、同期検定装置を内蔵する単相交流電源である。検定対象単相交流電圧源12は、例えば、並列相手の電力系統や外部交流電源である。検定元単相交流電圧源11が無負荷独立運転を行っているとき、その出力端子電圧Vfil(t)は、次式で表せる。

Figure 2014016368
ここで、Vは検定元単相交流電圧源11の電圧の実効値である。 First, the principle of synchronous verification will be described. FIG. 1 is a diagram for explaining the synchronization verification performed between the verification source single-phase AC voltage source 11 and the verification target AC voltage source 12. The verification source single-phase AC voltage source 11 is a single-phase AC power source including a synchronous verification device such as an inverter that performs autonomous parallel operation (APRun). The verification target single-phase AC voltage source 12 is, for example, a parallel partner power system or an external AC power source. When the test source single-phase AC voltage source 11 performs the no-load independent operation, the output terminal voltage Vfil (t) can be expressed by the following equation.
Figure 2014016368
Here, V i is the effective value of the voltage of the test source single-phase AC voltage source 11.

一方、検定対象の単相交流電圧源12の電圧Vsys(t)は、次式で表すことができる。

Figure 2014016368
ここで、Vは実効値[V]、ωは角周波数[rad/s]、φはインバータから見た外部交流電源のt=0での位相角[rad]である。 On the other hand, the voltage V sys (t) of the single-phase AC voltage source 12 to be verified can be expressed by the following equation.
Figure 2014016368
Here, V s is an effective value [V], ω s is an angular frequency [rad / s], and φ is a phase angle [rad] at t = 0 of the external AC power source viewed from the inverter.

このVsys(t)に対してπ/(2ωco)[s]だけ遅れた波形V sys(t)を考える。ここで、ωcoは同期検定装置の規準角周波数[rad/s]である。ωcoはωに一致するとは限らないため、V sys(t)はVsys(t)に対して正確にπ/2だけ遅れるとは限らない。

Figure 2014016368
sys(t)は次のように変形される。
Figure 2014016368
Consider a waveform V # sys (t) delayed by π / (2ω co ) [s] with respect to this V sys (t). Here, ω co is the reference angular frequency [rad / s] of the synchronous verification device. Since ω co does not always coincide with ω s , V # sys (t) is not necessarily delayed by exactly π / 2 with respect to V sys (t).
Figure 2014016368
V # sys (t) is transformed as follows.
Figure 2014016368

ここで、Vsys(t)及びV sys(t)を検定元単相交流電圧源の位相角θ(=ωt)を用いて、次のように回転座標変換する。この回転座標変換は、Vsys(t)をθの逆向きに回転させている。

Figure 2014016368
数9で得られるV(t)及びV(t)をそれぞれ周波数差余弦信号及び周波数差正弦信号と呼ぶ。 Here, V sys (t) and V # sys (t) are subjected to rotational coordinate transformation as follows using the phase angle θ i (= ωt) of the test source single-phase AC voltage source. In this rotational coordinate conversion, V sys (t) is rotated in the direction opposite to θ i .

Figure 2014016368
V 3 (t) and V 4 (t) obtained by Equation 9 are called a frequency difference cosine signal and a frequency difference sine signal, respectively.

まず、周波数差余弦信号V(t)を検討する。

Figure 2014016368
First, consider the frequency difference cosine signal V 3 (t).
Figure 2014016368

数10の第2項は、次のように変形できる。

Figure 2014016368
数11には、検定元単相交流電圧源の周波数と検定対象単相交流電圧源の周波数との和と差の周波数成分があり、その振幅は共に、
Figure 2014016368
である。この振幅は、検定対象単相交流電圧源の周波数が同期検定装置の規準周波数に近ければ小さい。例えば、前者が51Hz、後者が50Hzならば数12の値は0.0157Vs[V]である。 The second term of Equation 10 can be modified as follows.
Figure 2014016368
Equation 11 includes the frequency component of the sum and difference of the frequency of the verification source single-phase AC voltage source and the frequency of the verification-target single-phase AC voltage source, both of which have amplitudes,
Figure 2014016368
It is. This amplitude is small if the frequency of the single-phase AC voltage source to be verified is close to the reference frequency of the synchronous verification device. For example, if the former is 51 Hz and the latter is 50 Hz, the value of Equation 12 is 0.0157 Vs [V].

数11の波形をローパスフィルタで、ほぼ2倍周波数である和の周波数成分を除去すると、

Figure 2014016368
となる。従って、V(t)の和周波数成分を除去した波形をVU3(t)とすると、
Figure 2014016368
となる。 When the waveform component of Equation 11 is removed by a low-pass filter and the sum frequency component, which is approximately twice the frequency, is removed,
Figure 2014016368
It becomes. Therefore, if the waveform from which the sum frequency component of V 3 (t) is removed is V U3 (t),
Figure 2014016368
It becomes.

数14からVU3(t)は、振幅がV・cos(π(ωco−ω)/(4ωco))、周波数が検定対象単相交流電圧源と同期検定装置規準周波数との差の周波数、初期位相(t=0での位相)がφ+(π(ωco−ω)/(4ωco))である余弦波となる。一例として、ωco=100π[rad/s](50Hz)、ω=102π[rad/s](51Hz)の場合、振幅は、0・99988Vs[V]、周波数は1Hz、初期位相はφ+0.9[deg]である。 From Equation 14, V U3 (t) is the difference between the amplitude of V s · cos (π (ω co −ω s ) / (4ω co )) and the frequency of the single-phase AC voltage source to be tested and the reference frequency of the synchronous testing device. And a cosine wave whose initial phase (phase at t = 0) is φ + (π (ω co −ω s ) / (4ω co )). As an example, when ω co = 100π [rad / s] (50 Hz) and ω s = 102π [rad / s] (51 Hz), the amplitude is 0 · 99888Vs [V], the frequency is 1 Hz, and the initial phase is φ s +0.9 [deg].

ωがωcoに近いならば、VU3(t)は次の値に略等しくなる。

Figure 2014016368
If ω s is close to ω co , V U3 (t) will be approximately equal to:
Figure 2014016368

次に、周波数差正弦信号V(t)を検討する。

Figure 2014016368
Next, consider the frequency difference sine signal V 4 (t).
Figure 2014016368

数16の第2項は、次のように変形できる。

Figure 2014016368
数17には、検定元単相交流電圧源の周波数と検定対象単相交流電圧源の周波数との和と差の周波数成分があり、その振幅は共に、
Figure 2014016368
である。この振幅は数12の周波数差余弦信号V(t)の振幅と等しくなる。 The second term of Equation 16 can be modified as follows.
Figure 2014016368
Equation 17 includes frequency components of the sum and difference of the frequency of the verification source single-phase AC voltage source and the frequency of the verification-target single-phase AC voltage source,
Figure 2014016368
It is. This amplitude is equal to the amplitude of the frequency difference cosine signal V 3 (t) in Expression 12.

数17の波形をローパスフィルタで、ほぼ2倍周波数である和の周波数成分を除去すると、

Figure 2014016368
となる。従って、V(t)の和周波数成分を除去した波形をVU4(t)とすると、
Figure 2014016368
となる。 When the frequency component of the sum which is almost double frequency is removed from the waveform of Equation 17 with a low-pass filter,
Figure 2014016368
It becomes. Therefore, if the waveform from which the sum frequency component of V 4 (t) is removed is V U4 (t),
Figure 2014016368
It becomes.

数20からVU4(t)はVU3(t)と同様に、振幅がV・cos(π(ωco−ω)/(4ωco))、周波数が検定対象単相交流電圧源と検定元単相交流電圧源との差の周波数、初期位相(t=0での位相)がφ+(π(ωco−ω)/(4ωco))である正弦波となる。 From Equation 20, V U4 (t) is the same as V U3 (t), the amplitude is V s · cos (π (ω co −ω s ) / (4ω co )), and the frequency is the single-phase AC voltage source to be tested. It becomes a sine wave whose frequency and initial phase (phase at t = 0) are φ + (π (ω co −ω s ) / (4ω co )) with respect to the difference from the verification source single-phase AC voltage source.

ωがωcoに近いならば、VU4(t)は次の値に略等しくなる。

Figure 2014016368
If ω s is close to ω co , V U4 (t) will be approximately equal to:
Figure 2014016368

続いて、周波数差余弦信号VU3(t)及び周波数差正弦信号VU4(t)を用いて、検定対象単相交流電圧源と検定元単相交流電圧源との同期を検定する方法を説明する。{VU3(t)}+{VU3(t)}を計算すると数14及び数20から

Figure 2014016368
となる。例えば、同期検定装置規準周波数が50Hz、検定対象単相交流電源の周波数が49Hzとすると、
Figure 2014016368
である。通常、商用電源の周波数変動範囲は±0.2Hz程度であるので、検定対象単相交流電源の電圧の大きさを充分正確に検出できる。 Next, a method for verifying the synchronization between the verification target single-phase AC voltage source and the verification-source single-phase AC voltage source using the frequency difference cosine signal V U3 (t) and the frequency difference sine signal V U4 (t) will be described. To do. {V U3 (t)} 2 + {V U3 (t)} 2
Figure 2014016368
It becomes. For example, if the synchronous verification device standard frequency is 50 Hz and the frequency of the verification target single-phase AC power supply is 49 Hz,
Figure 2014016368
It is. Usually, since the frequency fluctuation range of the commercial power supply is about ± 0.2 Hz, the magnitude of the voltage of the verification target single-phase AC power supply can be detected sufficiently accurately.

次に、周波数差の検出について説明する。数24を計算する。

Figure 2014016368
数24を数22で割ることで周波数差を求めることができる。
Figure 2014016368
Next, detection of the frequency difference will be described. Equation 24 is calculated.
Figure 2014016368
The frequency difference can be obtained by dividing Expression 24 by Expression 22.
Figure 2014016368

さらに具体的に説明する。図2は、本実施形態の同期検定方法を実現する同期検定装置130を説明する図である。同期検定装置130は、規準角周波数ωcoと、検定対象単相交流電圧源12の検定対象電圧波形を検出するサンプラー133と、サンプラー133が検出した前記検定対象電圧波形から(m−1/2)π/ωco(mは自然数)時間を遅らせた遅延電圧波形を作成する遅延回路134と、サンプラー133が検出した前記検定対象電圧波形、遅延回路134が作成した前記遅延電圧波形、及び与えられた検定元単相交流電圧源11の検定元角周波数ω、から前記検定対象電圧波形の検定対象角周波数ωと検定元角周波数ωとの差分を角周波数とする周波数差余弦信号及び周波数差正弦信号を計算する演算部135と、を備える。 This will be described more specifically. FIG. 2 is a diagram illustrating a synchronization verification device 130 that implements the synchronization verification method of the present embodiment. The synchronization verification device 130 calculates a reference angular frequency ω co , a sampler 133 for detecting the verification target voltage waveform of the verification target single-phase AC voltage source 12, and the verification target voltage waveform detected by the sampler 133 (m−1 / 2). ) Π / ω co (where m is a natural number) a delay circuit 134 that creates a delayed voltage waveform delayed in time, the test target voltage waveform detected by the sampler 133, the delayed voltage waveform created by the delay circuit 134, and A frequency difference cosine signal and a frequency difference having an angular frequency as a difference between the verification target angular frequency ω s of the verification target voltage waveform and the verification source angular frequency ω of the verification target single-phase AC voltage source 11. And an arithmetic unit 135 for calculating a sine signal.

本実施形態では、同期検定装置130が規準角周波数ωcoを備えているが、検定元の単相交流電圧源11から受けてもよい。この場合には、単相交流電圧源11の検定元電圧波形V(t)は、次式で表すことができる。

Figure 2014016368
In this embodiment, the synchronization verification device 130 has the reference angular frequency ω co , but may be received from the single-phase AC voltage source 11 that is the verification source. In this case, the verification source voltage waveform V 1 (t) of the single-phase AC voltage source 11 can be expressed by the following equation.
Figure 2014016368

また、検定対象となる単相交流電圧源12の検定対象電圧波形V(t)は次式で表すことができる。

Figure 2014016368
サンプラー133は、この検定対象電圧波形V(t)をサンプリングする。ここで、検定対象電圧波形V(t)をサンプリングしたサンプル波形をV(nTs)と表す。Tsはサンプル周期であり、nはサンプル番号である。 Further, the verification target voltage waveform V 2 (t) of the single-phase AC voltage source 12 to be verified can be expressed by the following equation.
Figure 2014016368
The sampler 133 samples this verification target voltage waveform V 2 (t). Here, a sample waveform obtained by sampling the verification target voltage waveform V 2 (t) is represented as V 2 (nTs). Ts is a sample period, and n is a sample number.

遅延回路134は、規準角周波数ωcoが入力され、サンプル波形V(nTs)から(m−1/2)π/ωco(mは自然数)周期で遅らせた遅延電圧波形V (nTs)を作成する。 The delay circuit 134 receives the reference angular frequency ω co and the delay voltage waveform V 2 # (nTs) delayed from the sample waveform V 2 (nTs) by a period of (m−1 / 2) π / ω co (m is a natural number). ).

遅延電圧波形V (nTs)の遅れ量を、(m−1/2)π/ωcoと表すことができる。本実施形態では、m=1の場合(1/4周期遅らせた場合)を説明する。この場合、遅延電圧波形V (nTs)は次式となる。

Figure 2014016368
The delay amount of the delay voltage waveform V 2 # (nTs) can be expressed as (m−1 / 2) π / ω co . In the present embodiment, a case where m = 1 (a case where a quarter cycle is delayed) will be described. In this case, the delay voltage waveform V 2 # (nTs) is expressed by the following equation.
Figure 2014016368

演算部135は、単相交流電圧源11から検定元角周波数ωが入力される。演算部135は、サンプル波形V(nTs)、遅延電圧波形V (nTs)が入力され、検定元角周波数ωと単相交流電圧源12の検定対象角周波数ωとの差を角周波数とする周波数差余弦信号V(nTs)及び周波数差正弦信号V(nTs)を演算する。 The calculation unit 135 receives the verification source angular frequency ω from the single-phase AC voltage source 11. The calculation unit 135 receives the sample waveform V 2 (nTs) and the delay voltage waveform V 2 # (nTs), and calculates the difference between the verification source angular frequency ω and the verification target angular frequency ω s of the single-phase AC voltage source 12. A frequency difference cosine signal V 3 (nTs) and a frequency difference sine signal V 4 (nTs) as frequencies are calculated.

具体的には、演算部135は、数1のようにサンプル波形V(nTs)及び遅延電圧波形V (nTs)を回転座標変換を行い周波数差余弦信号V(nTs)及び周波数差正弦信号V(nTs)を演算する。 Specifically, the calculation unit 135 performs rotational coordinate conversion on the sample waveform V 2 (nTs) and the delayed voltage waveform V 2 # (nTs) as shown in Equation 1 to perform the frequency difference cosine signal V 3 (nTs) and the frequency difference. The sine signal V 4 (nTs) is calculated.

演算部135が演算すると、周波数差余弦信号V(nTs)及び周波数差正弦信号V(nTs)に(ω+ω)の周波数の高周波成分が含まれる。そこで、演算部135は、高周波成分を除去するローパスフィルタ(152A、152B)をさらに備える。ローパスフィルタ(152A、152B)で高周波成分を除去した周波数差余弦信号及び周波数差正弦信号をそれぞれVU3(nTs)及びVU4(nTs)と記す。

Figure 2014016368
When the calculation unit 135 calculates, the frequency difference cosine signal V 3 (nTs) and the frequency difference sine signal V 4 (nTs) include a high frequency component having a frequency of (ω s + ω). Therefore, the calculation unit 135 further includes low-pass filters (152A, 152B) that remove high-frequency components. The frequency difference cosine signal and the frequency difference sine signal from which high-frequency components have been removed by the low-pass filters (152A, 152B) are denoted as V U3 (nTs) and V U4 (nTs), respectively.
Figure 2014016368

同期検定装置130は、検出部136をさらに備える。検出部136は、演算部135が出力する周波数差余弦信号VU3(nTs)及び周波数差正弦信号VU4(nTs)を利用して、検定対象電圧波形V(t)の電圧実効値、検定対象電圧波形V(t)の検定対象角周波数ωと検定元角周波数ωとの周波数差、及び検定対象電圧波形V(t)と検定元電圧波形V(t)との位相差を検出することができる。 The synchronization verification device 130 further includes a detection unit 136. The detection unit 136 uses the frequency difference cosine signal V U3 (nTs) and the frequency difference sine signal V U4 (nTs) output from the calculation unit 135 to determine the effective voltage value and verification of the voltage waveform V 2 (t) to be tested. frequency difference between the test target angular frequency omega s test with the original angular frequency omega of the target voltage waveform V 2 (t), and the phase difference of the test target voltage waveform V 2 (t) and test the original voltage waveform V 1 (t) Can be detected.

具体的には、検出部136は、電圧実効値、周波数差、及び位相差をそれぞれ数2を計算する回路161、数3を計算する回路162、及び数4を計算する回路163で検出する。同期検定装置130は、検出した電圧実効値、周波数差、及び位相差の情報を単相交流電圧源11に入力してもよい。単相交流電圧源11は、これらの情報に基づいて検定元電圧波形V1(t)の電圧振幅値V、検定元角周波数ω、及び位相を単相交流電圧源12の電圧振幅値V、検定対象角周波数ω、及び位相φに一致させることができる。従って、同期検定装置130を用いることで単相交流電圧源11を単相交流電圧源12に同期させ、単相交流電圧源12に接続することができる。 Specifically, the detection unit 136 detects the voltage effective value, the frequency difference, and the phase difference with the circuit 161 that calculates the equation 2, the circuit 162 that calculates the equation 3, and the circuit 163 that calculates the equation 4, respectively. The synchronization verification device 130 may input the detected voltage effective value, frequency difference, and phase difference information to the single-phase AC voltage source 11. Based on this information, the single-phase AC voltage source 11 determines the voltage amplitude value V, the verification source angular frequency ω, and the phase of the verification source voltage waveform V1 (t) as the voltage amplitude value V s of the single-phase AC voltage source 12, It can be matched with the angular frequency to be tested ω s and the phase φ. Therefore, the single phase AC voltage source 11 can be synchronized with the single phase AC voltage source 12 by using the synchronization verification device 130 and can be connected to the single phase AC voltage source 12.

本実施形態の説明では、同期検定装置130が単相交流電圧源11の外部にあるとして説明したが、単相交流電圧源11が同期検定装置130を内蔵していてもよい。   In the description of the present embodiment, the synchronization verification device 130 is described as being outside the single-phase AC voltage source 11, but the single-phase AC voltage source 11 may include the synchronization verification device 130.

また、本実施形態の説明では、遅延回路134の遅れ時間を(m−1/2)π/ωcoとしたが、m周期と(m−1/2)周期とを除く任意の周期で遅らせた場合でも同様の効果を得ることができる。具体的には、遅延回路134は(2m−1)/2周期とm周期を除く周期でサンプル波形V(nTs)を遅らせて遅延電圧波形V (nTs)を生成する。例えば、遅延電圧波形V (nTs)を1/6周期、2/6周期、4/6周期、5/6周期、・・・、p/6周期(pは3の倍数ではない自然数)で遅らせることができる。また、遅延電圧波形V (nTs)を1/4周期、3/4周期、・・・、q/4周期(ただし、qは奇数)で遅らせることができる。 In the description of the present embodiment, the delay time of the delay circuit 134 is (m−1 / 2) π / ω co , but the delay time is delayed by an arbitrary period except for the m period and the (m−1 / 2) period. Even in the case of the same effect can be obtained. Specifically, the delay circuit 134 delays the sample waveform V 2 (nTs) by a period excluding (2m−1) / 2 period and m period, and generates a delayed voltage waveform V 2 # (nTs). For example, the delay voltage waveform V 2 # (nTs) is 1/6 period, 2/6 period, 4/6 period, 5/6 period,..., P / 6 period (p is a natural number that is not a multiple of 3). Can be delayed. Further, the delay voltage waveform V 2 # (nTs) can be delayed by a quarter period, a quarter period,..., A q / 4 period (where q is an odd number).

さらに、数1の行列の係数を1/√2としたが、ゼロ以外の任意の値としても構わない。   Further, although the coefficient of the matrix of Equation 1 is 1 / √2, it may be any value other than zero.

(実施例)
図3は、同期検定装置130が、単相交流電圧源12の電圧振幅V、単相交流電圧源11と単相交流電圧源12との周波数差及び位相差を検出する様子をシミュレートした結果である。同期検定装置の規準周波数を50Hz(ωco=100πrad/s)とした。単相交流電圧源11は、220V、52Hzで運転しているものとする。単相交流電圧源12は、180V(Vs)、48Hz(ωco=96πrad/s)で運転しているものとする。
(Example)
FIG. 3 simulates how the synchronization verification device 130 detects the voltage amplitude V s of the single-phase AC voltage source 12 and the frequency difference and phase difference between the single-phase AC voltage source 11 and the single-phase AC voltage source 12. It is a result. The reference frequency of the synchronous verification apparatus was 50 Hz (ω co = 100π rad / s). The single-phase AC voltage source 11 is assumed to be operating at 220 V and 52 Hz. The single-phase AC voltage source 12 is assumed to be operating at 180 V (Vs) and 48 Hz (ω co = 96π rad / s).

単相交流電圧源12の検定対象電圧波形V(t)およびその0.25サイクル遅れの遅延電圧波形V (t)から作成される周波数差余弦信号VU3(nTs)およびVU4(nTs)は、振幅が180V(単相交流電圧源12の電圧実効値)で、周波数は4Hz(検定元電圧波形の周波数と検定対象電圧波形の周波数との差の周波数)である。 Frequency difference cosine signals V U3 (nTs) and V U4 (V U4 (t) generated from the test target voltage waveform V 2 (t) of the single-phase AC voltage source 12 and the delayed voltage waveform V 2 # (t) delayed by 0.25 cycle. nTs) has an amplitude of 180 V (the voltage effective value of the single-phase AC voltage source 12) and a frequency of 4 Hz (the frequency of the difference between the frequency of the verification source voltage waveform and the frequency of the verification target voltage waveform).

検出部136は電圧実効値を180Vと検出しており、単相交流電圧源12の電圧実効値と等しい。検出部136は周波数差を−4Hzと検出しており、設定された単相交流電圧源11と単相交流電圧源12との周波数差(単相交流電圧源11に対する単相交流電圧源12の周波数差)に等しい。また、検出部136は周波数差で生ずる位相差も検出できている。   The detection unit 136 detects the effective voltage value as 180 V, and is equal to the effective voltage value of the single-phase AC voltage source 12. The detection unit 136 detects a frequency difference of −4 Hz, and the frequency difference between the set single-phase AC voltage source 11 and the single-phase AC voltage source 12 (the single-phase AC voltage source 12 is different from the single-phase AC voltage source 11). Equal to the frequency difference). The detection unit 136 can also detect a phase difference caused by a frequency difference.

本実施例で説明したように、同期検定装置130は、単相交流電圧源12の電圧実効値、単相交流電圧源11と単相交流電圧源12との周波数差、及び単相交流電圧源11と単相交流電圧源12との位相差を正確に検出することができる。   As described in the present embodiment, the synchronous verification device 130 includes the voltage effective value of the single-phase AC voltage source 12, the frequency difference between the single-phase AC voltage source 11 and the single-phase AC voltage source 12, and the single-phase AC voltage source. 11 and the single-phase AC voltage source 12 can be accurately detected.

11、12:単相交流電圧源
130:同期検定装置
133:サンプラー
134:遅延回路
135:演算部
136:検出部
151:回転座標変換回路
152A、152B:ローパスフィルタ
153:周波数差余弦信号出力端
154:周波数差正弦信号出力端
161、162、163:回路
11, 12: Single-phase AC voltage source 130: Synchronous verification device 133: Sampler 134: Delay circuit 135: Calculation unit 136: Detection unit 151: Rotation coordinate conversion circuit 152A, 152B: Low-pass filter 153: Frequency difference cosine signal output terminal 154 : Frequency difference sine signal output terminals 161, 162, 163: Circuit

Claims (6)

検定対象単相交流電圧源の検定対象電圧波形を検出するサンプリング手順と、
前記サンプリング手順で検出した前記検定対象電圧波形から(m−1)π/ωcoより大きくmπ/ωcoより小さい(mは自然数、ωcoは規準角周波数)時間を遅らせた遅延電圧波形を作成する遅延手順と、
前記サンプリング手順で検出した前記検定対象電圧波形、前記遅延手順で作成した前記遅延電圧波形、及び与えられた検定元単相交流電圧源の検定元角周波数、から前記検定対象電圧波形の検定対象角周波数と前記検定元角周波数との差分を角周波数とする周波数差余弦信号及び周波数差正弦信号を計算する演算手順と、
を行う同期検定方法。
A sampling procedure for detecting a voltage waveform to be verified of a single-phase AC voltage source to be verified;
The sampling procedure the detected in the assay target from the voltage waveform (m-1) greater than π / ω co mπ / ω co smaller (m is a natural number, omega co the reference angular frequency) generates a delay voltage waveform delayed time A delay procedure to
The verification target angle of the verification target voltage waveform from the verification target voltage waveform detected by the sampling procedure, the delayed voltage waveform created by the delay procedure, and the verification source angular frequency of a given verification source single-phase AC voltage source A calculation procedure for calculating a frequency difference cosine signal and a frequency difference sine signal in which the difference between the frequency and the test source angular frequency is an angular frequency;
Synchronous verification method.
前記遅延手順で、前記遅延電圧波形を前記検定対象電圧波形から(m−1/2)π/ωco時間遅らせることを特徴とする請求項1に記載の同期検定方法。 2. The synchronous verification method according to claim 1, wherein the delay voltage waveform is delayed by (m−1 / 2) π / ω co time from the verification target voltage waveform in the delay procedure. 前記演算手順で、数1の演算を行うことを特徴とする請求項2に記載の同期検定方法。
Figure 2014016368
また、ωは規準角周波数ωcoの75%から125%の範囲にある。
The synchronous test method according to claim 2, wherein the mathematical procedure is performed in the calculation procedure.
Figure 2014016368
Further, ω is in the range of 75% to 125% of the reference angular frequency ω co .
前記演算手順で演算する前記周波数差余弦信号及び前記周波数差正弦信号の高周波成分を除去する高周波成分除去手順をさらに行うことを特徴とする請求項1から3のいずれかに記載の同期検定方法。   The synchronous test method according to any one of claims 1 to 3, further comprising a high-frequency component removal procedure for removing the high-frequency component of the frequency difference cosine signal and the frequency difference sine signal calculated in the calculation procedure. 前記演算手順で演算する前記周波数差余弦信号及び前記周波数差正弦信号から、前記検定対象電圧波形の電圧実効値、前記検定対象角周波数と前記検定元角周波数との周波数差、及び前記検定対象電圧波形と前記検定元単相交流電圧波形との位相差を検出する検出手順をさらに行うことを特徴とする請求項1から4のいずれかに記載の同期検定方法。   From the frequency difference cosine signal and the frequency difference sine signal calculated in the calculation procedure, the voltage effective value of the verification target voltage waveform, the frequency difference between the verification target angular frequency and the verification source angular frequency, and the verification target voltage 5. The synchronous verification method according to claim 1, further comprising a detection procedure for detecting a phase difference between a waveform and the verification source single-phase AC voltage waveform. 前記検出手順で、前記電圧実効値V、前記周波数差ω−ω、及び前記位相差φをそれぞれ数2、数3、及び数4で検出することを特徴とする請求項5に記載の同期検定方法。
Figure 2014016368
ここで、Vsは前記電圧実効値である。
Figure 2014016368
ここで、ωは前記検定対象角周波数である。
Figure 2014016368
6. The voltage effective value V S , the frequency difference ω S −ω, and the phase difference φ are detected by Equation 2, Equation 3, and Equation 4, respectively, in the detection procedure. Synchronous verification method.
Figure 2014016368
Here, Vs is the voltage effective value.
Figure 2014016368
Here, ω s is the angular frequency to be tested.
Figure 2014016368
JP2013216214A 2013-10-17 2013-10-17 Synchronous verification method Expired - Fee Related JP5698819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013216214A JP5698819B2 (en) 2013-10-17 2013-10-17 Synchronous verification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013216214A JP5698819B2 (en) 2013-10-17 2013-10-17 Synchronous verification method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010013527A Division JP5394945B2 (en) 2010-01-25 2010-01-25 Synchronous verification device

Publications (2)

Publication Number Publication Date
JP2014016368A true JP2014016368A (en) 2014-01-30
JP5698819B2 JP5698819B2 (en) 2015-04-08

Family

ID=50111143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013216214A Expired - Fee Related JP5698819B2 (en) 2013-10-17 2013-10-17 Synchronous verification method

Country Status (1)

Country Link
JP (1) JP5698819B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212445A (en) * 1975-07-18 1977-01-31 Hitachi Ltd Digital synchronism indicator
JPS5240174A (en) * 1975-09-25 1977-03-28 Tokyo Electric Power Co Inc:The Digital type synchronous detection system
JPS5388940A (en) * 1977-01-17 1978-08-04 Hitachi Ltd Digital synchronous examination device
JPH01291666A (en) * 1988-05-18 1989-11-24 Fuji Electric Co Ltd Device for detecting synchronism of inverter
JPH04185232A (en) * 1990-11-19 1992-07-02 Fuji Electric Co Ltd Automatic synchronous closing device
JPH04190633A (en) * 1990-11-21 1992-07-09 Hitachi Ltd Method for operating inverter in parallel and apparatus thereof
JP5394945B2 (en) * 2010-01-25 2014-01-22 オリジン電気株式会社 Synchronous verification device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212445A (en) * 1975-07-18 1977-01-31 Hitachi Ltd Digital synchronism indicator
JPS5240174A (en) * 1975-09-25 1977-03-28 Tokyo Electric Power Co Inc:The Digital type synchronous detection system
JPS5388940A (en) * 1977-01-17 1978-08-04 Hitachi Ltd Digital synchronous examination device
JPH01291666A (en) * 1988-05-18 1989-11-24 Fuji Electric Co Ltd Device for detecting synchronism of inverter
JPH04185232A (en) * 1990-11-19 1992-07-02 Fuji Electric Co Ltd Automatic synchronous closing device
JPH04190633A (en) * 1990-11-21 1992-07-09 Hitachi Ltd Method for operating inverter in parallel and apparatus thereof
JP5394945B2 (en) * 2010-01-25 2014-01-22 オリジン電気株式会社 Synchronous verification device

Also Published As

Publication number Publication date
JP5698819B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
CN103558436B (en) Based on the method for the detection of grid voltage magnitude of single-phase phase-locked loop algorithm, frequency and phase angle
Xia et al. Single-phase phase angle measurements in electric power systems
KR100896091B1 (en) Measuring instrument for a resistive electric leakage current
Babu et al. Analysis of SDFT based phase detection system for grid synchronization of distributed generation systems
WO2015157989A1 (en) Synchronous phasor measurement method applicable to p-type phasor measurement unit (mpu)
JP5940389B2 (en) AC resistance measuring device and AC resistance measuring method
JP5394945B2 (en) Synchronous verification device
JP4171699B2 (en) Clock skew measuring apparatus and clock skew measuring method
KR100839436B1 (en) The method of power frequency estimation using the difference between the gain and cosine and sine filter
CN104020350B (en) A kind of voltage fundamental component detection method overcoming frequency to perturb
JP2006098287A (en) Harmonic component measuring apparatus
JP5698819B2 (en) Synchronous verification method
Salcic et al. An improved Taylor method for frequency measurement in power systems
JP6304956B2 (en) Resistance measuring device and resistance measuring method
WO2017219708A1 (en) Power analysis method and device
JP2003270277A (en) Instantaneous reactive power in ac circuit, method for calculating reactive power effective value and method for measuring instantaneous reactive power, reactive power effective value and phase difference
KR101538738B1 (en) Apparatus and method for frequency measurement using 3-level discreet fourier transform
JP7080757B2 (en) Impedance measuring device and impedance measuring method
JP6809695B2 (en) Asynchronous FRA
JP2015122701A (en) Synchronization detection circuit and resistance measuring apparatus
JP2010266411A (en) Synchronous phasor measuring device
Ma et al. Fast DC component suppression method for phase locked loop
JP5238358B2 (en) AC power measuring device, AC power measuring method, and single-phase AC / DC converter
Stepan et al. Implementation of flicker meter in power quality analyzers
Kyrylenko et al. Monitoring of operational parameters of interconnected power systems

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150213

R150 Certificate of patent or registration of utility model

Ref document number: 5698819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees