JPH04185130A - Diversity receiver for spread spectrum communication - Google Patents

Diversity receiver for spread spectrum communication

Info

Publication number
JPH04185130A
JPH04185130A JP2315556A JP31555690A JPH04185130A JP H04185130 A JPH04185130 A JP H04185130A JP 2315556 A JP2315556 A JP 2315556A JP 31555690 A JP31555690 A JP 31555690A JP H04185130 A JPH04185130 A JP H04185130A
Authority
JP
Japan
Prior art keywords
antenna
signal
correlation
antennas
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2315556A
Other languages
Japanese (ja)
Inventor
Takeshi Hashimoto
武志 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP2315556A priority Critical patent/JPH04185130A/en
Publication of JPH04185130A publication Critical patent/JPH04185130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radio Transmission System (AREA)

Abstract

PURPOSE:To reduce the effect of a multi-path and to attain stable transmission reception by providing a 2nd antenna parted spatially with respect to a 1st antenna and taking the signal of the 2nd antenna non-correlation from the signal of the 1st antenna. CONSTITUTION:The receiver consists of antennas 13, 14, filters 15, 16, amplifiers 17, 18, a delay device 19 and a synthesizer 20 or the like. Then the distance between the antennas 13, 14 is spatially parted by lambda/3 (lambda is a wavelength of a carrier) or over so that an SS reception signal S5(t) from the antenna 13 and an SS reception signal S6(t) from the antenna 14 are almost in non- correlation. Thus, the SS signal received by the antenna 14 reaches an independent reception signal level. For example, a phase difference of a carrier in the correlation spike is 0 deg. (synchronization), the synthesized correlation spike is not almost suppressed. Thus, the effect of the multi-path is reduced and stable transmission reception is attained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスペクトラム通信用として好適なダイバーシチ
受信装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a diversity receiving device suitable for spectrum communication.

[発明の概要コ 空間的に離れた2つのアンテナを有し、これらアンテナ
で受信されるSS信号の一方を遅延させて合成すること
により、マルチパスの影響を低減させるダイバーシチ装
置である。
[Summary of the Invention] This is a diversity device that has two spatially separated antennas and reduces the effects of multipath by delaying and combining one of the SS signals received by these antennas.

[従来の技術] スベグトラム拡散通信方式(以下SS通信方式と略す)
は、通常の狭帯域通信方式(FM等)と比較してマルチ
パスフェージングに強い方式として知られている。しか
し、直接波と反射波の遅延時間差がPNN符号2チツブ
以内の時は、必ずしもそうとはいえない。
[Prior art] Svegtram diffusion communication system (hereinafter abbreviated as SS communication system)
is known as a method that is more resistant to multipath fading than normal narrowband communication methods (such as FM). However, this is not necessarily the case when the delay time difference between the direct wave and the reflected wave is within 2 chips of the PNN code.

この問題を明らかにするため、第5図に示すように、S
S送信機1からSS受信機2に至る伝搬路において、直
接経路と反射経路が存在し、SS受信機2は直接波と反
射波を受信する場合について考える。ここで、直接波と
反射波の信号レベルは等しく、SS受信機2における相
関器としてコンボルバを用いたとする。
In order to clarify this problem, as shown in Figure 5,
A case will be considered in which there is a direct path and a reflected path in the propagation path from the S transmitter 1 to the SS receiver 2, and the SS receiver 2 receives a direct wave and a reflected wave. Here, it is assumed that the signal levels of the direct wave and the reflected wave are equal, and a convolver is used as a correlator in the SS receiver 2.

まず、SS受信機2において直接波を受信したとき、コ
ンボルバにおいて、直接波の受信PN符号とその時間反
転した参照l)入符号との相関演算が行なわれ、第6図
に示すような相関スパイクと呼ばれる相関出力が得られ
る。なお、パルス幅Tは、PN符号1チップ長となる。
First, when the SS receiver 2 receives a direct wave, the convolver performs a correlation calculation between the received PN code of the direct wave and its time-reversed reference l) input code, resulting in a correlation spike as shown in FIG. A correlation output called . Note that the pulse width T is the length of one PN code chip.

次に、直接波に続いて、同レベルの反射波を受信した場
合、直接波に対する反射波の遅延時間差がPNN符号2
チツプ長内の時は、直接波による相関スパイクと反射波
による相関スパイクが干渉することになる。
Next, when a reflected wave of the same level is received following a direct wave, the delay time difference between the reflected wave and the direct wave is PNN code 2
Within the chip length, the correlation spike due to the direct wave and the correlation spike due to the reflected wave will interfere.

例えば、直接波と反射波の遅延時間差がPt’J符号2
チップ長以内で、それぞれの受信信号に対する相関器出
力の相関スパイク中のキャリアの位相差が1.80° 
(逆相)の場合は、合成された相関スパイクは第7図で
示すようにほとんど抑圧されるため、SS通信方式の特
長であるプロセスゲインによるS/N改善効果が期待で
きなくなり、従って、データ復調性能も劣ってしまう。
For example, the delay time difference between the direct wave and the reflected wave is Pt'J code 2
Within the chip length, the carrier phase difference during the correlation spike of the correlator output for each received signal is 1.80°
In the case of (reverse phase), the synthesized correlation spikes are almost suppressed as shown in Figure 7, so the S/N improvement effect by process gain, which is a feature of the SS communication system, cannot be expected, and therefore the data Demodulation performance is also poor.

なお、この問題は、相関器とじてマツチドフィルタ等を
使用しても同じことがいえる。。
Note that this problem is the same even if a matched filter or the like is used as the correlator. .

従来方式にお(けるこのような問題点に対する解決法と
しては、狭帯域通信方式と同様に各種ダイバーシチ方式
が考えられる。ダイバーシチ方式は、統計的に相関の小
さい複数の受信信号を利用するもので、例えば、第8図
に示すような選択ダイバーシチ方式がある。
As a solution to these problems with conventional methods, various diversity methods can be considered, similar to narrowband communication methods.Diversity methods utilize multiple received signals that have statistically low correlation. For example, there is a selection diversity system as shown in FIG.

この方式は、アンテサ3,4、フィルタ5,6、増幅器
7,8、検波器9,10、包絡線比較器11、選択スイ
ッチ12等からなるもので、アンテナ3と4の距離を空
間的にλ/3 (λ、搬送波の波長)以北離すことによ
り、アンテナ3からのSS受信信信号、(t)とアンテ
ナ4からのSS受信信信号、(t)がほぼ無相関になる
ということを利用し、ている。以下第8図の各部の動作
について述べる。
This method consists of antennas 3, 4, filters 5, 6, amplifiers 7, 8, detectors 9, 10, envelope comparator 11, selection switch 12, etc., and the distance between antennas 3 and 4 is determined spatially. By separating them north by λ/3 (λ, the wavelength of the carrier wave), the SS received signal (t) from antenna 3 and the SS received signal (t) from antenna 4 become almost uncorrelated. We are using. The operation of each part shown in FIG. 8 will be described below.

フィルタ5,6はS、 (t)及びS、(t)以外の帯
域の信号の除去を行ない、増幅器7,8はS、(t)、
S、(t)の増幅を行なう、、検波器9及び10は、S
、 (t)及びS、(t)の包絡線検波を行ない、包絡
線比較器11は、検波器出力S、(t)及びS、(t)
の包絡線(受信信号レベルに相当する)の大小比較を行
ない1選択スイッチ12は、包絡線比較器11からの比
較情報より、受信信号レベルの大きなほうを選択してS
S受信機2に出力する。これにより、受信されるSS信
号のS/へが改善され、データ復調性能の向」−が期待
できる。
Filters 5 and 6 remove signals in bands other than S, (t) and S, (t), and amplifiers 7 and 8 remove signals in bands other than S, (t) and S, (t).
Detectors 9 and 10 amplify S,(t).
, (t) and S, (t), and the envelope comparator 11 detects the detector outputs S, (t) and S, (t).
The 1 selection switch 12 selects the one with the larger received signal level based on the comparison information from the envelope comparator 11, and selects the one with the larger received signal level.
Output to S receiver 2. This improves the S/ of the received SS signal, and can be expected to improve data demodulation performance.

[発明が解決しようとする課題] しかし、この従来の選択ダイバーシチ方式は、検波器9
,10、包絡線比較器11、選択スイッチ12等の数多
い回路部品が必要で、装置の小型化、コストの面で不利
となり、また、選択スイッチ12でのスイッチングノイ
ズの発生がデータ復調性能に影響するという問題点があ
った。
[Problems to be Solved by the Invention] However, this conventional selection diversity method
, 10, a large number of circuit components such as an envelope comparator 11 and a selection switch 12 are required, which is disadvantageous in terms of miniaturization and cost of the device, and switching noise generated in the selection switch 12 affects data demodulation performance. There was a problem with that.

[*、明の目的コ 本発明の目的は比較的簡単な構成で、マルチパスの影響
を低減し、安定した送受信を可能とするためのダイバー
シチ受信装置を提供するにある。
An object of the present invention is to provide a diversity receiving device that has a relatively simple configuration, reduces the effects of multipath, and enables stable transmission and reception.

[課題を解決するだめの手段] 手記[1的を達成するため、本発明のスベグトラム拡散
通信用ダイバーシヂ受信装置は、第1のアンテナと、該
第1のアンテナに対し空間的に離れた第2のアンテナと
、第2のアンテナからの<3号を所定時間遅延せしめる
遅延手民と、−1−記載1のアンテナからの信号と」−
1記遅延手段の出力を合成する合成手段と、を備えたこ
とを要旨とする。
[Means for Solving the Problems] Note [In order to achieve the first objective, the diversity receiving device for SVEG tram spread communication of the present invention has a first antenna and a second antenna spatially separated from the first antenna. an antenna, a delay device that delays <3 from the second antenna for a predetermined period of time, and -1- a signal from the antenna of description 1.
The gist of the present invention is to include a composition means for composition of the outputs of the first delay means.

[作用] 第2のアンチ欠の信号は第1のアンテナの信号とは無相
関で、そのレベルは独立であり、従って合成比ツノに応
答するSS受信機の相関スパイクがマルチパスにより抑
圧されることがなくなる。
[Operation] The second anti-missing signal is uncorrelated with the first antenna signal and its level is independent, so the correlation spike of the SS receiver in response to the composite ratio horn is suppressed by multipath. Things will go away.

[実施例] 以下本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明によるSS通信用ダイバーシチ装買の一
実施例を示す。この装置は、アンチt13゜14、フィ
ルタ+5.16、増幅器+7.18゜遅延器191合成
器20等からなる。
FIG. 1 shows an embodiment of diversity equipment for SS communication according to the present invention. This device consists of an anti-t 13° 14, a filter +5.16, an amplifier +7.18° delay 191, a synthesizer 20, etc.

次に上記実施例の動作の説明を行なう。Next, the operation of the above embodiment will be explained.

アンテナ13と14の距離を空間的にλ/;3以十離し
、アンテナ1:3側からのSS受信信信号。
The antennas 13 and 14 are spatially separated by λ/;3 or more, and the SS reception signal is received from the antenna 1:3 side.

(1)とアシテナト4側からのSS受信信信号。(1) and the SS reception signal from the Asitenato 4 side.

(1)がほぼ無相関になるようにする。フィルタ15.
16はS、(t)及びS、(t)以外の帯域の信号の除
去を行ない、増幅器17.18はS。
Make sure that (1) is almost uncorrelated. Filter 15.
16 removes signals in bands other than S, (t) and S, (t), and amplifiers 17 and 18 remove signals in bands other than S, (t).

(t)、S、(t)の増幅を行なう。遅延器19は、増
幅器18の出力S、(t)に対し遅延を行ない、遅延時
間τは、τ≧PN符号2チップ長でかつ、直接波に対し
、影響力のある反射波の最大の遅延時間がτ8とすると
、τ≧2τaの遅延時間を設定する。合成器20は、増
幅器17の出力S、(t)と遅延器19の出力S、(シ
ーτ)の合成を行なう。合成されたSS受信信号は、S
S受信機2において、周知のように増幅及び周波数変換
等を行なった後、コンボルバにおいて、時間反転した参
照PN符号とその相関演算が行なわれる。
(t), S, and (t) are amplified. The delay device 19 delays the output S,(t) of the amplifier 18, and the delay time τ is τ≧PN code 2 chip length and the maximum delay of the reflected wave that has an influence on the direct wave. Assuming that the time is τ8, a delay time of τ≧2τa is set. The combiner 20 combines the output S,(t) of the amplifier 17 and the output S,(t) of the delay device 19. The combined SS received signal is S
After amplification, frequency conversion, etc. are performed in the S receiver 2 as is well known, a time-reversed reference PN code and its correlation calculation are performed in a convolver.

なお、遅延器19により遅延をかけるのは、合成器20
によ番ハ合成されるアンテナ13側で受信されるSS信
号とアンテナ14側で受信されるSS信号を、相関器に
より相関スパイクとして時間領域で分離を行ない、アン
テナ13側とアンテナ14側のSS受信信号の干渉を除
去するためであユニで、アンテナ13側で受信されるS
S信号において、直接波と反射波の遅延時間差がPNN
符号2チツブ以内で、それぞれの受信信号に対する相関
器出力の相関スパイク中のキャリアの位相差が180’
  (逆相)の場合は、従来例でも述べたように、合成
された相関スパイクは第7図で示すようにほとんど抑圧
される。ところが、アンテナ14側において受信される
SS信号は、アンテナ13側とは無相関であるので、独
立な受信信号レベルとなる。例えば、上記、相関スパイ
ク中のキャリアの位相差においてO’  (同相)とな
れば、合成された相関スパイクは第2図で示すようにほ
とんど抑圧はされない。
Note that the delay device 19 applies the delay to the synthesizer 20.
The SS signal received at the antenna 13 side and the SS signal received at the antenna 14 side which are combined are separated in the time domain as correlation spikes by a correlator, and the SS signals at the antenna 13 side and the antenna 14 side are separated in the time domain. This is to remove the interference of the received signal, and the S received on the antenna 13 side is
In the S signal, the delay time difference between the direct wave and the reflected wave is PNN
Within code 2 chips, the carrier phase difference in the correlation spike of the correlator output for each received signal is 180'.
In the case of (reverse phase), as described in the conventional example, the synthesized correlated spikes are almost suppressed as shown in FIG. However, since the SS signal received on the antenna 14 side has no correlation with that on the antenna 13 side, the received signal level becomes independent. For example, if the phase difference of the carriers in the correlated spikes is O' (in-phase), the combined correlated spikes will hardly be suppressed as shown in FIG. 2.

本装置は、このような状態において、アンテナ14側に
おいて受信されるSS信号に遅延をかけて合成すること
により、第3図に示すように、相関スパイクがマルチパ
スにより抑圧されることをなくし、受信するSS信号の
S/N改善を行ない。
In such a state, the present device delays and synthesizes the SS signals received at the antenna 14 side, thereby eliminating the suppression of correlation spikes due to multipath as shown in FIG. Improves the S/N of the received SS signal.

データ復調性能の向上を図っている。The aim is to improve data demodulation performance.

なお、上記はアンテナが2つの場合について述べたが、
アンテナの数を複数にしてさらにデータ復調能力を向上
させる場合には、第4図のようにそれぞれにおいて1時
間領域で相関スパイクとして分離できるような遅延時間
の異なる(τ1、・・、τ、)遅延器d1〜dn−,を
用意し、その出力を合成させればよい。第4図において
、a1〜anはアンテナ、b1〜bnはフィルタ、c1
〜c、1は増幅器、eは合成器である。
Note that the above description is based on the case where there are two antennas, but
When using multiple antennas to further improve the data demodulation ability, each antenna has a different delay time (τ1,..., τ,) that can be separated as correlated spikes in the 1-time domain, as shown in Figure 4. It is sufficient to prepare delay devices d1 to dn-, and to combine their outputs. In FIG. 4, a1 to an are antennas, b1 to bn are filters, and c1
~c, 1 is an amplifier, and e is a combiner.

[発明の効果] 以上説明したように本発明の装置は従来例と比較して簡
易な構成で実現でき、回路部品を少なくすることができ
るので、装置の小型化、コストの低減が図れる。またア
ンテナ出力の合成を行なっているので、選択スイッチに
よるスイッチングノイズの発生をなくすことができる。
[Effects of the Invention] As explained above, the device of the present invention can be realized with a simpler configuration than the conventional example, and the number of circuit components can be reduced, so that the device can be made smaller and the cost can be reduced. Furthermore, since the antenna outputs are combined, it is possible to eliminate switching noise caused by the selection switch.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図及
び第3図は上記実施例の動作説明図、第4図は本発明の
他の実施例を示すブロック図、第5図乃至第7図は従来
方式の説明図、第8図は他の従来方式のブロック図であ
る。 2・・・・・・・SS受信機、13.14・・・・・・
・・・アンテナ、15.16・・・・・・・・フィルタ
、17,1.8・・・・・・・・増幅器、19・・・・
・・・遅延器、20・・・・・・合成器。 特許出願人    グラリオン株式会社代理人 弁理士
  永 1)武 三 部ll1−4 第2図 y絡碌 △ノ 第5図 第6図 工 ・      訃      1
Fig. 1 is a block diagram showing one embodiment of the present invention, Figs. 2 and 3 are explanatory diagrams of the operation of the above embodiment, Fig. 4 is a block diagram showing another embodiment of the invention, and Fig. 5 7 to 7 are explanatory diagrams of conventional systems, and FIG. 8 is a block diagram of another conventional system. 2...SS receiver, 13.14...
...Antenna, 15.16...Filter, 17,1.8...Amplifier, 19...
...Delay device, 20...Synthesizer. Patent Applicant Glarion Co., Ltd. Agent Patent Attorney Nagai 1) Take Sanbu 11-4 Figure 2

Claims (1)

【特許請求の範囲】 第1のアンテナと、 該第1のアンテナに対し空間的に離れた第2のアンテナ
と、 第2のアンテナからの信号を所定時間遅延せしめる遅延
手段と、 上記第1のアンテナからの信号と上記遅延手段の出力を
合成する合成手段と、から成ることを特徴とするスペク
トラム拡散通信用ダイバーシチ受信装置。
[Claims] A first antenna, a second antenna spatially separated from the first antenna, a delay means for delaying a signal from the second antenna for a predetermined time, A diversity receiving device for spread spectrum communication, comprising: combining means for combining a signal from an antenna and the output of the delay means.
JP2315556A 1990-11-20 1990-11-20 Diversity receiver for spread spectrum communication Pending JPH04185130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2315556A JPH04185130A (en) 1990-11-20 1990-11-20 Diversity receiver for spread spectrum communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2315556A JPH04185130A (en) 1990-11-20 1990-11-20 Diversity receiver for spread spectrum communication

Publications (1)

Publication Number Publication Date
JPH04185130A true JPH04185130A (en) 1992-07-02

Family

ID=18066769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2315556A Pending JPH04185130A (en) 1990-11-20 1990-11-20 Diversity receiver for spread spectrum communication

Country Status (1)

Country Link
JP (1) JPH04185130A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667686A2 (en) 1993-12-16 1995-08-16 Nec Corporation DS/CDMA diveristy receiver with despreading filters
JPH08307318A (en) * 1995-04-27 1996-11-22 Sumitomo Electric Ind Ltd Spread spectrum communication equipment
EP0773638A1 (en) * 1995-11-13 1997-05-14 AT&T Corp. Method and apparatus to implement antenna diversity for direct sequence spread spectrum receivers
JPH09181699A (en) * 1995-12-22 1997-07-11 Nec Corp Mobile repeater
US5687162A (en) * 1994-08-11 1997-11-11 Nec Corporation DS/CDMA receiver having an interference cancelling function capable of asssuring a desired reception quality in a narrow-band DS/CDMA
GB2340354A (en) * 1998-05-21 2000-02-16 Matsushita Electric Ind Co Ltd CDMA receiver where the received signals are phase adjusted/time delayed and then summed before despreading
US6229840B1 (en) 1997-03-04 2001-05-08 Nec Corporation Diversity circuit
WO2005022777A1 (en) 2003-09-03 2005-03-10 Koninklijke Philips Electronics N.V. Virtual-antenna receiver
US7145893B2 (en) 1997-10-31 2006-12-05 Interdigital Technology Corporation Communication station having an improved antenna system
FR2889398A1 (en) * 2005-07-27 2007-02-02 Archos Sa Portable digital terrestrial television receiving apparatus, has reception units, to receive low power digital signal, with UHF/VHF antennas to receive signal, where antennas are carried by and connected to apparatus by protecting flap
FR2889399A1 (en) * 2005-07-27 2007-02-02 Archos Sa PORTABLE GROUND TERMINAL DIGITAL TELEVISION DEVICE COMPRISING A DEVICE FOR RECEIVING A LOW POWER DIGITAL SIGNAL
US7362793B2 (en) 1993-11-22 2008-04-22 Interdigital Technology Corporation Base station having a set of phased array antennas
US7697643B2 (en) 1995-01-04 2010-04-13 Interdigital Technology Corporation Setting a transmission power level for a mobile unit
US7761077B2 (en) 2003-09-03 2010-07-20 Koninklijke Philips Electronics N.V. Diversity receiver
US8588350B2 (en) 2002-12-09 2013-11-19 Koninklijke Philips N.V. Diversity receiver having cross coupled channel parameter estimation

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362793B2 (en) 1993-11-22 2008-04-22 Interdigital Technology Corporation Base station having a set of phased array antennas
US8462876B2 (en) 1993-11-22 2013-06-11 Interdigital Technology Corporation Base station having a set of phased array antennas
US7580475B2 (en) 1993-11-22 2009-08-25 Interdigital Technology Corporation Base station having a set of phased array antennas
US5598428A (en) * 1993-12-16 1997-01-28 Nec Corporation DS/CDMA diversity receiver with despreading filters using combiner wherein first and second despreading filters are delayed with respect to each other by a period of half the chip rate
EP0667686A2 (en) 1993-12-16 1995-08-16 Nec Corporation DS/CDMA diveristy receiver with despreading filters
US5687162A (en) * 1994-08-11 1997-11-11 Nec Corporation DS/CDMA receiver having an interference cancelling function capable of asssuring a desired reception quality in a narrow-band DS/CDMA
US7697643B2 (en) 1995-01-04 2010-04-13 Interdigital Technology Corporation Setting a transmission power level for a mobile unit
US7961822B2 (en) 1995-01-04 2011-06-14 Interdigital Technology Corporation Setting a transmission power level for a mobile unit
US8824523B2 (en) 1995-01-04 2014-09-02 Intel Corporation Setting a transmission power level for a mobile unit
US8340228B2 (en) 1995-01-04 2012-12-25 Intel Corporation Setting a transmission power level for a mobile unit
JPH08307318A (en) * 1995-04-27 1996-11-22 Sumitomo Electric Ind Ltd Spread spectrum communication equipment
EP0773638A1 (en) * 1995-11-13 1997-05-14 AT&T Corp. Method and apparatus to implement antenna diversity for direct sequence spread spectrum receivers
JPH09181699A (en) * 1995-12-22 1997-07-11 Nec Corp Mobile repeater
US6229840B1 (en) 1997-03-04 2001-05-08 Nec Corporation Diversity circuit
US7145893B2 (en) 1997-10-31 2006-12-05 Interdigital Technology Corporation Communication station having an improved antenna system
GB2340354A (en) * 1998-05-21 2000-02-16 Matsushita Electric Ind Co Ltd CDMA receiver where the received signals are phase adjusted/time delayed and then summed before despreading
US8588350B2 (en) 2002-12-09 2013-11-19 Koninklijke Philips N.V. Diversity receiver having cross coupled channel parameter estimation
US7761077B2 (en) 2003-09-03 2010-07-20 Koninklijke Philips Electronics N.V. Diversity receiver
US7573961B2 (en) 2003-09-03 2009-08-11 Koninklijke Philips Electronics N.V. Virtual-antenna receiver
WO2005022777A1 (en) 2003-09-03 2005-03-10 Koninklijke Philips Electronics N.V. Virtual-antenna receiver
FR2889399A1 (en) * 2005-07-27 2007-02-02 Archos Sa PORTABLE GROUND TERMINAL DIGITAL TELEVISION DEVICE COMPRISING A DEVICE FOR RECEIVING A LOW POWER DIGITAL SIGNAL
FR2889398A1 (en) * 2005-07-27 2007-02-02 Archos Sa Portable digital terrestrial television receiving apparatus, has reception units, to receive low power digital signal, with UHF/VHF antennas to receive signal, where antennas are carried by and connected to apparatus by protecting flap

Similar Documents

Publication Publication Date Title
JP2705623B2 (en) Diversity transmission / reception method and transceiver
JP3338747B2 (en) Interference wave canceller
JP3796721B2 (en) Phased array spread spectrum system and method
EP0851605B1 (en) Space diversity receiving circuit
US6625202B1 (en) Mobile station for spread spectrum communication
JPH04185130A (en) Diversity receiver for spread spectrum communication
EP1231720A2 (en) Adaptive antenna receiving apparatus
JPH09116475A (en) Time diversity transmission/reception system
JPH10247869A (en) Diversity circuit
JP2001069041A (en) Device for providing digital radio link, communication system, operation method, receiver and searcher
JP2982795B1 (en) Spread spectrum signal receiving method and receiver
JPS63286027A (en) Transmission path diversity transmission system
US20060007040A1 (en) Radio frequency signal receiving apparatus, a radio frequency signal transmitting apparatus, and a calibration method
JP2973416B1 (en) RAKE receiving circuit
KR20040111604A (en) Path search device and method, and array antenna reception device using the same
JPH0787057A (en) Diversity receiver for spread spectrum communication
US6233272B1 (en) Spread spectrum communication receiver
US7573934B2 (en) Spread spectrum rake receiver
KR19990088362A (en) Cdma receiving apparatus and cdma communicating method
JP3380435B2 (en) RAKE receiver
JP3223403B2 (en) One-frequency time-division two-way spread spectrum communication system
JPH04234238A (en) Diversity device for spread spectrum communication
JP2002118492A (en) Reverse diffusing circuit
JP2806921B2 (en) Diversity receiver for spread spectrum communication system.
JP3160591B2 (en) Direct spread receiver and direct spread transmitter