JPH04184975A - Substrate formed of bimolecular film - Google Patents

Substrate formed of bimolecular film

Info

Publication number
JPH04184975A
JPH04184975A JP2312603A JP31260390A JPH04184975A JP H04184975 A JPH04184975 A JP H04184975A JP 2312603 A JP2312603 A JP 2312603A JP 31260390 A JP31260390 A JP 31260390A JP H04184975 A JPH04184975 A JP H04184975A
Authority
JP
Japan
Prior art keywords
substrate
thin film
mesh
bilayer
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2312603A
Other languages
Japanese (ja)
Inventor
Hajime Yamaguchi
一 山口
Hiroshi Nakanishi
博 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2312603A priority Critical patent/JPH04184975A/en
Publication of JPH04184975A publication Critical patent/JPH04184975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To make it possible to form a multitude of bimolecular films in close proximity to each other in a two-dimensional manner on the same substrate by a method wherein an organic thin film having a hydrophobic nature is applied on the surface of a sheetlike metal substrate having a mesh structure. CONSTITUTION:In the case an organic thin film having a hydrophobic nature is applied on the surface of a sheetlike metal substrate having a mesh structure, a deposition method wherein an organic compound is heated to vaporize and the vaporized compound is made to deposit on the substrate surface, a coating method of applying a solution obtainable by dissolving an organic compound in a solvent on the substrate surface and an electrolytic polymerization method are used. In the case of the electrolytic polymerization method, the substrate is dipped in a solution of a monomer, which is an organic compound, and an organic thin film is formed on the substrate surface by performing an electrolytic polymerization. By using the substrate with bimolecular films formed thereon, the bimolecular films are respectively formed in each mesh of the sheetlike metal substrate having a mesh structure. Accordingly, a multitude of the bimolecular films can be formed in very close proximity to each other.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は二分子膜作製基板に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a bilayer membrane production substrate.

(従来の技術) 現在までのところ、シリコンを中心とした半導体技術に
よるトランジスタ、10%LSI、超LSIの開発が行
われ、今日のエレクトロニクスの基礎が築かれてきた。
(Prior Art) To date, transistors, 10% LSIs, and ultra-LSIs have been developed using semiconductor technology centered on silicon, and the foundations of today's electronics have been laid.

一方、生命又は生体現象の解明に伴い、新しい考え方に
基づいた材料や素子の開発への期待が高まっている。こ
れは、生体現象を模倣し、情報処理、認識、記憶などの
面でこれまでの考え方と異なる原理に基礎をおく材料や
素子によって、新しいエレクトロニクス技術を担うとい
う考え方に基づいている。
On the other hand, with the elucidation of life and biological phenomena, expectations are increasing for the development of materials and devices based on new ideas. This is based on the idea that new electronics technology can be created using materials and elements that imitate biological phenomena and are based on principles different from previous ideas in terms of information processing, recognition, memory, etc.

生体機能を発現する場としての生体膜は、外部からの情
報の認識と膜内への伝送、物質の変換、輸送など種々の
重要な役割を果たしている。このため、生体系を模倣し
た材料や素子の作製にとって、人工的な膜の開発が極め
て重要である。こうした人工的な膜として高分子キャス
ト膜、ラングミュア・プロジェット(LB)膜など種々
のものが考えられているが、生体膜モデルとしては二分
子膜系が最も生体膜に近い形態である。この二分子膜は
、水中において、基板に設けられた小孔内に、リン脂質
などの両親媒性分子を疎水部のアルキル鎖どうしを向け
たかたちで、二分子層配列させた超薄膜のことである。
Biological membranes, which are places where biological functions are expressed, play a variety of important roles, such as recognition of information from the outside, transmission of information into the membrane, and conversion and transport of substances. Therefore, the development of artificial membranes is extremely important for the production of materials and devices that mimic biological systems. Various types of such artificial membranes have been considered, such as polymer cast membranes and Langmuir-Prodgett (LB) membranes, but as a biological membrane model, a bilayer membrane system is the closest to a biological membrane. This bilayer membrane is an ultra-thin film in which two layers of amphiphilic molecules such as phospholipids are arranged in small pores in a substrate in water, with the alkyl chains of the hydrophobic parts facing each other. It is.

ところで、二分子膜を用いて2次元的な情報変換のため
の集積素子を開発するには、同一基板上に2次元的に配
置された2個以上の小孔に二分子膜を形成することが必
要となる。
By the way, in order to develop an integrated device for two-dimensional information conversion using a bilayer membrane, it is necessary to form a bilayer membrane in two or more small holes arranged two-dimensionally on the same substrate. Is required.

従来、二分子膜作製基板としては、テフロンなどに機械
的加工により小孔を設けたものが用いられている。しか
し、テフロンでは複数の小孔が互いに近接するように加
工することは極めて困難である。
Conventionally, as a substrate for producing a bilayer membrane, a material such as Teflon in which small holes are formed by mechanical processing has been used. However, with Teflon, it is extremely difficult to process a plurality of small holes so that they are close to each other.

(発明が解決しようとする課題) 本発明は前述した問題点を解決するためになされたもの
であり、同一基板上に2次元的に多数の二分子膜を互い
に近接して形成することが可能な二分子膜作製基板を提
供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and it is possible to form a large number of bilayer films two-dimensionally close to each other on the same substrate. The purpose of the present invention is to provide a bilayer membrane fabrication substrate.

[発明の構成] (課題を解決するための手段) 本発明の二分子膜作製基板は、メツシュ構造を有するシ
ート状金属基板の表面に疎水性を有する有機薄膜を被覆
したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The bilayer film production substrate of the present invention is characterized in that the surface of a sheet metal substrate having a mesh structure is coated with a hydrophobic organic thin film. It is.

本発明において、メツシュ構造を有するシート状金属基
板の材質は特に限定されるものではなく、鉄、ニッケル
、銅、白金、金、銀、チタンなどの純金属、又はステン
レスなどの合金など種々のものを用いることができる。
In the present invention, the material of the sheet-like metal substrate having a mesh structure is not particularly limited, and various materials such as pure metals such as iron, nickel, copper, platinum, gold, silver, and titanium, and alloys such as stainless steel can be used. can be used.

メツシュの大きさは二分子膜が安定に形成される大きさ
、例えば数−〜数百−の種々のものを用いることができ
る。メツシュの形状は、四角形、六角形など種々の形状
とすることができる。
The size of the mesh may be a size that allows stable bilayer membrane formation, for example, several to several hundred mesh sizes. The shape of the mesh can be various shapes such as quadrangular and hexagonal.

本発明において、メツシュ構造を有するシート状金属基
板の表面に疎水性を有する有機薄膜を被覆する方法は特
に限定されない。例えば、有機化合物を加熱して気化さ
せ、基板表面に蒸着させる蒸着法、有機化合物を溶媒に
溶解した溶液を基板表面に塗布して乾燥させる塗布法、
有機化合物上ツマ−の溶液に基板を浸漬し、基板を電極
として電解重合することにより基板表面に有機薄膜を形
成する電解重合法などが挙げられる。これらの方法のう
ちでは、薄膜の厚みの制御性、薄膜の安定性の観点から
、電解重合法が好ましい。電解重合法により形成される
有機薄膜としては、ポリスチレン、ポリピロール、ポリ
チオフェンなどが挙げられる。有機薄膜はそれ自体疎水
性を有するものであってもよいし、その表面を疎水化処
理してもよい。
In the present invention, there are no particular limitations on the method for coating the surface of a sheet metal substrate having a mesh structure with a hydrophobic organic thin film. For example, a vapor deposition method in which an organic compound is heated and vaporized and then deposited on a substrate surface, a coating method in which a solution of an organic compound dissolved in a solvent is applied to a substrate surface and dried;
Examples include an electrolytic polymerization method in which a substrate is immersed in a solution of an organic compound and electrolytically polymerized using the substrate as an electrode to form an organic thin film on the surface of the substrate. Among these methods, the electrolytic polymerization method is preferable from the viewpoint of controllability of the thickness of the thin film and stability of the thin film. Examples of organic thin films formed by electrolytic polymerization include polystyrene, polypyrrole, polythiophene, and the like. The organic thin film itself may be hydrophobic, or its surface may be subjected to hydrophobic treatment.

本発明の二分子膜作製基板に二分子膜を作製する方法と
しては、周知の張り合わせ法(センタール法)、又は刷
毛塗り法のいずれも用いることができる。
As a method for producing a bilayer film on the bilayer film production substrate of the present invention, either the well-known bonding method (center method) or the brush coating method can be used.

(作 用) 本発明の二分子膜作製基板を用いれば、メツシュ構造を
有するシート状金属基板の各メツシュに二分子膜が形成
されるので、多数の二分子膜を互いに極めて近接して作
製することができる。この結果、各メツシュに形成され
た二分子膜間の相互作用を利用した各種の機能素子を作
製することができる。また、メツシュの大きさは、従来
のテフロンなどに形成される小孔と比較して極めて小さ
くすることができるので、二分子膜を安定に保持するこ
とができる。更に、電解重合法により有機薄膜を形成す
れば、電圧の印加時間及び強さを制御することにより薄
膜の厚さを容品に41mすることができるので、メツシ
ュの大きさを均一化することができる。
(Function) When the bilayer film production substrate of the present invention is used, a bilayer film is formed on each mesh of a sheet metal substrate having a mesh structure, so that a large number of bilayer films can be produced very close to each other. be able to. As a result, it is possible to produce various functional elements that utilize the interaction between the bilayer films formed on each mesh. Further, the size of the mesh can be made extremely small compared to the small pores formed in conventional Teflon, etc., so that the bilayer membrane can be stably held. Furthermore, if an organic thin film is formed using the electrolytic polymerization method, the thickness of the thin film can be made 41 m on the container by controlling the voltage application time and intensity, so the size of the mesh can be made uniform. can.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1 400メツシユの銅製のシート状基板を、0.02Mの
ピロールモノマー及び電解質として0.1Mのテトラエ
チルアンモニウムテトラフルオロボレートを含むアセト
ニトリル中に浸漬し、対極として金電極、参照極として
飽和カロメル電極を用い、電圧0.8V、電流密度0.
22m A / c+n 2の条件で電解反応を行った
。この結果、シート状基板の表面にポリピロール膜が析
出した。
Example 1 A 400-mesh copper sheet-like substrate was immersed in acetonitrile containing 0.02M pyrrole monomer and 0.1M tetraethylammonium tetrafluoroborate as an electrolyte, with a gold electrode as a counter electrode and a saturated calomel electrode as a reference electrode. using a voltage of 0.8V and a current density of 0.
The electrolytic reaction was carried out under the conditions of 22 mA/c+n2. As a result, a polypyrrole film was deposited on the surface of the sheet-like substrate.

この二分子膜作製基板を用い、張り合わせ法によりN−
(7−ニドロベンズー2−オキサ−1,3−ジアゾール
−4−イル) −L−a−ジパルミトイルフォスファチ
ジルエタノールアミンの二分子膜を形成した。
Using this bilayer membrane fabrication substrate, N-
A bilayer film of (7-nidrobenzo-2-oxa-1,3-diazol-4-yl)-L-a-dipalmitoylphosphatidylethanolamine was formed.

各メツシュに二分子膜が安定に形成されていることが確
認された。
It was confirmed that a bilayer membrane was stably formed on each mesh.

実施例2 200メツシユの白金製のシート状基板を、0.1Mの
チオフェンモノマー及び電解質として0.1Mのテトラ
エチルアンモニウムテトラフルオロボレートを含むアセ
トニトリル中に浸漬し、対極として金電極、参照極とし
て銀塩化銀電極を用い、電圧1.eV、電流密度0.2
8m A / am 2の条件で電解反応を行った。こ
の結果、シート状基板の表面にポリチオフェン膜が析出
した。
Example 2 A 200 mesh platinum sheet-like substrate was immersed in acetonitrile containing 0.1M thiophene monomer and 0.1M tetraethylammonium tetrafluoroborate as an electrolyte, a gold electrode as a counter electrode, and a silver chloride electrode as a reference electrode. Using a silver electrode, voltage 1. eV, current density 0.2
The electrolytic reaction was carried out under the conditions of 8 mA/am2. As a result, a polythiophene film was deposited on the surface of the sheet-like substrate.

この二分子膜作製基板を用い、張り合わせ法によりN−
(7−ニドロベンズー2−オキサ−1,3−ジアゾール
−4−イル)−L−α−ジバルミトイルフオスファチジ
ルエタノールアミンの二分子膜を形成した。
Using this bilayer membrane fabrication substrate, N-
A bilayer film of (7-nidrobenzo-2-oxa-1,3-diazol-4-yl)-L-α-divalmitoylphosphatidylethanolamine was formed.

各メツシュに二分子膜が安定に形成されていることが確
認された。
It was confirmed that a bilayer membrane was stably formed on each mesh.

[発明の効果] 以上詳述したように本発明の二分子膜作製基板を用いれ
ば、メツシュ構造を有するシート状金属基板の各メツシ
ュに二分子膜が形成されるので、多数の二分子膜を互い
に極めて近接して作製することができる。
[Effects of the Invention] As detailed above, if the bilayer film production substrate of the present invention is used, a bilayer film is formed on each mesh of a sheet metal substrate having a mesh structure, so a large number of bilayer films can be formed. They can be made very close to each other.

出願人代理人 弁理士 鈴江武彦Applicant's agent: Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] メッシュ構造を有するシート状金属基板の表面に疎水性
を有する有機薄膜を被覆したことを特徴とする二分子膜
作製基板。
A bilayer film production substrate characterized in that the surface of a sheet metal substrate having a mesh structure is coated with a hydrophobic organic thin film.
JP2312603A 1990-11-20 1990-11-20 Substrate formed of bimolecular film Pending JPH04184975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312603A JPH04184975A (en) 1990-11-20 1990-11-20 Substrate formed of bimolecular film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312603A JPH04184975A (en) 1990-11-20 1990-11-20 Substrate formed of bimolecular film

Publications (1)

Publication Number Publication Date
JPH04184975A true JPH04184975A (en) 1992-07-01

Family

ID=18031199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312603A Pending JPH04184975A (en) 1990-11-20 1990-11-20 Substrate formed of bimolecular film

Country Status (1)

Country Link
JP (1) JPH04184975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108486A (en) * 2004-10-07 2006-04-20 National Univ Corp Shizuoka Univ Molecule wire, manufacturing method thereof, molecule film, and electronic element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108486A (en) * 2004-10-07 2006-04-20 National Univ Corp Shizuoka Univ Molecule wire, manufacturing method thereof, molecule film, and electronic element

Similar Documents

Publication Publication Date Title
Zhang et al. Dopamine-triggered one-step polymerization and codeposition of acrylate monomers for functional coatings
Li et al. Molecular layer deposition of thiol− ene multilayers on semiconductor surfaces
Hou et al. Building bio‐inspired artificial functional nanochannels: From symmetric to asymmetric modification
Smela Microfabrication of PPy microactuators and other conjugated polymer devices
Coclite et al. 25th anniversary article: CVD polymers: a new paradigm for surface modifi cation and device fabrication
US5403680A (en) Photolithographic and electron beam lithographic fabrication of micron and submicron three-dimensional arrays of electronically conductive polymers
Bartlett et al. Electrochemical syntheses of highly ordered macroporous conducting polymers grown around self-assembled colloidal templates
Adenier et al. Attachment of polymers to organic moieties covalently bonded to iron surfaces
Hidber et al. New strategy for controlling the size and shape of metallic features formed by electroless deposition of copper: Microcontact printing of catalysts on oriented polymers, followed by thermal shrinkage
Krabbenborg et al. Electrochemically generated gradients
Krishnamoorthy et al. Block copolymer micelles as switchable templates for nanofabrication
Reculusa et al. Design of catalytically active cylindrical and macroporous gold microelectrodes
EP1735113A2 (en) Plasma-polymerisation of polycyclic compounds
Bui et al. Large-scale fabrication of commercially available, nonpolar linear polymer film with a highly ordered honeycomb pattern
Hagen et al. Shift-time polyelectrolyte multilayer assembly: fast film growth and high gas barrier with fewer layers by adjusting deposition time
Santos et al. Micro/nano-structured polypyrrole surfaces on oxidizable metals as smart electroswitchable coatings
JP2012051060A (en) Substrate provided with metal nanostructure on surface thereof and method for producing the same
Wang et al. Micropatterned polymer surfaces induced by nonsolvent
Wang et al. Polymer‐Assisted Metallization of Mammalian Cells
Decher et al. Layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA
Escobar et al. Composite fluorocarbon membranes by surface-initiated polymerization from nanoporous gold-coated alumina
Lee et al. Patterned and controlled polyelectrolyte fractal growth and aggregations
Yang et al. Conformal 3D nanopatterning by block copolymer lithography with vapor-phase deposited neutral adlayer
CN110534641A (en) A kind of stretchable memristor and the preparation method and application thereof based on elastomeric polymer as active layer
Qiang et al. Robust Conductive micropatterns on PTFE achieved via selective UV-induced graft copolymerization for flexible electronic applications