JPH04184133A - Detection of pinhole on pipe body - Google Patents

Detection of pinhole on pipe body

Info

Publication number
JPH04184133A
JPH04184133A JP31330090A JP31330090A JPH04184133A JP H04184133 A JPH04184133 A JP H04184133A JP 31330090 A JP31330090 A JP 31330090A JP 31330090 A JP31330090 A JP 31330090A JP H04184133 A JPH04184133 A JP H04184133A
Authority
JP
Japan
Prior art keywords
pinhole
sound wave
tubular body
sound
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31330090A
Other languages
Japanese (ja)
Inventor
Tamami Shimomura
珠三 霜村
Masami Inami
稲見 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP31330090A priority Critical patent/JPH04184133A/en
Publication of JPH04184133A publication Critical patent/JPH04184133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To easily detect the existence and position of a pinhole by installing sound wave detecting sensors at two places on a tubular body, detecting the sound which is formed by the leak of the pressurized gas from the pinhole on a pipe, and comparing the wave shape of the sound wave. CONSTITUTION:When a pin-hole 11 exists on a tubular body 1, pressurized gas leaks from inside, and leak noise reaches both the edges of the pipe 1, and detected by the sound wave detection sensors 21 and 22, and the result is displayed on the display devices 31 and 32, and the sound wave shape is compared. If the wave height values of the displayed wave shapes of the sensors 31 and 32 are equal, the pinhole 11 exists at the intermediate point of the positions of the sensors 21 and 22, and if the wave height value on the display device 31 side is sufficiently large, it is judged that the pinhole 11 exists in the vicinity of the sensor 21. The installation division of the sensors 21 and 22 is represented in ratio form from the ratio of the attenuation degree of the wave form, and the position of the pinhole can be calculated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、銅管等の管状体中のピンホールの有無及び位
置を検出する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting the presence and location of pinholes in a tubular body such as a copper pipe.

[従来の技術及びその問題点] 鋼管、アルミニウム管等の金属管や塩化ビニル管等の管
状体が損傷している場合、特に管状体を貫通するような
孔が存在している場合は、該欠陥部位から水等が侵入し
易くなったり漏洩し易くなり管状体の劣化を促進きせる
。また、OFケーブルのアルミシース等に貫通孔が存在
すると、ケーブルコア内に水が侵入し絶縁破壊を起こす
原因となる。このような欠陥部位が大きなものであれば
目視にて確認できなくもないが、微小なピンホールの場
合はその検出が極めて困難である。
[Prior art and its problems] If a tubular body such as a metal pipe such as a steel pipe or aluminum pipe or a vinyl chloride pipe is damaged, especially if there is a hole penetrating the tubular body, Water or the like becomes more likely to enter or leak from the defective site, accelerating deterioration of the tubular body. Further, if a through hole exists in the aluminum sheath of the OF cable, water may enter the cable core and cause dielectric breakdown. If such a defect site is large, it can be visually confirmed, but if it is a minute pinhole, it is extremely difficult to detect it.

従来、管状体のピンホール検出方法としては、管状体試
料内に加圧気体を充填し、該試料を水中に浸漬して発泡
を観察する方法がある。この方法はピンホールの有無及
び位置を一目で知見できるが、長尺の管状体に適用し難
い欠点がある。
Conventionally, as a method for detecting pinholes in a tubular body, there is a method in which a pressurized gas is filled into a tubular body sample, the sample is immersed in water, and bubbling is observed. Although this method allows the presence and location of pinholes to be known at a glance, it has the disadvantage that it is difficult to apply to long tubular bodies.

また、管状体内に一定圧力の気体を充填し、その圧力変
化を監視する方法もある。この方法は長尺管状体にも適
用可能であり、加圧気体の圧力減少をチエツクするのみ
で比較的容易にピンホールの有無を知見できるが、ピン
ホールの存在位置まで検出することはできない。
Another method is to fill the tubular body with gas at a constant pressure and monitor changes in the pressure. This method can also be applied to long tubular bodies, and the presence or absence of pinholes can be detected relatively easily simply by checking the decrease in pressure of pressurized gas, but it is not possible to detect the location of pinholes.

従って本発明は、管状体、特に長尺の管状体のとンホー
ルの有無及び位置を容易に知見し得る方法を提供するこ
とを目的とする。
Therefore, an object of the present invention is to provide a method by which the presence or absence and position of a hole in a tubular body, particularly a long tubular body, can be easily determined.

[課題を解決するための手段] 本発明の管状体のピンホール検出方法は、管状体の周上
に、ピンホールを検出すべき区間の間隔をあけて2ポイ
ントに音波検出センサをそれぞれ設置しておき、前記管
状体内に加圧気体を充填し、該気体が外被のピンホール
から漏洩した場合に発生する漏洩前が、管状体を伝搬し
て前記2ポイントに達した時の音波を前記各音波検出セ
ンサでそれぞれ検出すると共に、各音波検出センサの検
出音波波形を対比することにより、管状体中のピンホー
ルの有無及び位置を知見することを特徴とするものであ
る。
[Means for Solving the Problems] The method for detecting pinholes in a tubular body of the present invention includes installing sound wave detection sensors at two points on the circumference of the tubular body with an interval between sections where pinholes are to be detected. The tubular body is filled with pressurized gas, and the sound wave generated when the gas leaks from a pinhole in the outer jacket propagates through the tubular body and reaches the two points described above. The present invention is characterized in that the presence or absence and position of a pinhole in the tubular body can be determined by detecting it with each sound wave detection sensor and comparing the detected sound wave waveforms of each sound wave detection sensor.

[作用] 加圧気体を充填した管状体にピンホールが存在すると、
加圧気体がピンホールから漏洩し、この時に気体漏洩前
が発生する。該漏洩前はピンホール部位を起点として管
状体材料中を両方向に音波として伝搬するので、管状体
周上に設置した音波検出センサにより前記音波を検出す
ることによって、ピンホールの有無を検知することがで
きる。
[Function] If a pinhole exists in a tubular body filled with pressurized gas,
Pressurized gas leaks from the pinhole, and at this time a gas pre-leak occurs. Before the leakage, sound waves propagate in both directions in the tubular body material starting from the pinhole site, so the presence or absence of a pinhole can be detected by detecting the sound waves with a sound wave detection sensor installed on the circumference of the tubular body. I can do it.

また、音波は材料中を伝搬すると定数的に減衰するので
、管状体の2ポイントでそれぞれ音波検出センサで検出
した音波を対比することにより、その波形の大きざの比
率からピンホールの位置を算出することができる。
In addition, since sound waves are attenuated constant as they propagate through the material, by comparing the sound waves detected by sound wave detection sensors at two points on the tubular body, the position of the pinhole can be calculated from the ratio of the waveform sizes. can do.

[実施例] 以下図面に基づいて本発明の一実施例を詳細に説明する
[Example] An example of the present invention will be described in detail below based on the drawings.

第1図は本発明にかかる検出方法を示す模式的な断面図
である。図において、1は管状体であり、各種金属管や
ゴム・プラスチック管、あるいは電気ケーブルの外被等
のいずれであっても良い。このような管状体1の両端部
局上には、音波検出センサ21.22がそれぞれ設けら
れている。
FIG. 1 is a schematic cross-sectional view showing the detection method according to the present invention. In the figure, 1 is a tubular body, which may be any of various metal tubes, rubber/plastic tubes, or the outer jacket of an electric cable. Sonic detection sensors 21 and 22 are provided on both ends of the tubular body 1, respectively.

音波検出センサ21,22としては各種マイクロフォン
を使用することができるが、本発明においては管状体1
中の伝搬音をキャッチする必要があるので、動電形リボ
ンマイクロフォン等の指向性を有するものを使用し、指
向面を管状体1表面側に当接させることが伝搬音を効率
良くキャッチするために望ましい。音波検出センサ21
,22は本実施例のように必ずしも管状体10両端部に
設置せずとも、管状体1のピンホールを検出すべき任意
の区間の間隔をあけて2ポイントに設置すれば良い。そ
して音波検出センサ21.22には、それぞれがキャッ
チした音波を表示する音波表示装置31.32を接碕し
ている。
Various types of microphones can be used as the sound wave detection sensors 21 and 22, but in the present invention, the tubular body 1
Since it is necessary to catch the propagating sound inside, it is necessary to use a device with directional properties such as an electrodynamic ribbon microphone, and to bring the directional surface into contact with the surface side of the tubular body 1, in order to efficiently catch the propagating sound. desirable. Sound wave detection sensor 21
, 22 are not necessarily installed at both ends of the tubular body 10 as in this embodiment, but may be installed at two points at an interval of an arbitrary section in which a pinhole in the tubular body 1 is to be detected. Each of the sound wave detection sensors 21 and 22 is connected to a sound wave display device 31 and 32 that displays the sound wave that each sensor catches.

上記のように準備を行い、先ず管状体1の両端部を栓体
12,13により閉塞して管状体1内部を気密状態とし
ておく。次いで栓体12に穿孔した注入口よりエアーポ
ンプ4等を用いて、例えば空気、窒素等の気体を送出し
、管状体l内部を加圧気体が充填された状態とする。
Preparations are made as described above, and first, both ends of the tubular body 1 are closed with plugs 12 and 13 to make the inside of the tubular body 1 airtight. Then, using an air pump 4 or the like, a gas such as air or nitrogen is sent out from an inlet drilled in the stopper 12, so that the inside of the tubular body 1 is filled with pressurized gas.

ここで、管状体1にピンホール11が存在している場合
、内部の加圧気体は該ビンネール11から漏洩するが、
この時機小孔から加圧流体がリークする場合に生ずるよ
うな漏洩前がピンホール11存在部位から発生する。該
漏洩前は、ピンホール11部位を起点として管状体1中
をその両端部に向けて伝搬する。そしてこの伝搬音が管
状体1の両端部に達した時、すなわち音波検出センサ2
1.22を設置した2ポイントに達した時、音波として
各音波検出センサ21.22にてそれぞれ検出きれる。
Here, if a pinhole 11 exists in the tubular body 1, the pressurized gas inside will leak from the pinhole 11, but
At this time, a pre-leakage occurs from the location where the pinhole 11 exists, as would occur if the pressurized fluid leaked from the small hole. Before the leakage, the leakage propagates through the tubular body 1 toward both ends thereof, starting from the pinhole 11 portion. When this propagated sound reaches both ends of the tubular body 1, that is, the sound wave detection sensor 2
1.22, each of the sound wave detection sensors 21 and 22 can detect the sound wave as a sound wave.

ここで、検出した音波を音波表示装置31.32でそれ
ぞれ表示させるようにすれば、検出音波波形の対比を行
うことができる。
Here, if the detected sound waves are displayed on the sound wave display devices 31 and 32, the detected sound wave waveforms can be compared.

ところで、媒質内を音波が伝搬する場合、音波エネルギ
ーは波の進行と共にその一部が媒質の中に吸収され音波
吸収減衰が起きる。この吸収減衰率は同一媒質材料では
一定であり、従って音波検出センサ21.22の検出音
波波形を対比することにより、その波高値の比率等から
ピンホール11の位置を算出することができる。例えば
、音波検出センサ31.32の表示波形の波高値が同一
であれば、ピンホール11は音波検出センサ21゜22
の設置位置の中間点に位置することになり、表示装置3
11110波高値が十分大であれば、音波検出センサ2
1側近くにピンホール11が存在するという具合に、音
波の減衰度合の比率から、音波検出センサ21.22を
設置した区間を比率化して算出することによりピンホー
ル11の位置を検出することができる。
By the way, when a sound wave propagates within a medium, a portion of the sound wave energy is absorbed into the medium as the wave advances, causing sound wave absorption and attenuation. This absorption/attenuation rate is constant for the same medium material, so by comparing the waveforms of the sound waves detected by the sound wave detection sensors 21 and 22, the position of the pinhole 11 can be calculated from the ratio of their peak values. For example, if the peak values of the displayed waveforms of the sound wave detection sensors 31 and 32 are the same, the pinhole 11 is located between the sound wave detection sensors 21 and 22.
It will be located at the midpoint of the installation position of display device 3.
11110 If the wave height value is sufficiently large, the sound wave detection sensor 2
If the pinhole 11 exists near the first side, the position of the pinhole 11 can be detected by calculating the ratio of the section where the sound wave detection sensor 21, 22 is installed from the ratio of the degree of attenuation of the sound wave. can.

なお、音波の吸収減衰はその周波数によって大きく異な
るので、音波波形の対比は同一周波数で行うことが望ま
しい。このため、音波表示装置31.32として周波数
スペクトル分析が行い得る装置を使用し、特定周波数の
波高値をそれぞれの音波表示装置31.32で表示きせ
、これを対比することが好ましい。また、音波検出セン
サ21゜22が音波を検出しなかった場合は、管状体1
にはピンホールが無いと判断できる。
Note that since the absorption and attenuation of sound waves differs greatly depending on their frequency, it is desirable to compare the sound wave waveforms at the same frequency. For this reason, it is preferable to use a device that can perform frequency spectrum analysis as the sound wave display device 31, 32, display the peak value of a specific frequency on each sound wave display device 31, 32, and compare the results. Furthermore, if the sound wave detection sensors 21 and 22 do not detect sound waves, the tubular body 1
It can be determined that there are no pinholes.

本発明は各種管状体のピンホール検出に有効であり、例
えば電カケープルの外被中のピンホールの有無及び位置
を検出することができる。この場合、ケーブルコアとケ
ーブル外被との間に空隙を有するケーブルにおいて、前
記空隙に加圧気体を充填すれば本発明は適用可能である
The present invention is effective in detecting pinholes in various tubular bodies, and can detect the presence and position of pinholes in the outer jacket of power cables, for example. In this case, the present invention can be applied to a cable having a gap between the cable core and the cable jacket, as long as the gap is filled with pressurized gas.

[発明の効果] 以上説明した通りの本発明の管状体のピンホール検出方
法によれば、管状体の2ポイントに音波検出センサを設
置すると共に管状体内に加圧気体を充填し、先ずピンホ
ールから気体が漏れる時の漏洩音の有無によりピンホー
ルの有無を検知し、そして上記音波検出センサがキャッ
チした伝搬漏洩音波の波形の対比によりピンホールの位
置を検出する構成であるので、従来は困難であったピン
ホールの有無及び位置の検出を極めて容易に行うことが
できる。
[Effects of the Invention] According to the method for detecting pinholes in a tubular body of the present invention as described above, sound wave detection sensors are installed at two points on the tubular body, and pressurized gas is filled in the tubular body, and the pinhole is detected first. The system detects the presence or absence of a pinhole based on the presence or absence of a leaking sound when gas leaks from the air, and then detects the position of the pinhole by comparing the waveforms of the propagating leakage sound waves caught by the sound wave detection sensor, which is difficult to do in the past. The presence and location of pinholes can be detected extremely easily.

また、本発明は特に大掛りな装置を必要とせず、2つの
音波検出センサが検出した音波波形を対比するのみで検
出できるので測定が簡単であり、ざらに長尺の管状体に
も容易に適用できる等、優れた効果を奏するものである
In addition, the present invention does not require any particularly large-scale equipment, and can be detected simply by comparing the sound wave waveforms detected by two sound wave detection sensors, making measurement easy. It can be applied and has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を模式的に示す断面図である
FIG. 1 is a sectional view schematically showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 管状体の周上に、ピンホールを検出すべき区間の間隔を
あけて2ポイントに音波検出センサをそれぞれ設置して
おき、前記管状体内に加圧気体を充填し、該気体が外被
のピンホールから漏洩した場合に発生する漏洩音が、管
状体を伝搬して前記2ポイントに達した時の音波を前記
各音波検出センサでそれぞれ検出すると共に、各音波検
出センサの検出音波波形を対比することにより、管状体
中のピンホールの有無及び位置を知見することを特徴と
する管状体のピンホール検出方法。
Sonic detection sensors are installed at two points on the circumference of the tubular body with an interval between the sections where pinholes are to be detected, and the tubular body is filled with pressurized gas, and the gas is applied to the pins of the outer sheath. Each of the sound wave detection sensors detects the sound wave when the leaked sound generated when leaking from the hole propagates through the tubular body and reaches the two points, and the waveforms of the sound wave detected by each of the sound wave detection sensors are compared. A method for detecting pinholes in a tubular body, characterized in that the presence or absence and position of pinholes in the tubular body are determined by:
JP31330090A 1990-11-19 1990-11-19 Detection of pinhole on pipe body Pending JPH04184133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31330090A JPH04184133A (en) 1990-11-19 1990-11-19 Detection of pinhole on pipe body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31330090A JPH04184133A (en) 1990-11-19 1990-11-19 Detection of pinhole on pipe body

Publications (1)

Publication Number Publication Date
JPH04184133A true JPH04184133A (en) 1992-07-01

Family

ID=18039562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31330090A Pending JPH04184133A (en) 1990-11-19 1990-11-19 Detection of pinhole on pipe body

Country Status (1)

Country Link
JP (1) JPH04184133A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205121A (en) * 2008-01-30 2009-09-10 Ricoh Co Ltd Image forming apparatus
RU2484362C1 (en) * 2011-12-22 2013-06-10 Вячеслав Васильевич Болынов Method of defining pipeline break spots by acoustic correlation diagnostics
CN106556495A (en) * 2015-09-24 2017-04-05 现代自动车株式会社 The hole inspection method of vehicle and the system for performing the method
US10458878B2 (en) 2014-06-16 2019-10-29 Nec Corporation Position determination device, leak detection system, position determination method, and computer-readable recording medium
WO2021009971A1 (en) * 2019-07-12 2021-01-21 株式会社ネクスコ東日本エンジニアリング Sealed wire rope inspection method, sealed wire repair method, and sealed wire rope

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205121A (en) * 2008-01-30 2009-09-10 Ricoh Co Ltd Image forming apparatus
RU2484362C1 (en) * 2011-12-22 2013-06-10 Вячеслав Васильевич Болынов Method of defining pipeline break spots by acoustic correlation diagnostics
US10458878B2 (en) 2014-06-16 2019-10-29 Nec Corporation Position determination device, leak detection system, position determination method, and computer-readable recording medium
CN106556495A (en) * 2015-09-24 2017-04-05 现代自动车株式会社 The hole inspection method of vehicle and the system for performing the method
US9863835B2 (en) 2015-09-24 2018-01-09 Hyundai Motor Company Hole detection method of vehicle and system performing the same
WO2021009971A1 (en) * 2019-07-12 2021-01-21 株式会社ネクスコ東日本エンジニアリング Sealed wire rope inspection method, sealed wire repair method, and sealed wire rope
JP2021015044A (en) * 2019-07-12 2021-02-12 東日本高速道路株式会社 Method for checking sealed wire rope, method for repairing sealed wire rope, and sealed wire rope

Similar Documents

Publication Publication Date Title
KR900008298B1 (en) Sonic apparatus and method for detecting the presence of a gaseous substance in a closed space
CN105910761B (en) A kind of pipe flange gas leak detection apparatus
US6481287B1 (en) Fluid temperature measurement
CN103672415B (en) Based on the gas pipe leakage detection of non-intervention type sensor and navigation system and method
JPH07504037A (en) Device for detecting leaks in conduits
WO2016038527A1 (en) Device and method for fluid leakage detection in pressurized pipes
JPH04184133A (en) Detection of pinhole on pipe body
JPH0894481A (en) Gas leak detection method for embedded pipe
JPH0627179A (en) Method of ascertaining position of bursting of underground electric cable
US9207192B1 (en) Monitoring dielectric fill in a cased pipeline
Fu et al. A simulation of gas pipeline leakage monitoring based on distributed acoustic sensing
CN103672416B (en) A kind of non-intervention type piezoelectric type gas pipe leakage infrasonic wave detection apparatus
Mazzocchi et al. Signal analysis of an actively generated cavitation bubble in pressurized pipes for detection of wall stiffness drops
Xiao et al. The leak noise spectrum in gas pipeline systems: Theoretical and experimental investigation
Yin et al. Single-point location algorithm based on an acceleration sensor for pipeline leak detection
US7095222B2 (en) Leak detection method and system in nonmetallic underground pipes
Kaneko et al. Partial discharge diagnosis method using electromagnetic wave mode transformation in actual GIS structure
WO2014157539A1 (en) Defect analysis device, defect analysis method, and program
JPH11142280A (en) Pipe-line inspecting method
US6386037B1 (en) Void detector for buried pipelines and conduits using acoustic resonance
JP6408929B2 (en) Analysis data creation method, water leakage position detection device, and water leakage position identification method
JP2014219342A (en) Leakage detection method and device of buried duct
Yan et al. Acoustic injection method based on weak echo signals for leak detection and localization in gas pipelines
JP2003065880A (en) Inspection method and inspection system of water leak spot of building
Watanabe et al. Location of pinholes in a pipeline