JPH04184099A - Method for setting missile trajectory - Google Patents

Method for setting missile trajectory

Info

Publication number
JPH04184099A
JPH04184099A JP30613290A JP30613290A JPH04184099A JP H04184099 A JPH04184099 A JP H04184099A JP 30613290 A JP30613290 A JP 30613290A JP 30613290 A JP30613290 A JP 30613290A JP H04184099 A JPH04184099 A JP H04184099A
Authority
JP
Japan
Prior art keywords
missile
trajectory
target
initial conditions
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30613290A
Other languages
Japanese (ja)
Inventor
Hiroaki Mishina
三品 博昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30613290A priority Critical patent/JPH04184099A/en
Publication of JPH04184099A publication Critical patent/JPH04184099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PURPOSE:To enable the most appropriate trajectory to be set up to a reaching point at a real time basis even during a flying of a missile by a method wherein a missile initial condition measured and a trajectory with a condition approximate to a target reaching point are selected from a plurality of predetermined reference missile trajectories and then an interpolation calculation is carried out. CONSTITUTION:The most appropriate trajectory interpolation calculation part 4 in the most appropriate missile trajectory setting part 6 sets initial conditions (altitude, trajectory angle, speed)on the basis of a missile target data, selects more than two trajectories relatively approximating to the initial conditions and the target reaching point from a trajectory data memory 5 of the reference missile. It further selects more than two paths having short reaching time up to the target. As regards the selected reference missile trajectory data, each of the initial conditions and the target reaching point are compared with the initial conditions got through the missile target data and the target reaching point got by the target set data, an interpolation calculation is carried out and an actual most appropriate missile trajectory is calculated. The got most appropriate missile trajectory is inputted to a guiding calculation part 7 and the calculation part 7 perform a guiding of the missile.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、飛しょう体の誘導システムに適用される飛し
ょう経路の設定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for setting a flight path that is applied to a guidance system for a flying object.

〔従来の技術〕[Conventional technology]

従来の飛しょう体の誘導システムにおいては、飛しょう
体の最適飛しょう経路を設定するにあたり、発射直前、
または、飛しょう中においては最適経路計算は実施しな
いか、あるいは、他の計算方法を用いて、逐次修正計算
を実施していた。
In conventional guidance systems for flying objects, when setting the optimal flight path for a flying object, just before launch,
Alternatively, optimal route calculations are not performed during flight, or correction calculations are performed sequentially using other calculation methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の飛しょう体の飛しょう経路の設定においては、目
標点到達時の飛しょう体の速度最大あるいは到達時間最
小等を評価尺度(評価関数)とした最適制御問題の解と
して求められ、設定されることが多かった。
In the conventional setting of the flight path of a flying object, the flight path is determined and set as the solution to an optimal control problem using the maximum speed of the flying object or the minimum arrival time when reaching the target point as an evaluation measure (evaluation function). There were many things.

こうした最適経路は、発射点(または経路修正開始点)
から目標地点までの無数の飛しょう経路の中から最適経
路を選出する形で求められ、莫大な計算量が必要である
。このことが、飛しょう体の飛しょう中に経路修正のた
めの再計算を実行することを困難にしている。
These optimal paths are the launching points (or starting points for path correction)
The optimal route is selected from among the countless flight routes from to the target point, which requires a huge amount of calculation. This makes it difficult to perform recalculations for path correction while the projectile is in flight.

従来の方式においては、タイムリーに、リアルタイムで
計算することが困難であることから、経路修正を行わな
いか、あるいは、別の計算方法で逐次経路の修正を行わ
ざるを得す、そのため、最適経路からのズレは無視でき
ないほど大きくなる場合があった。
In conventional methods, it is difficult to calculate in a timely manner in real time, so the route must not be modified or the route must be modified sequentially using another calculation method. In some cases, the deviation from the route was so large that it could not be ignored.

本発明は上記の課題を解決しようとするものである。The present invention seeks to solve the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の飛しょう経路の設定方法は、種々の飛しょう体
初期条件と目標到達点にそれぞれ対応した複数の基準層
しょう経路を予め求め、実際に測定された飛しょう体初
期条件と目標到達点が上記のそれに近い基準層しよう経
路を上記予め求められた基準層しょう体径路の中から選
定し、更に、選定された基準層しよう経路について補間
計算を行い最適層しょう経路を得ることを特徴としてい
る。
The flight path setting method of the present invention involves determining in advance a plurality of reference layer flight paths corresponding to various initial conditions and target points of the projectile, and then using the actually measured initial conditions and target points of the projectile. The present invention is characterized in that a reference layer route close to the above-mentioned reference layer route is selected from the reference layer body routes determined in advance, and further, an interpolation calculation is performed on the selected reference layer route to obtain an optimal layer body route. There is.

〔作用〕[Effect]

上記において、飛しよう体が飛しようする場合、飛しょ
う体初期条件及び目標到達点が測定され、それぞれは予
め設定された複数の基準層しよう経路のそれぞれの飛し
ょう体初期条件及び目標到達点と比較され、それぞれの
値の近い基準層しよう経路が選定される。
In the above, when the flying object attempts to fly, the initial conditions and target destination of the flying object are measured, and the initial conditions and target destination of each of the plurality of reference layer paths set in advance are measured. A comparison is made, and a reference layer route with similar values is selected.

上記選定された基準層しよう経路については、上記飛し
ょう体初期条件と目標到達点の値をもとに補間計算が行
われ、最適層しょう経路が求められる。
Regarding the reference layer route selected above, interpolation calculation is performed based on the above-mentioned initial conditions of the projectile and the values of the target destination, and an optimal layer route is determined.

上記により、予め計算により求められた基準層しょう経
路データの簡単な補間計算で飛しょう体の最適経路が設
定されるため、飛しょう体の飛しょう中においてもリア
ルタイムで到達点までの最適経路の設定が可能となる。
As described above, the optimal route for the projectile is set by simple interpolation calculation of the reference layer path data calculated in advance, so the optimal route to the destination point can be determined in real time even while the projectile is in flight. Settings are now possible.

〔実施例〕〔Example〕

本発明の一実施例に係る装置を第1図により説明する。 An apparatus according to an embodiment of the present invention will be explained with reference to FIG.

第1図に示す本実施例に係る装置は、飛しょう体標定デ
ータ(位置、速度、姿勢、標定時刻)を出力する飛しょ
う体標定部1、目標標定部2より目標標定データ(位置
、速度、標定時刻)を入力する予測到達点計算部3、上
記飛しょう体標定データと目標標定データを入力する最
適経路補間計算部4と同計算部4へ基準層しょう経路デ
ータを出力する基準層しょう経路データメモリ5からな
る最適層しょう経路設定部6、および上記最適経路補間
計算部4の出力信号を入力する誘導(ステアリング)計
算部7を備えている。
The apparatus according to this embodiment shown in FIG. a predicted arrival point calculation section 3 which inputs the predicted arrival point calculation section 3, which inputs the above-mentioned spacecraft orientation data and target orientation data; It is equipped with an optimal layer route setting section 6 comprising a route data memory 5, and a steering calculation section 7 into which the output signal of the optimal route interpolation calculation section 4 is input.

上記において、最適層しょう経路設定部6の基準層しょ
う経路データメモリ5には、飛しよう体の初期条件と目
標到達点をパラメータとして最適層しょう経路計算によ
り得られた様々な基準層しょう経路データがそれぞれの
初期条件及び目標到達点と共にメモリされている。
In the above, the reference layer route data memory 5 of the optimal layer route setting unit 6 stores various reference layer route data obtained by optimal layer route calculation using the initial conditions of the flying object and the target destination as parameters. are stored together with their respective initial conditions and goals.

上記最適層しょう経路設定部6の最適経路補間計算部4
は、飛しょう体標定データをもとに経路計算の初期条件
(高度、経路角、速度)を設定し、基準層しょう経路デ
ータメモリ5にメモリされた各種の基準層しょう経路デ
ータの中から初期条件と目標到達点がそれぞれ比較的近
い経路を2つ以上選出し、更に、そのうちの目標までの
到達時間の短い経路を2つ以上選出する。
Optimal route interpolation calculation unit 4 of the optimal layer route setting unit 6
The initial conditions for route calculation (altitude, route angle, speed) are set based on the aircraft orientation data, and the initial conditions are selected from among the various reference layer route data stored in the reference layer route data memory 5. Two or more routes are selected that have relatively similar conditions and goal destinations, and two or more routes that take the shortest time to reach the goal are selected.

上記選出された基準層しょう経路データについては、最
適経路補間計算部3にて、それぞれの初期条件及び目標
到達点がそれぞれ飛しょう体標定データより得られた初
期条件及び目標標定データより得られた目標到達点と比
較され、補間計算が行われ、実際の最適層しょう経路が
計算される。
Regarding the selected reference layer route data, the optimum route interpolation calculation unit 3 calculates the respective initial conditions and target arrival points from the initial conditions and target orientation data obtained from the projectile orientation data. It is compared with the target destination, interpolation calculations are performed, and the actual optimal layer path is calculated.

なお、上記補間計算については、近似式によるものと、
第2図に示すようにそれぞれの基準層しょう経路上にい
くつかの基準点を設けるものとがある。
Regarding the above interpolation calculation, there are two methods:
As shown in FIG. 2, some reference points are provided on each reference layer route.

上記補間計算を行うために基準層しょう経路データメモ
リ5に記憶されているデータは、飛しょう体の高度、速
度、経路角および目標到達点位置の他に、近似式による
場合にはそれぞれの基準経路の近似係数及び飛しょう時
間がメモリされ、基準点設定による場合は基準点位置座
標及び基準点までの到達時間がメモリされており、補間
計算では、前者は近似係数、後者では基準点と到達時間
が補間される。
In order to perform the above-mentioned interpolation calculation, the data stored in the reference layer route data memory 5 includes the altitude, velocity, route angle, and destination point position of the flying object, as well as the respective standards when using an approximate formula. The approximation coefficient and flight time of the route are memorized, and in the case of reference point setting, the reference point position coordinates and arrival time to the reference point are memorized, and in interpolation calculations, the former is the approximation coefficient, and the latter is the reference point and arrival time. Time is interpolated.

上記最適層しょう経路設定部6にて得られた最適層しょ
う経路は誘導計算部7へ入力され、同計算部7は飛しょ
う体の誘導を行う。
The optimum layer route obtained by the optimum layer route setting section 6 is input to the guidance calculation section 7, which guides the flying object.

上記により、予め計算により求められた基準層しょう経
路データの簡単な補間計算で飛しょう体の最適経路が設
定されるため、飛しよう体の飛しょう中においてもリア
ルタイムで到達点までの最適経路の設定が可能となった
As described above, the optimum route for the projectile is set by simple interpolation calculation of the reference layer path data calculated in advance. Settings are now possible.

〔発明の効果〕〔Effect of the invention〕

本発明の飛しょう経路の設定方法は、予め設定された複
数の基準飛しょう経路より、測定された飛しょう体初期
条件と目標到達点に近い条件の経路が選定され、補間計
算が行われることによって、飛しょう体の飛しょう中に
おいてもリアルタイムで到達点までの最適経路を設定で
き、経路修正を行わない場合に対しては経路の最適性を
向上させることができ、また、修正を行う場合に対して
は従来の逐次修正計算が不要になる。
The flight route setting method of the present invention involves selecting a route with conditions close to the measured initial conditions of the projectile and the target destination from a plurality of preset reference flight routes, and performing interpolation calculations. By this, it is possible to set the optimal route to the destination point in real time even when the projectile is in flight, and it is possible to improve the optimality of the route when no route correction is performed, and when correction is made. The conventional sequential correction calculation becomes unnecessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る装置の説明図、第2図
は上記一実施例に係る基準飛しょう経路データの概念図
である。 1・・・飛しょう体標定部、 2・・・目標標定部、3
・・・予測到達点計算部、 4・・・最適経路補間計算部、 5・・・基準飛しょう経路データメモリ、6・・・最適
飛しょう経路設定部、 7・・・誘導計算部。
FIG. 1 is an explanatory diagram of an apparatus according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram of reference flight route data according to the above embodiment. 1... Projectile location unit, 2... Target location unit, 3
... Predicted destination calculation section, 4. Optimal route interpolation calculation section, 5. Reference flight route data memory, 6. Optimal flight route setting section, 7. Guidance calculation section.

Claims (1)

【特許請求の範囲】[Claims] 種々の飛しょう体初期条件と目標到達点にそれぞれ対応
した複数の基準飛しょう経路を予め求め、実際に測定さ
れた飛しょう体初期条件と目標到達点が上記のそれに近
い基準飛しょう経路を上記予め求められた基準飛しょう
体経路の中から選定し、更に、選定された基準飛しょう
経路について補間計算を行い最適飛しょう経路を得るこ
とを特徴とする飛しょう経路の設定方法。
A plurality of reference flight paths corresponding to various initial conditions and destination points of the projectile are determined in advance, and the reference flight path whose actual measured initial conditions and destination point of the projectile are close to those shown above is determined in advance. A method for setting a flight path, which comprises selecting from among predetermined standard flight paths, and further performing interpolation calculations on the selected standard flight path to obtain an optimal flight path.
JP30613290A 1990-11-14 1990-11-14 Method for setting missile trajectory Pending JPH04184099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30613290A JPH04184099A (en) 1990-11-14 1990-11-14 Method for setting missile trajectory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30613290A JPH04184099A (en) 1990-11-14 1990-11-14 Method for setting missile trajectory

Publications (1)

Publication Number Publication Date
JPH04184099A true JPH04184099A (en) 1992-07-01

Family

ID=17953440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30613290A Pending JPH04184099A (en) 1990-11-14 1990-11-14 Method for setting missile trajectory

Country Status (1)

Country Link
JP (1) JPH04184099A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032090A (en) * 2008-07-28 2010-02-12 Mitsubishi Electric Corp Guiding method and guiding device for missile
JP2016125672A (en) * 2014-12-26 2016-07-11 三菱重工業株式会社 Missile guidance device, missile guidance method, missile and program
CN109708525A (en) * 2018-12-12 2019-05-03 中国人民解放军陆军工程大学 A kind of calculation method, system and the terminal device of missile flight trajectory
JP2020026940A (en) * 2018-08-16 2020-02-20 三菱重工業株式会社 Guidance device, projectile, and guidance method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032090A (en) * 2008-07-28 2010-02-12 Mitsubishi Electric Corp Guiding method and guiding device for missile
JP2016125672A (en) * 2014-12-26 2016-07-11 三菱重工業株式会社 Missile guidance device, missile guidance method, missile and program
JP2020026940A (en) * 2018-08-16 2020-02-20 三菱重工業株式会社 Guidance device, projectile, and guidance method
CN109708525A (en) * 2018-12-12 2019-05-03 中国人民解放军陆军工程大学 A kind of calculation method, system and the terminal device of missile flight trajectory

Similar Documents

Publication Publication Date Title
KR20230100722A (en) Interceptor missile and its guidance method
JP5272560B2 (en) Flying object guidance method and guidance device
JP3241742B2 (en) Neural network orbit command controller
US5804812A (en) Multiple node lambert guidance system
JPH04184099A (en) Method for setting missile trajectory
JPH11108592A (en) Missile guide device
JP3363914B2 (en) Flying object guidance control device
JP3313169B2 (en) Calibration method of set value of coordinate system of inertial reference device in moving object
JPH0415498A (en) Guiding method missile
JP3391869B2 (en) How to guide moving objects
JPH10141891A (en) Flying path setting method
JP4407352B2 (en) Flying object guidance system
GB2279444A (en) Missile guidance system
JP2003148898A (en) Control device for missile
RU2275671C1 (en) Pilot-free flying vehicle control system
JPH04316994A (en) Control method of missile equipped with dual steering system
JPH0552495A (en) Flight control system
JPH06159997A (en) Control apparatus for missile
JP2861360B2 (en) Aircraft guidance control processing method based on radar tracking information
RU2112699C1 (en) Method and device for control of flight of air-to-surface passive homing missile
JPH02230096A (en) Method and device for controlling launching of missile
Guelman et al. Minimum energy guidance for boost phase ballistic missile interception
CN115993073A (en) Aircraft guidance method with falling angle constraint
JP3518967B2 (en) Guidance control device and method for TVC guidance projectile
Shinar Concept of automated aircraft guidance system for air-to-air missions