JPH04182396A - Crystal growing method - Google Patents

Crystal growing method

Info

Publication number
JPH04182396A
JPH04182396A JP30415690A JP30415690A JPH04182396A JP H04182396 A JPH04182396 A JP H04182396A JP 30415690 A JP30415690 A JP 30415690A JP 30415690 A JP30415690 A JP 30415690A JP H04182396 A JPH04182396 A JP H04182396A
Authority
JP
Japan
Prior art keywords
reaction pipe
supplied
growth
raw material
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30415690A
Other languages
Japanese (ja)
Other versions
JP2646841B2 (en
Inventor
Yoshitake Katou
芳健 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30415690A priority Critical patent/JP2646841B2/en
Publication of JPH04182396A publication Critical patent/JPH04182396A/en
Application granted granted Critical
Publication of JP2646841B2 publication Critical patent/JP2646841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To control the transport rate and to prevent oxidation of a grown film and to obtain a good-quality crystal film by using Mn (i-C3H7C5H4)2 as a raw material for Mn, in the case of using at least one kind of organic metallic raw material and growing crystal of a semiconductor contg. Mn. CONSTITUTION:A plurality of organic raw materials in addition to AsH3 are supplied to a reaction pipe 11 by bubbling of H2 while using H2 as carrier gas. Firstly, while supplying AsH3 to the reaction pipe 11, a GaAs base plate 12 is heated to 580 deg.C by induction heating of a high frequency coil 13. At a point of time when Ga(CH3)3 housed in a bubbler 1a is bubbled by H2 and bubbling is stabilized, it is supplied to the reaction pipe 11. After a GaAs buffer layer is grown at 50nm, the temp. of the base plate is immediately lowered to 400 deg.C. Cd(CH3)2, Te(C2H5)2 and Mn(i-C3H7C5H4)2 which are respectively housed in the bubblers 1b, 1c and 1d are supplied to the reaction pipe 11 to form a CdMnTe layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はマンガンを含む半導体おるいは磁性体等の化合
物結晶の結晶成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for growing compound crystals such as semiconductors or magnetic substances containing manganese.

[従来の技術およびその課題] 結晶を構成する元素の1つがマンガン(Mn)である半
導体としては、Zn1.、xMnxS(Oくx<1 )
、Zn1.MnxSe (0<x<1 )。
[Prior art and its problems] As a semiconductor whose crystal is composed of manganese (Mn) as one of its elements, Zn1. , xMnxS (Ox<1)
, Zn1. MnxSe (0<x<1).

Cd 1−x M n x T e (0< x < 
1 >など、他にも多くの種類の混晶がある。これらは
、Mnが磁性材料であるため、希釈磁性半導体と呼ばれ
ている。
Cd 1-x M n x T e (0< x <
There are many other types of mixed crystals such as 1>. These are called diluted magnetic semiconductors because Mn is a magnetic material.

これらの結晶に磁界を印加すると、バンドギャップが磁
界強度とともに変化したり、光の偏光特性が変化すると
いう特異な特徴かあり、近年非常に注目されている材料
でおる。
When a magnetic field is applied to these crystals, the bandgap changes with the magnetic field strength, and the polarization characteristics of light change, making them unique materials that have attracted much attention in recent years.

一方、故意に添加する不純物の1つがMnである半導体
の代表的なものとして、MnドープZnSやzn3eが
ある。ZnSやZ n S e ハ周知のように可視領
域で発光する材料であり、発光ダイオード、半導体レー
99やフラン1〜パネルデイスプレーの′)lΔ利とし
て結晶成長からデバイス応用まで11市力的に仙究聞発
が進められている。これらの(A別にMnをドーピング
すると、結晶性が改善されるとともに、発光特性が改善
されることか近年明らかとなっている。
On the other hand, Mn-doped ZnS and zn3e are typical semiconductors in which Mn is one of the intentionally added impurities. As is well known, ZnS and ZnS are materials that emit light in the visible region, and are widely used in light-emitting diodes, semiconductor lasers, and panel displays, from crystal growth to device applications. Senkyokumonbatsu is in progress. In recent years, it has become clear that doping Mn separately from these (A) improves the crystallinity and the light emission characteristics.

上に挙げた半導体材料を成長する方法としては、有機金
属気相成長方法(MOCVD)や分子線エピタキシー法
(MBF)か必るが、一般にはMB「が用いられている
。その理由は、次に述べるようである。つまり、従来、
Mnの有機金属原料としては、ジシクロペンタジェニル
マンガン(Mn(C5[」5)2)や1〜リカルボニル
メチルシクロペンタジエ−ルマンカン(C6HB Mn
 (Co)3)がおる。前者においては、融点か158
°Cと高いため、通常MOCVDで用いられる有機金属
のバブリング輸送法では輸送量を精密に制御することが
困難でおるという欠点かあった。一方、後者は室温にお
いて液体であるため、バブリングには適しているが、原
料中に酸素を含むため成長膜か酸化してしまい、良質な
膜か得られないという欠点があった。つまり、従来では
MOCVDを行うのに適したMnの有機金属原料かなか
ったわけで必る。
Methods for growing the semiconductor materials listed above include metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBF), but MB is generally used.The reason is as follows. In other words, conventionally,
Examples of organic metal raw materials for Mn include dicyclopentadienylmanganese (Mn(C5['5)2) and 1-licarbonylmethylcyclopentadiene mankane (C6HB Mn
(Co)3) is here. In the former case, the melting point is 158
Because the temperature is as high as .degree. C., it is difficult to precisely control the amount of transport using the bubbling transport method of metal organics normally used in MOCVD. On the other hand, since the latter is a liquid at room temperature, it is suitable for bubbling, but since the raw material contains oxygen, the grown film will oxidize, making it impossible to obtain a high-quality film. In other words, this is necessary because conventionally there was no Mn organic metal raw material suitable for MOCVD.

ところで、前述した材料であるcd丁eやZnSを結晶
成長するには基板が必要であるが、これらの材料の基板
は非常に高価であり、かつ結晶性が低い。このため、基
板としては安価で結晶性に優れたGaASやInSbな
どの■−■族化合物半導体基板が多く用いられている。
Incidentally, a substrate is required for crystal growth of the above-mentioned materials CDD and ZnS, but substrates of these materials are very expensive and have low crystallinity. For this reason, 1-2 group compound semiconductor substrates such as GaAS and InSb, which are inexpensive and have excellent crystallinity, are often used as substrates.

このような基板上に成長する場合には、成長層の結晶性
を高めるため、基板と同一組成のバッファ層を成長し、
連続してQd丁eやZnS等を成長するのが望ましい。
When growing on such a substrate, a buffer layer with the same composition as the substrate is grown to improve the crystallinity of the growth layer.
It is desirable to continuously grow Qd, ZnS, etc.

このように、■−■族化合物半導体と■−Vl族化合物
半導体を連続して成長させることは■−V族とn −v
i族がお互いに不純物元素の関係にあることから、成長
室が閉じた系で必るMBEでは非常に難しい。ところか
、MOCVDは成長系が開管系でおるため個々の成長ガ
スを完全に成長系から排気することかできる。この結果
、■−v族化合物半導体バッファ層上にn−vi族化合
物半導体を連続成長でき、更には■−v族とIr−Vl
族の多層連続成長も可能である。このようにMOCVD
は上)ホした材料を成長する手法として極めて重要な方
法でおる。
In this way, the continuous growth of the ■-■ group compound semiconductor and the ■-Vl group compound semiconductor is similar to that of the ■-V group compound semiconductor and the n-v group compound semiconductor.
Since the i-group members are in a relationship with each other as impurity elements, MBE, which is necessary in a closed growth chamber, is extremely difficult. On the other hand, in MOCVD, since the growth system is an open tube system, each growth gas can be completely exhausted from the growth system. As a result, it is possible to continuously grow the n-vi group compound semiconductor on the ■-v group compound semiconductor buffer layer, and furthermore, the n-vi group compound semiconductor and the Ir-Vl group
Multilayer continuous growth of families is also possible. In this way MOCVD
(above) This is an extremely important method for growing such materials.

本発明の目的は、成長原料のうち少なくとも1種でも有
機金属原料を用いる成長法において、(iも成元素の1
つがMnであるような半導体または磁性体、おるいは故
意に添加する不純物の1つかMnであるような半導体ま
たは磁性体を結晶成長可能にさせることにある。
An object of the present invention is to provide a growth method using at least one organometallic material among the growth materials (where i is one of the constituent elements).
The object of the present invention is to enable crystal growth of semiconductors or magnetic materials in which one of the impurities is Mn, or a semiconductor or magnetic material in which Mn is one of the intentionally added impurities.

[課題を解決するための手段] 本発明は、結晶を構成する構成元素の1つがマンガン(
Mn)でおる半導体あるいは磁性体の結晶成長を、少な
くとも1種以上の有機金属原料を用いて行う結晶成長方
法において、マンガンの有機金属原料としてビス(イソ
プロピルシクロペンタジェニル)マンガン[M n (
i  C3)−17C5町)2]を用いることを特徴と
する結晶成長方法、および結晶に故意に添加する不純物
の1つがマンガン(Mn)である半導体あるいは磁性体
の結晶成長を、少なくとも1種以上の有機金属原料を用
いて行う結晶成長方法において、マンガンの有機金属原
料としてビス(イソプロピルシクロペンタジェニル)マ
ンガン[M n (i −03H7C5H4)2]を用
いることを特徴とする結晶成長方法である。
[Means for Solving the Problems] The present invention provides a method in which one of the constituent elements constituting the crystal is manganese (
In a crystal growth method in which crystal growth of a semiconductor or magnetic material made of Mn (Mn
i C3)-17C5 Town) 2], and at least one crystal growth method of a semiconductor or magnetic material in which one of the impurities intentionally added to the crystal is manganese (Mn). A crystal growth method using bis(isopropylcyclopentadienyl)manganese [Mn(i-03H7C5H4)2] as an organometallic raw material for manganese. .

1作用] 本発明で用いられるビス(イソプロピルシクロペンタジ
ェニル)マンガン[Mn (1−C31−1゜C3H4
)2]は室温において液体である。また、80°Cに加
熱すれば10 Torr程度の蒸気圧が得られる。従っ
て輸送量の精密な制御が可能である。
1 action] Bis(isopropylcyclopentadienyl)manganese [Mn (1-C31-1゜C3H4
)2] is a liquid at room temperature. Further, if heated to 80°C, a vapor pressure of about 10 Torr can be obtained. Therefore, precise control of the transport amount is possible.

また、原料中に酸素を含まないため、成長膜が酸化する
ことがなく、良質な膜が得られる。
Furthermore, since the raw material does not contain oxygen, the grown film is not oxidized and a high quality film can be obtained.

以上のことから、有機金属原料を用いる成長方法、例え
ばMOCVDや有機金属を分子線源とするMBE (M
OMBE)といった成長法に用いることかできる。
From the above, growth methods using organometallic raw materials, such as MOCVD and MBE (M
It can be used for growth methods such as OMBE).

[実施例] 次に、本発明の実施例について、図面を用いて詳細に説
明する。
[Example] Next, an example of the present invention will be described in detail using the drawings.

実施例1 第1図は実施例に用いた結晶成長装置の概略構成図であ
る9、用いた成長装置(3上、反応管11内に設置され
た基板12を高周波」イル13の誘導加熱によって加熱
するようになっている。また、反応管11には、ト12
をキャリアガスとしてA S L−13の他、複数の有
機原料がH2のバブリングによって供給されるようにな
っている。本実施例では基板としてGaASを用い、G
aAsバッファ層を成長したのら、連続してCdMnT
eを成長した場合について説明する。成長の手順は以下
の様で必る。
Example 1 Figure 1 is a schematic diagram of the crystal growth apparatus used in the example. The reaction tube 11 is also equipped with a tray 12.
In addition to ASL-13, a plurality of organic raw materials are supplied by bubbling H2 as a carrier gas. In this example, GaAS is used as the substrate, and G
After growing the aAs buffer layer, CdMnT is continuously grown.
The case where e is grown will be explained. The growth procedure is as follows.

A S H3を反応管11に供給しながら基板12を5
80 ’Cまで昇温した。バブラー1aに納められたト
リメデルカリウム(Ga (CH3>3 : TMGa
)を町でバブリングし、バブリングか安定した時点でT
MGaを反応管11に供給した。この時の丁MGaの流
fi1.J 0.5 secm 、 A s H3の流
量は15 SCCmであり、キレリア1−12は500
0 secm。
While supplying A S H3 to the reaction tube 11, the substrate 12 is
The temperature was raised to 80'C. Trimedel potassium (Ga (CH3>3: TMGa) stored in bubbler 1a
) in town, and when the bubbling becomes stable, T
MGa was supplied to the reaction tube 11. At this time, Ding MGa's style fi1. J 0.5 secm, the flow rate of A s H3 is 15 SCCm, and the flow rate of Killeria 1-12 is 500 SCCm.
0 seconds.

反応管の圧力は76 Torrに設定した。The pressure in the reaction tube was set at 76 Torr.

(3aAsバッファ層を500 nm成長したのち、直
ちに基板温度を400 ’Cまで降温し、連続してCd
MnTeの成長を行った。バブラー1bに納められたジ
メチルカドミウム(Cd(CH3)2 :DMCd)を
0.4 secm 、バブラー10に納められたジエチ
ルテルル(Te (C21−15)2  ; DE−r
 e >を1.6 SCCm 、バフ′ラ−]dに納め
られたビス(イソプロピルシクロペンタジェニル)マン
ガンを0.I SCCm 、それぞれ反応管11に供給
し1こ 。
(After growing the 3aAs buffer layer to a thickness of 500 nm, the substrate temperature was immediately lowered to 400'C, and Cd
MnTe was grown. The dimethyl cadmium (Cd(CH3)2:DMCd) stored in the bubbler 1b was 0.4 sec, and the diethyl tellurium (Te(C21-15)2; DE-r) stored in the bubbler 10.
e > 1.6 SCCm, bis(isopropylcyclopentagenyl) manganese stored in the buffer was 0. I SCCm were each supplied to the reaction tube 11.

得られた膜の表面は鏡面でおった。膜表面からの深さ方
向組成分布をオージェ電子分光法で測定した結果、Mn
の深さ分布は完全に均一であり、かつCdMnTeと(
3aAsの界面は極めて急峻なものであった。また、C
dMnTeの電気的および光学的特性もCdTe基板上
に成長した場合と同等の良質なものであった。1 実施例2 基板に5i(111)基板を用い、M nをドーピング
した7「IS膜の成長を行った場合について説明する。
The surface of the obtained membrane was mirror-finished. As a result of measuring the composition distribution in the depth direction from the film surface using Auger electron spectroscopy, it was found that Mn
The depth distribution of CdMnTe and (
The interface of 3aAs was extremely steep. Also, C
The electrical and optical properties of dMnTe were also of good quality, comparable to those grown on a CdTe substrate. 1 Example 2 A case will be described in which a 7" IS film doped with Mn is grown using a 5i (111) substrate as the substrate.

用いた成長装置は第1図に示した実施例1と同様のもの
である。成長開始前、反応管内に設置したSi基板をH
2気流中、950°C15分間アニールした。これによ
り、Si基板表面の酸化膜は除去される。基板温度を5
00℃に設定し、バブラー1aに納められたジメチル亜
鉛(7n(CI−1)  ;0M7n)を0.4 SC
Cm 、バブラ一1bに納められたジメチルイオウ(S
(C1−13>2:DMS)を1.6 SCCm 、そ
レソjn 反応管ニ供給した。同時にバブラー10より
ビス(インプロピルシクロペンタジェニル〉マンガンを
DMS流流 量5対して10  倍から10−3倍までそれぞれ変え
ながら成長を行った。
The growth apparatus used was the same as in Example 1 shown in FIG. Before the start of growth, the Si substrate placed in the reaction tube was heated with H
Annealing was performed at 950° C. for 15 minutes in 2 air currents. As a result, the oxide film on the surface of the Si substrate is removed. Set the board temperature to 5
Set at 00℃, dimethyl zinc (7n (CI-1); 0M7n) stored in bubbler 1a was heated to 0.4 SC.
Cm, dimethyl sulfur (S) stored in bubbler 1b
1.6 SCCm of (C1-13>2:DMS) was supplied to the reaction tube. At the same time, growth was carried out using a bubbler 10 while changing bis(inpropylcyclopentagenyl)manganese from 10 times to 10 −3 times the DMS flow rate of 5 times.

ドーピング濃度をそれぞれ変えて得られた試料に対し、
2次イオン質量分光法を用いで、膜表面−Q   = からの深さ方向Mn濃度分布を測定した。Mnのドーピ
ング濃度ハ5xlo  cm  から3 X 1011
019Cまで変化できた。また、各試料のMnの深さ方
向濃度分布は均一なもので必った。得られた膜のホトル
ミネッセンス特性を調べた結果、Mnのドーピング濃度
の上昇とともに発光強度の改善が見られ、発光強度、半
値全幅とも良好なものであった。
For samples obtained with different doping concentrations,
The Mn concentration distribution in the depth direction from the film surface -Q = was measured using secondary ion mass spectroscopy. Mn doping concentration from 5 x lo cm to 3 x 1011
I was able to change it to 019C. Furthermore, the Mn concentration distribution in the depth direction of each sample was required to be uniform. As a result of examining the photoluminescence properties of the obtained film, it was found that the emission intensity improved as the Mn doping concentration increased, and both the emission intensity and full width at half maximum were good.

上記実施例1では、結晶を構成する構成元素の1つかM
nて必る半導体として、CdMnTeを取り上げたが、
本発明ではこれに限定されず、ZnMn5.ZnMnS
e、CdMnTe、InMnASなど他の材料でもよい
のは明らかでおる。
In Example 1 above, one of the constituent elements constituting the crystal or M
I mentioned CdMnTe as an essential semiconductor,
The present invention is not limited to this, and ZnMn5. ZnMnS
It is obvious that other materials such as E, CdMnTe, and InMnAS may also be used.

また、上記実施例2では、結晶に故意に添加する不純物
の1つがMnでおる半導体として、1vlnドープZn
Sを取り上げたが、本発明はこれに限定されず、Zn5
e、 /n丁e、Jnp、QaASなど他の材料でもよ
いのは明らかである。
In addition, in the above Example 2, 1vln-doped Zn was used as a semiconductor in which Mn was one of the impurities intentionally added to the crystal.
Although Zn5 is taken up, the present invention is not limited thereto.
Obviously, other materials such as e, /n, Jnp, QaAS, etc. may also be used.

上記実施例では、成長装置として気相成長装置を用いた
か、本発明はこれに限定されず、有機金属原料を分子線
源として結晶成長を行うMOMBFなどでもにい。
In the above embodiments, a vapor phase growth apparatus was used as the growth apparatus, but the present invention is not limited thereto, and MOMBF, which performs crystal growth using an organic metal raw material as a molecular beam source, may also be used.

L発明の効果コ 以上説明したように、本発明の方法を用いれば、有機金
属原料を用いる成長方法によりMnを構成元素の1つと
する結晶膜、およびMnを故意にドーピングさせた結晶
膜が得られる。この方法では、結晶成長系が安価でおり
、かつ容易に再現性良く結晶成長か可能である。本発明
を用いて得られたこれらの膜は、光アイソレータヤ高輝
度の可視光発光素子として用いられる。
L Effects of the Invention As explained above, by using the method of the present invention, a crystal film containing Mn as one of the constituent elements and a crystal film intentionally doped with Mn can be obtained by a growth method using an organic metal raw material. It will be done. In this method, the crystal growth system is inexpensive and crystal growth can be easily performed with good reproducibility. These films obtained using the present invention are used as optical isolators and high-brightness visible light emitting devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いられる成長装置の一例の概
略構成図である。 18〜1d・・・バブラー 11・・・反応管 12・・・基板 13・・・高周波コイル
FIG. 1 is a schematic diagram of an example of a growth apparatus used in the method of the present invention. 18-1d...Bubbler 11...Reaction tube 12...Substrate 13...High frequency coil

Claims (2)

【特許請求の範囲】[Claims] (1)結晶を構成する構成元素の1つがマンガン(Mn
)である半導体あるいは磁性体の結晶成長を、少なくと
も1種以上の有機金属原料を用いて行う結晶成長方法に
おいて、マンガンの有機金属原料としてビス(イソプロ
ピルシクロペンタジエニル)マンガン[Mn(i−C_
3H_7C_5H_4)_2]を用いることを特徴とす
る結晶成長方法。
(1) One of the constituent elements that make up the crystal is manganese (Mn
) in a crystal growth method of a semiconductor or magnetic material using at least one organic metal raw material, bis(isopropylcyclopentadienyl)manganese [Mn(i-C_
3H_7C_5H_4)_2].
(2)結晶に故意に添加する不純物の1つがマンガン(
Mn)である半導体あるいは磁性体の結晶成長を、少な
くとも1種以上の有機金属原料を用いて行う結晶成長方
法において、マンガンの有機金属原料としてビス(イソ
プロピルシクロペンタジエニル)マンガン[Mn(i−
C_3H_7C_5H_4)_2]を用いることを特徴
とする結晶成長方法。
(2) One of the impurities intentionally added to crystals is manganese (
In a crystal growth method in which crystal growth of a semiconductor or magnetic material (Mn) is performed using at least one organometallic raw material, bis(isopropylcyclopentadienyl)manganese [Mn(i-
C_3H_7C_5H_4)_2].
JP30415690A 1990-11-13 1990-11-13 Crystal growth method Expired - Lifetime JP2646841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30415690A JP2646841B2 (en) 1990-11-13 1990-11-13 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30415690A JP2646841B2 (en) 1990-11-13 1990-11-13 Crystal growth method

Publications (2)

Publication Number Publication Date
JPH04182396A true JPH04182396A (en) 1992-06-29
JP2646841B2 JP2646841B2 (en) 1997-08-27

Family

ID=17929733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30415690A Expired - Lifetime JP2646841B2 (en) 1990-11-13 1990-11-13 Crystal growth method

Country Status (1)

Country Link
JP (1) JP2646841B2 (en)

Also Published As

Publication number Publication date
JP2646841B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
Stutius Organometallic vapor deposition of epitaxial ZnSe films on GaAs substrates
US6852623B2 (en) Method for manufacturing zinc oxide semiconductors
Cockyane et al. Metalorganic chemical vapour deposition of wide band gap II–VI compounds
US20070196942A1 (en) Method for producing group III nitride crystal, group III nitride crystal obtained by such method, and group III nitride substrate using the same
JPS63240012A (en) Iii-v compound semiconductor and formation thereof
US4950621A (en) Method of growing crystalline layers by vapor phase epitaxy
GB2140618A (en) Semiconductor manufacturing methods
JPH09315899A (en) Compound semiconductor vapor growth method
JP3353527B2 (en) Manufacturing method of gallium nitride based semiconductor
EP0806495B1 (en) Metal-organic chemical vapor-phase deposition process
Maleyre et al. Growth of InN layers by MOVPE using different substrates
Irvine UV photo-assisted crystal growth of II-VI compounds
JPH04182396A (en) Crystal growing method
US5780355A (en) UV assisted gallium nitride growth
US5423284A (en) Method for growing crystals of N-type II-VI compound semiconductors
JP2000049378A (en) Nitride semiconductor for light emitting element and its manufacture
KR100385634B1 (en) Metal-organic chemical vapor deposition of zinc oxide thin films exhibiting lasers
JPH0463040B2 (en)
JPH06209121A (en) Indium gallium nitride semiconductor and growing method thereof
JP2706337B2 (en) Method for manufacturing compound semiconductor thin film
JPH0657636B2 (en) Compound semiconductor thin film formation method
JPH01103982A (en) Production of single crystal of group iii-v compound semiconductor
JPS6317293A (en) Method for forming thin film of compound semiconductor and device therefor
JP2551376B2 (en) Method for manufacturing semiconductor superlattice
JPH05234892A (en) Growing method for crystal and radical generator for growing crystal