JPH04182372A - Glass coated plate and its production - Google Patents

Glass coated plate and its production

Info

Publication number
JPH04182372A
JPH04182372A JP30400390A JP30400390A JPH04182372A JP H04182372 A JPH04182372 A JP H04182372A JP 30400390 A JP30400390 A JP 30400390A JP 30400390 A JP30400390 A JP 30400390A JP H04182372 A JPH04182372 A JP H04182372A
Authority
JP
Japan
Prior art keywords
glass
layer
alc
less
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30400390A
Other languages
Japanese (ja)
Inventor
Osamu Nakamine
中岫 治
Hiroyoshi Sato
裕喜 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP30400390A priority Critical patent/JPH04182372A/en
Publication of JPH04182372A publication Critical patent/JPH04182372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Panels For Use In Building Construction (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

PURPOSE:To obtain a dense glass coated plate having high glossiness and fine fanciness without causing cracking or peeling due to heat by forming a heat insulating inorg. layer having specified thermal and physical properties on the surface of autoclave-cured lightweight gas concrete (ALC), and then forming a glass layer. CONSTITUTION:A heat insulating inorg. layer is formed on the surface of ALC, thermal spraying is carried out on the surface of the layer to form a glass layer on the surface of the underlayer heated to the softening temp. of the glass and a glass coated plate for building is obtd. The heat insulating inorg. layer has <=0.5% rate of residual linear shrinkage after heating at 1,000>=C, <=12X10<-6>/ deg.C coefft. of thermal expansion and <=0.3kCal/m.hr.K heat conductivity at 20 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、建築物の内外壁等に用いられる無機系建築用
板材及びその製造方法に関する。特に表面にカラス層を
有するガラスコーティング板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an inorganic building board used for the interior and exterior walls of buildings, and a method for producing the same. In particular, it relates to a glass coated plate having a glass layer on its surface.

〔従来技術〕[Prior art]

近年、住宅の高級化か望まれ表面にガラス層を有する建
築材料は、その外観の高級感や耐久性か良好なことから
外装材として注目されている。
In recent years, building materials having a glass layer on the surface have been attracting attention as exterior materials because of their luxurious appearance and good durability as housing becomes more luxurious.

また、オートクレーブ養生軽量気泡コンクリート(以下
ALCという)は断熱性、耐火性、遮音性に優れ、工場
で生産されるため工期短縮2品質の信頼性などに優れて
いるため外壁材として一般に数多く使用されている。そ
してALCの外装仕上げとしては、−膜面にはエポキシ
樹脂等の存機系外装材か用いられており、自然環境にお
いては耐久性が悪く、4〜5年に一回は外装材を吹き替
えなけれはならない。またALC表面にタイルなどを貼
った場合はタイルを一枚一枚ALCに貼らなければなら
す施工に時間かかかり、また、剥離等の問題が発生する
。また、ホーロー鉄板などを貼る場合はホーロー鉄板の
加工に手間がかかりコスI・高になる。
In addition, autoclave-cured lightweight aerated concrete (hereinafter referred to as ALC) has excellent heat insulation, fire resistance, and sound insulation properties, and because it is produced in a factory, it shortens the construction period.2 It is also excellent in quality and reliability, so it is commonly used as an exterior wall material. ing. As for the exterior finish of ALC, - A durable exterior material such as epoxy resin is used on the membrane surface, which has poor durability in the natural environment, and the exterior material must be replaced once every 4 to 5 years. Must not be. Further, when tiles or the like are pasted on the ALC surface, the tiles must be pasted one by one on the ALC, which takes time and causes problems such as peeling. In addition, when pasting an enameled iron plate, etc., processing of the enameled iron plate is time-consuming and costs are high.

上記のような事情に鑑み2表面の耐候性、防水性及び強
度の向上を目的としで、ALC表面にガラス層を施工す
る方法がいくつか提案されている。
In view of the above circumstances, several methods have been proposed for constructing a glass layer on the ALC surface with the aim of improving the weather resistance, waterproofness, and strength of the two surfaces.

例えは特開昭60−200878号、同61−5887
5号。
Examples are JP-A-60-200878 and JP-A-61-5887.
No. 5.

同61−155278号、同62−230684号、同
63−95179号公報にはALC本体の温度か300
℃以下に保持するようにガラスを溶射しALC表面に直
接ガラス層を形成する方法が提案されている。また、特
開昭61−205684号公報には低融点のガラスを溶
射し。
Publications No. 61-155278, No. 62-230684, and No. 63-95179 state that the temperature of the ALC body is 300
A method has been proposed in which glass is thermally sprayed to form a glass layer directly on the ALC surface while maintaining the temperature below .degree. Furthermore, in Japanese Patent Application Laid-open No. 61-205684, a glass having a low melting point is thermally sprayed.

ALC表面に直接ガラス層を形成する方法が提案されて
いる。
A method of forming a glass layer directly on the ALC surface has been proposed.

〔発明が解決しようとする課題〕 しかし、ALC表面の温度は上がらないように溶融ガラ
スを溶射によって吹き付ける方法では。
[Problems to be Solved by the Invention] However, in the method of spraying molten glass by thermal spraying, the temperature of the ALC surface does not rise.

施工されたガラス層が多孔質となり吸水しやすく。The applied glass layer becomes porous and easily absorbs water.

封孔処理をおこなわなければならない。また、吸水しな
いように溶射してもカラスか表面で充分に溶融し一体化
していないため、焼成により充分溶融させる方法によっ
てつくられたタイル等のガラス層のような緻密なガラス
層を得ることはできない。また、低融点のガラスを溶射
材料として用いる方法では1表面の加熱温度を下げるた
め低融点のガラスを使用しなければならず1−膜面に低
融点のガラスは施工直後は緻密なタイルと同等のガラス
層が得られるか、低融点になるほど耐久性か悪化し、経
時的に失透、退色なとの現象が起る。
A sealing process must be performed. In addition, even if thermal spraying is performed to prevent water absorption, it is not sufficiently melted and integrated on the surface of the glass, so it is difficult to obtain a dense glass layer such as the glass layer of tiles made by a method of sufficiently melting by firing. Can not. In addition, in the method of using low melting point glass as a thermal spraying material, 1. It is necessary to use low melting point glass to lower the heating temperature of the surface. 1. Low melting point glass on the membrane surface is equivalent to dense tiles immediately after construction. The lower the melting point, the worse the durability becomes, and phenomena such as devitrification and discoloration occur over time.

したかってALCの上に均一で緻密で耐久性に優れるガ
ラス層を施工せんとすれは、高融点のガラスを用い、A
LC表面温度をガラスの融解温度以上に上げなければな
らず、そういった温度までALC表面温度を上げた場合
ALC中の水和物の脱水9分解によりALCが収縮し、
亀裂が発生してしまい、ALCを損傷することなく緻密
で耐久性があり、光沢度に優れるガラス層が得られない
という欠点かあった。
Therefore, in order to construct a uniform, dense, and highly durable glass layer on top of ALC, it is necessary to use glass with a high melting point and
The LC surface temperature must be raised above the melting temperature of the glass, and if the ALC surface temperature is raised to such a temperature, the ALC will shrink due to dehydration and decomposition of the hydrates in the ALC.
There was a drawback that cracks were generated and a glass layer that was dense, durable, and had excellent gloss could not be obtained without damaging the ALC.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を解決し目的を達するため鋭意研究を
行った結果、製品表面ではタイルと同様にガラスを充分
に加熱し溶融させ、かつ、ガラス溶融時の熱からALC
を保護するために、ALCの表面に1000℃における
加熱残存線収縮率か0.5%以下、熱膨張係数か12X
10−6/℃以下、かつ熱伝導率が0.3Kcal/m
、hr、K (at 20 ℃)以下の無機質断熱層を
設けることにより、表面の加熱に起因するALCからの
下地層の剥離や下地層の亀裂をなくしガラスを溶かすた
めに表面温度をガラスの融点以上に上げてもALCは損
傷を受けず。
As a result of intensive research in order to solve the above problems and achieve the purpose, the present invention has been developed to fully heat and melt the glass on the product surface in the same way as tiles, and to reduce ALC from the heat of glass melting.
In order to protect the
10-6/℃ or less and thermal conductivity of 0.3 Kcal/m
, hr, K (at 20 °C) or less by providing an inorganic heat insulating layer to eliminate peeling of the base layer from the ALC and cracks in the base layer caused by surface heating, and to reduce the surface temperature to the melting point of the glass in order to melt the glass. Even if it is raised above the limit, the ALC will not be damaged.

かつ充分な光沢を有するガラスコーティングか溶射によ
り可能となることを見い出した。
We have also discovered that this can be achieved by thermal spraying or glass coating with sufficient gloss.

本発明に使用する基材はALCである。ALCは従来使
用されているもので、セメント、石灰。
The base material used in the present invention is ALC. ALC is conventionally used: cement, lime.

珪石及びアルミニウムからなる発泡性スラリーを配筋さ
れた型枠内に流し込み、これを発泡硬化せしめ、これを
所定寸法に切断し、高温高圧下で蒸気養生し発泡成型体
としたものである。
A foamable slurry made of silica stone and aluminum is poured into a reinforcing mold and allowed to foam and harden.The slurry is then cut to a predetermined size and steam-cured under high temperature and pressure to form a foamed molded product.

本発明に使用する下地層は1000℃における加熱残存
線収縮率か0.5%以下、熱膨張係数が12X10−6
/℃以下、熱伝導率か0.3Kcal/m浦乙1り(a
t 20℃)以下の無機質層で特定の配合のセメントモ
ルタル層がらなり、基材のALCとガラス層とに各々密
着一体化している。セメントモルタル層は骨材、セメン
)・水和物、軽量骨材、さらに必要に応じて使用する添
加材からなる。加熱残存線収縮率か0.5%を越える場
合には、溶射処理を行う際にセメントモルタル層がAL
Cから剥離したり、ALCに亀裂が入り易くなる。また
、熱膨張係数が12X10−6/℃を越える場合にも、
溶射処理を行う際にセメントモルタル層の剥離やALC
の亀裂が発生し易くなる。
The base layer used in the present invention has a residual linear shrinkage rate of 0.5% or less at 1000°C and a coefficient of thermal expansion of 12X10-6.
/℃ or less, thermal conductivity is 0.3Kcal/m
A cement mortar layer with a specific composition is made of an inorganic layer having a temperature of 20° C. or less, and is closely integrated with the ALC base material and the glass layer. The cement mortar layer consists of aggregate, cement) hydrate, lightweight aggregate, and additives used as necessary. If the heating residual linear shrinkage rate exceeds 0.5%, the cement mortar layer will be damaged during thermal spraying.
It becomes easy to peel off from C or crack in ALC. Also, when the coefficient of thermal expansion exceeds 12X10-6/℃,
Peeling of the cement mortar layer and ALC during thermal spraying
cracks are more likely to occur.

下地層の熱伝導率は 0.3Kcal/m、 hr、 
K(at 20℃)以下てなければならず、 0.3K
cal/m、hr、K(at 20℃)を越えるとAL
C表面の温度を300℃以下に保持することが困難とな
り1表面の加熱に起因するALC及び下地層の亀裂や剥
離が発生すると共に。
The thermal conductivity of the base layer is 0.3 Kcal/m, hr,
Must be below K (at 20℃), 0.3K
AL when exceeding cal/m, hr, K (at 20℃)
It becomes difficult to maintain the temperature of the C surface below 300° C., and cracking and peeling of the ALC and underlying layer occur due to heating of the surface.

溶射によって得られる表面ガラス層の光沢が不充分とな
る。
The gloss of the surface glass layer obtained by thermal spraying becomes insufficient.

上記下地層中の骨材は、室温〜1000℃の平均熱膨張
係数が2.0X 10−6/℃以下の物質であり。
The aggregate in the base layer is a substance having an average thermal expansion coefficient of 2.0X 10-6/°C or less between room temperature and 1000°C.

石英ガラス、リチウム−アルミノ珪酸塩、チタン酸アル
ミニウム等が使用可能である。これらは単独でも2種類
以上の混合物でも使用することかできる。その粒度は2
粒径1 mm以下のものを使用することが好ましい。骨
材の熱膨張係数か2.0×10−6/℃を越えると、セ
メントモルタル層の熱膨張係数を12X10−6/℃以
下にすることが困難となる。
Quartz glass, lithium-aluminosilicate, aluminum titanate, etc. can be used. These can be used alone or in a mixture of two or more. Its particle size is 2
It is preferable to use particles with a particle size of 1 mm or less. If the thermal expansion coefficient of the aggregate exceeds 2.0 x 10-6/°C, it becomes difficult to reduce the thermal expansion coefficient of the cement mortar layer to 12 x 10-6/°C or less.

上記下地層中のセメント水和物とは、ポルトランドセメ
ント、高炉スラク゛セメント、アルミナセメント等の通
常使用されているセメントと水と混合し、養生すること
により生成する水和物であるか、これらのうち耐熱性に
優れるアルミナセメント水和物か特に好ましい。
The cement hydrate in the above-mentioned base layer is a hydrate produced by mixing commonly used cement such as Portland cement, blast furnace slurry cement, or alumina cement with water and curing, or Among these, alumina cement hydrate, which has excellent heat resistance, is particularly preferred.

上記下地層中に存在させる添加材としては2通常のセメ
ントモルタルに骨材あるいは補強材等として使用されて
いる物質2例えば珪砂、珪石、磁器質シャモット、ワラ
ストナイト、カーボンファイバー等を使用することがで
きる。
As additives to be present in the base layer, 2. Substances used as aggregates or reinforcing materials in ordinary cement mortar. 2. For example, silica sand, silica stone, porcelain chamotte, wollastonite, carbon fiber, etc. can be used. I can do it.

上記下地層中の軽量骨材としては、一般に使われている
無機質発泡体2例えばガラスバルーン。
As the lightweight aggregate in the base layer, commonly used inorganic foams 2 such as glass balloons are used.

シラスバルーン、パーライト等が使用できる。Shirasu balloons, perlite, etc. can be used.

上記の下地層における骨材とセメントの混合割合は、セ
メンl−100重量部に対して骨材100〜500重量
部であることが好ましい。骨材が100重量部未満の場
合には、加熱後の残存線収縮率か0.5%以下にするこ
とか困難であり、一方500重量部を越えた場合はセメ
ントモルタル層とALCとの間に十分な接着強度を得る
ことか困難になり機械的な衝撃によっても剥離する可能
性が生ずる。
The mixing ratio of aggregate and cement in the base layer is preferably 100 to 500 parts by weight of aggregate to 100 parts by weight of cement. If the amount of aggregate is less than 100 parts by weight, it is difficult to keep the residual linear shrinkage rate after heating to 0.5% or less, while if it exceeds 500 parts by weight, the difference between the cement mortar layer and the ALC It becomes difficult to obtain sufficient adhesive strength, and there is a possibility that the adhesive will peel off due to mechanical impact.

上記の添加材の量は、セメント100重量部に対して4
00重量部以下かつ骨材と添加材との合計か500重量
部以下になるようにすることか好ましい。
The amount of the above additive is 4 parts by weight per 100 parts by weight of cement.
It is preferable that the total amount of aggregate and additives be 500 parts by weight or less and 500 parts by weight or less.

上記の軽量骨材の量はセメント100重量部に対して1
0〜100重量部にすることか好ましい。
The amount of the above lightweight aggregate is 1 for 100 parts by weight of cement.
It is preferable to use 0 to 100 parts by weight.

軽量骨材か10重量部未満の場合には熱伝導率を0、3
Kcal/m、 hr、 K(at 20℃)以下にす
ることが困難であり、一方100重量部を越えた場合は
セメントモルタル層とALCとの間に十分な接着強度を
得ることが困難となる。
If the weight of lightweight aggregate is less than 10 parts by weight, the thermal conductivity should be set to 0 or 3.
It is difficult to keep Kcal/m, hr, K (at 20°C) or less, and on the other hand, if it exceeds 100 parts by weight, it becomes difficult to obtain sufficient adhesive strength between the cement mortar layer and ALC. .

骨材、セメント水和物、添加材、軽量骨材から構成され
る下地層の熱膨張係数は12X10−6/℃以下でなけ
ればならす、且つ、使用するガラスの熱膨張係数に近い
ことが更に望ましい。下地層の熱膨張係数は上記の条件
内で骨材と添加材の使用量を調整することにより所望の
熱膨張係数の下地を得ることが可能である。たたし、溶
射施工時の熱によるALC及び下地層への影響を極力小
さくするためには熱膨張係数は7 X 10−6/℃以
下にすることが特に好ましい。
The coefficient of thermal expansion of the base layer consisting of aggregate, cement hydrate, additives, and lightweight aggregate must be 12X10-6/℃ or less, and furthermore, it must be close to the coefficient of thermal expansion of the glass used. desirable. The thermal expansion coefficient of the base layer can be determined by adjusting the amounts of aggregate and additives used within the above conditions to obtain a base layer with a desired thermal expansion coefficient. However, in order to minimize the influence of heat during thermal spraying on the ALC and the underlying layer, it is particularly preferable that the coefficient of thermal expansion is 7 x 10-6/°C or less.

下地層の厚さは3〜15順か好ましく、3mm以下では
溶射時の熱からの保護効果が十分に発揮されずALCに
亀裂及び剥離を生ずる。また、必要以上に厚くすること
は不経済である。溶射するガラスの軟化温度や溶射条件
によって必要最小限の一8= 厚さにすることが好ましい。
The thickness of the base layer is preferably in the order of 3 to 15 mm; if it is less than 3 mm, the protective effect from heat during thermal spraying will not be sufficiently exhibited, resulting in cracking and peeling of the ALC. Furthermore, it is uneconomical to make the thickness thicker than necessary. It is preferable to set the required minimum thickness depending on the softening temperature of the glass to be thermally sprayed and the thermal spraying conditions.

ガラスの溶射方法は燃焼または電気エネルギーを用いて
溶射材料を加熱し、溶融またはそれに近い状態にした粒
子を素地に吹き付けて皮膜を形成する方法ならいずれで
も良く、粉末式の火炎溶射法、プラズマ法等の溶射法が
可能である。
Thermal spraying methods for glass can be any method in which a thermal spraying material is heated using combustion or electrical energy, and molten or nearly molten particles are sprayed onto the substrate to form a film, including powder flame spraying and plasma methods. Other thermal spraying methods are possible.

また、溶射するガラスは、 5102.Na2O,K2
O。
In addition, the glass to be thermally sprayed is 5102. Na2O, K2
O.

CaO、B2O3及びPbO等の化学成分を含むガラス
か使用可能で一般的にフリッ1へとして売られているガ
ラス等か使用可能である。溶射施工時の熱による負担を
極力軽くするためには軟化温度の低いガラスか好ましい
が、低融点カラスは軟化温度が低い程一般に耐久性か劣
るため、実用上の耐久性を有するガラスとして軟化温度
が600℃〜1000℃のタイル等に使用されるフリッ
I・が使用可能である。
Glass containing chemical components such as CaO, B2O3, and PbO can be used, such as glass commonly sold as frit 1. In order to minimize the burden of heat during thermal spraying, it is preferable to use glass with a low softening temperature, but the lower the softening temperature of low melting point glass, the less durable it is. Frit I, which is used for tiles etc. whose temperature is 600°C to 1000°C, can be used.

溶射条件は使用する溶射機及びフリットの軟化温度によ
り異なるが、特に溶射ガンの移動速度を速くしたり、溶
射距離を長くとったりして表面温度を600℃以下に保
つ必要はなく、耐熱性下地層の表面温度はフリットの焼
成温度まで上がるように移動速度を遅くして溶射するこ
とかできる。
Thermal spraying conditions vary depending on the thermal spraying machine used and the softening temperature of the frit, but it is not necessary to keep the surface temperature below 600℃ by increasing the moving speed of the thermal spraying gun or increasing the spraying distance, and it is not necessary to keep the surface temperature below 600℃. The surface temperature of the frit can be sprayed by slowing the movement speed so that it reaches the firing temperature of the frit.

移動速度を遅く溶射距離を短くして溶射するため一般の
溶射被膜とことなった被膜が形成される。
Because the spraying is carried out at a slow moving speed and a short spraying distance, a coating different from ordinary thermal spray coatings is formed.

−膜面な溶射条件をとった場合は溶射カンより放たれた
溶融粒子は被溶射材表面において冷却凝固し二度と溶融
することはなく2次の溶融粒子かきてもその表面で凝固
するたけて粒子同士か表面で融合することはない。従っ
て形成される溶射被膜は凝固した粒子の集合体で6粒子
同志の間に隙間か存在し多孔質の不均質な溶射被膜か形
成される。
- When spraying conditions are applied to a film surface, the molten particles emitted from the spray can will cool and solidify on the surface of the material to be sprayed, and will never melt again. They do not fuse together or on the surface. Therefore, the sprayed coating formed is an aggregate of solidified particles with gaps between the six particles, resulting in a porous and non-uniform sprayed coating.

本発明の方法によれは移動速度を遅くシ、溶射距離を短
くすることによって被溶射材表面の温度をフリットの溶
融温度まで」二げることかできる。
According to the method of the present invention, the temperature of the surface of the material to be sprayed can be lowered to the melting temperature of the frit by slowing down the moving speed and shortening the spraying distance.

従っで、溶射ガンより飛来した溶融粒子は被溶射材表面
で一度凝固するか再溶融され続いて飛来してきた粒子と
融合し一体化する。従って形成される溶射被膜は緻密で
均質なカラス層となる。
Therefore, the molten particles flying from the thermal spray gun are once solidified or remelted on the surface of the material to be sprayed, and then fused with the particles that have flown successively and become integrated. Therefore, the sprayed coating formed becomes a dense and homogeneous glass layer.

溶射されるガラス皮膜の厚さは用いる溶射条件によって
異なるか、30〜2000μmか好ましい。30μm以
下では溶射カラス層としての機能を果たさない。フリッ
1への溶射ガンへの供給量にもよるが一度の溶射施工で
100μ〜300μのガラス皮膜層が形成される。溶射
するピッチを狭めたり、繰り返し溶射することにより所
望の厚さのガラス皮膜を得ることかできる。ガラス層の
厚さを必要以上に厚くすることは不経済であり、また、
剥離の原因となる。
The thickness of the glass coating to be thermally sprayed varies depending on the thermal spraying conditions used, and is preferably 30 to 2000 μm. If the thickness is less than 30 μm, it will not function as a sprayed glass layer. Depending on the amount supplied to the thermal spray gun on the flip 1, a glass film layer of 100 to 300 microns is formed in one thermal spraying process. A glass coating of desired thickness can be obtained by narrowing the spraying pitch or repeating spraying. It is uneconomical to make the glass layer thicker than necessary, and
This may cause peeling.

〔実施例〕〔Example〕

以下、実施例に基ついて本発明を具体的に説明する。実
施例中の加熱後の残存線収縮率及び熱膨張係数の測定方
法、ガラスの溶射方法、及び溶射後のガラス皮膜の耐久
性評価方法を下記に示す。
Hereinafter, the present invention will be specifically explained based on Examples. The method for measuring the residual linear shrinkage rate and coefficient of thermal expansion after heating in Examples, the method for thermal spraying glass, and the method for evaluating the durability of the glass film after thermal spraying are shown below.

01000℃加熱後の残存線収縮率及び熱膨張係数の測
定方法 測定機器 =(a)リガク製 熱機械分析装置供試体寸
法 直径5mm、高さ20mm  円柱供試体への載荷
 50.93 g /耐昇降温速度 10℃/min 最高温度及び保持時間 1000℃−5分間r”″″:
′°加熱前(2°°0)0長5[”]○ 熱伝導率の測
定方法(at 20℃)JISA 1412. AST
M C518準拠、英仏精機社製HC−070H型機使
用 ○ ガラスの溶射方法 使用ガラス 日本フェロ−(掬社製 ガラス供給量 30g/min 溶射装置 メテコ社製 6P−■ 溶射ガンガン移動速
度:9m/min 走査間隔5 mm 溶射距離8 cm 〇 下地層とALC界面の温度測定 直径0.3mmφのPR熱電対をそれぞれの位置に埋め
込み、デジタルボルトメーターによって溶射中の温度を
1X20秒に一回の割合で測定した。
Measuring method of residual linear shrinkage and thermal expansion coefficient after heating at 01000°C Measuring equipment = (a) Rigaku thermomechanical analyzer Specimen dimensions Diameter 5 mm, height 20 mm Load on cylindrical specimen 50.93 g / lifting resistance Temperature rate: 10°C/min Maximum temperature and holding time: 1000°C for 5 minutes
'°Before heating (2°°0) 0 length 5 [''] ○ Method of measuring thermal conductivity (at 20°C) JISA 1412. AST
Compliant with MC518, using HC-070H model manufactured by Anglo-French Seiki Co. Glass spraying method Glass used: Nippon Ferro (manufactured by Kikisha Glass supply rate 30g/min Thermal spraying device manufactured by Metco Co., Ltd. 6P- ■ Thermal spraying speed: 9m/ min Scanning interval 5 mm Spraying distance 8 cm 〇 Temperature measurement of the base layer and ALC interface PR thermocouples with a diameter of 0.3 mmφ were embedded in each position, and the temperature during thermal spraying was measured with a digital voltmeter at a rate of once every 1 x 20 seconds. It was measured.

○ 光沢度の測定 日本重色工業(掬社製 VG−2P−D3型機を使用し
、90°反射率を測定した。
○ Measurement of Glossiness 90° reflectance was measured using a VG-2P-D3 model manufactured by Nippon Heavy Industries (Kikusha).

〔実施例 1〕 アルミナセメント100重量部1右英ガラス粉(熱膨張
係数0.5X10−6/℃) 250重量部、ガラスバ
ルーン(三機工業製すンキライI−YO4)50重量部
及び水130重量部を混合して均一なスラリーとした。
[Example 1] 100 parts by weight of alumina cement, 250 parts by weight of glass powder (coefficient of thermal expansion 0.5 x 10-6/°C), 50 parts by weight of glass balloon (Sunkirai I-YO4 manufactured by Sanki Kogyo), and 130 parts by weight of water. Parts by weight were mixed to form a uniform slurry.

これをALC上に厚さ5mmで塗布し、60℃の飽和蒸
気中で8時間養生した後。
This was applied on ALC to a thickness of 5 mm and cured in saturated steam at 60°C for 8 hours.

充分に乾燥させた。この成型体にガラスを溶射し。Dry thoroughly. Glass is sprayed onto this molded body.

表面にガラス層を有する複層軽量気泡コンクリートを得
た。
A multilayer lightweight cellular concrete with a glass layer on the surface was obtained.

セメントモルタル層について測定した加熱後の残存線収
縮率及び熱膨張係数、熱伝導率、溶射中の下地層とAL
C界面の温度、溶射後の下地層の破損状況及び表面カラ
ス層の光沢度を第1表に示す。
Residual linear shrinkage and thermal expansion coefficient after heating measured for cement mortar layer, thermal conductivity, base layer and AL during thermal spraying
Table 1 shows the temperature of the C interface, the degree of damage to the base layer after thermal spraying, and the glossiness of the surface glass layer.

実施例2 アルミナセメント100重量部1石英カラス粉(熱膨張
係数0.5X10−6/℃) l O0重量部、砕石粉
(熱膨張係数14.0X10−’/℃) 300重量部
Example 2 Alumina cement 100 parts by weight 1 quartz glass powder (coefficient of thermal expansion 0.5 x 10-6/°C) l O0 parts by weight, crushed stone powder (coefficient of thermal expansion 14.0 x 10-'/°C) 300 parts by weight.

ガラスバルーン(三機工業製 サンキライl−YO2)
20重量部及び水150重量部を混合して均一なスラリ
ーとした。以下実施例1と同様な方法で表面にカラス層
を有する複層軽量気泡コンクリートを得た。
Glass balloon (Sankirai l-YO2 manufactured by Sanki Kogyo)
20 parts by weight and 150 parts by weight of water were mixed to form a uniform slurry. Thereafter, a multi-layer lightweight cellular concrete having a glass layer on the surface was obtained in the same manner as in Example 1.

セメン1〜モルタル層について測定した加熱後の残存線
収縮率及び熱膨張係数、熱伝導率、溶射中の下地層とA
LC界面の温度、溶射後の下地層の破損状況及び表面ガ
ラス層の光沢度を第1表に示す。
Cement 1 - Residual linear shrinkage and thermal expansion coefficient after heating measured for mortar layer, thermal conductivity, base layer during thermal spraying and A
Table 1 shows the temperature of the LC interface, the degree of damage to the base layer after thermal spraying, and the glossiness of the surface glass layer.

比較例 1 アルミナセメント100重量部6石英カラス粉300重
量部及び水130重量部を混合して均一なスラリーとし
た。
Comparative Example 1 100 parts by weight of alumina cement, 300 parts by weight of quartz glass powder, and 130 parts by weight of water were mixed to form a uniform slurry.

以下実施例1と同様な方法で表面にガラス層を有する複
層軽量気泡コンクリートを得た。
Thereafter, a multilayer lightweight cellular concrete having a glass layer on the surface was obtained in the same manner as in Example 1.

セメントモルタル層について測定した加熱後の残存線収
縮率及び熱膨張係数、熱伝導率、溶射中の下地層とAL
C界面の温度、溶射後の下地層の破損状況及び表面ガラ
ス層の光沢度を第1表に示す。
Residual linear shrinkage and thermal expansion coefficient after heating measured for cement mortar layer, thermal conductivity, base layer and AL during thermal spraying
Table 1 shows the temperature of the C interface, the degree of damage to the base layer after thermal spraying, and the glossiness of the surface glass layer.

比較例2 アルミナセメンl−1,00重量部、ワラスI・ナイト
(熱膨張係数6.5X10−6/℃) 250重量部。
Comparative Example 2 1,00 parts by weight of alumina cement l, 250 parts by weight of Walrus I-night (coefficient of thermal expansion 6.5 x 10-6/°C).

ガラスバルーン(三機工業製サンキライト)50重量部
及び水130重量部を混合して均一なスラリーとした。
50 parts by weight of a glass balloon (Sanki Light manufactured by Sanki Kogyo) and 130 parts by weight of water were mixed to form a uniform slurry.

以下実施例1と同様な方法で2表面にガラス層を有する
複層軽量気泡コンクリートを得た。
Thereafter, a multilayer lightweight cellular concrete having glass layers on two surfaces was obtained in the same manner as in Example 1.

セメンI・モルタル層について測定した加熱後の残存線
収縮率及び熱膨張係数、熱伝導率、溶射中の下地層とA
LC界面の温度、溶射後の下地層の破損状況及び表面ガ
ラス層の光沢度を第1表に示す。
Residual linear shrinkage and thermal expansion coefficient after heating measured for cement I mortar layer, thermal conductivity, base layer during thermal spraying and A
Table 1 shows the temperature of the LC interface, the degree of damage to the base layer after thermal spraying, and the glossiness of the surface glass layer.

= 15− 〔発明の効果〕 オートクレーブ養生軽量気泡コンクリート(ALC)の
表面に、1000℃における加熱残存線収縮率か0.5
%以下、熱膨張係数か12X 10−6/℃以下、かつ
、熱伝導率か0.3Kcal/m、 hr、 K(at
20℃)以下の無機質断熱層を設け、その表面に溶射を
行うことにより下地層表面をガラスの軟化温度以上に上
げ充分に溶融一体化されたガラス層を施工することか可
能となる。これによりALC表面にALCが熱により劣
化し亀裂及び剥離か発生することなく、ガラスを充分に
溶融させ緻密で均質な光沢度の高いガラス層をALC表
面に一体化した意匠性に優れるセラミックコーティング
複合板を得ることができる。このセラミックコーチイン
グイ反を用いることによりALC表面にタイルを貼る必
要もなく、効率的にALC表面にガラスコーティング層
が得られ剥離等の心配もない。
= 15- [Effect of the invention] The surface of autoclave-cured lightweight cellular concrete (ALC) has a heating residual linear shrinkage rate of 0.5 at 1000°C.
% or less, thermal expansion coefficient is 12X 10-6/℃ or less, and thermal conductivity is 0.3 Kcal/m, hr, K(at
By providing an inorganic heat insulating layer at a temperature of 20° C. or lower and thermal spraying on its surface, it is possible to raise the surface of the base layer to a temperature higher than the softening temperature of the glass and to construct a sufficiently fused and integrated glass layer. As a result, the glass is sufficiently melted and a dense, homogeneous, high-gloss glass layer is integrated on the ALC surface without cracking or peeling due to heat deterioration of the ALC.A ceramic coating composite with excellent design. You can get a board. By using this ceramic coating, there is no need to affix tiles to the ALC surface, a glass coating layer can be efficiently obtained on the ALC surface, and there is no fear of peeling.

特許出願人  旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、オートクレーブ養生軽量気泡コンクリート(ALC
)の表面に、1000℃における加熱残存線収縮率が0
.5%以下、熱膨張係数が12×10^−^6/℃以下
で、かつ20℃における熱伝導率が0.3Kcal/m
.hr.K以下の無機質断熱層を介してガラス層が存在
し、かつ、各層が密着一体化してなることを特徴とする
建築用板材。 2、オートクレーブ養生軽量気泡コンクリート(ALC
)の表面に、1000℃における加熱残存線収縮率が0
.5%以下、熱膨張係数が12×10^−^6/℃以下
で、かつ20℃における熱伝導率が0.3Kcal/m
.hr.K以下の無機質断熱層を設け、表面に溶射によ
りガラス層を設けることを特徴とするガラス被覆建築用
板材の製造方法。
[Claims] 1. Autoclave-cured lightweight aerated concrete (ALC)
) has a heating residual linear shrinkage rate of 0 at 1000°C.
.. 5% or less, the thermal expansion coefficient is 12 x 10^-^6/℃ or less, and the thermal conductivity at 20℃ is 0.3 Kcal/m
.. hr. 1. A construction board material, characterized in that a glass layer is present through an inorganic heat insulating layer of K or less, and each layer is closely integrated. 2. Autoclave-cured lightweight aerated concrete (ALC)
) has a heating residual linear shrinkage rate of 0 at 1000°C.
.. 5% or less, the thermal expansion coefficient is 12 x 10^-^6/℃ or less, and the thermal conductivity at 20℃ is 0.3 Kcal/m
.. hr. A method for manufacturing a glass-coated architectural board material, which comprises providing an inorganic heat insulating layer of K or less, and providing a glass layer on the surface by thermal spraying.
JP30400390A 1990-11-13 1990-11-13 Glass coated plate and its production Pending JPH04182372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30400390A JPH04182372A (en) 1990-11-13 1990-11-13 Glass coated plate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30400390A JPH04182372A (en) 1990-11-13 1990-11-13 Glass coated plate and its production

Publications (1)

Publication Number Publication Date
JPH04182372A true JPH04182372A (en) 1992-06-29

Family

ID=17927891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30400390A Pending JPH04182372A (en) 1990-11-13 1990-11-13 Glass coated plate and its production

Country Status (1)

Country Link
JP (1) JPH04182372A (en)

Similar Documents

Publication Publication Date Title
KR101067371B1 (en) Bubble ceramic material with low weight and method for preparing thereof
US6368527B1 (en) Method for manufacture of foamed perlite material
CN112479679A (en) Glaze composite foamed ceramic plate with low thermal expansion, and preparation method and application thereof
US3261894A (en) Method of manufacturing foamed silicate structures
JPH08127736A (en) Heat-insulating coating material
US3956534A (en) Method of spray forming glass coating on concrete blocks
JPH04182372A (en) Glass coated plate and its production
JPH04175280A (en) Ceramic coated plate and production thereof
JPS60176932A (en) Glazed inorganic expansion molded article and production thereof
JPH0412075A (en) Ceramic coating lightweight foam calcium silicate composite sheet
JPH0324414B2 (en)
JPH0140793B2 (en)
JPH0920578A (en) Ceramic panel and its production
KR101756854B1 (en) Coating composite based silica and form using the same and method for construcing concrete structure using thereof
KR200282026Y1 (en) Inorganic Insulation And Inorganic Foam Material Including Thereof
JPH0624875A (en) Sanitary ware using cement composition and production thereof
JPH08127739A (en) Heat-resistant heat-insulating coating material
KR20070001164U (en) Bubble ceramic material with low weight
JPH0456796B2 (en)
JP2810496B2 (en) Metal composite panel and method of manufacturing the same
JPH029780A (en) Inorganic panel glazed by flame spraying method
JP2700179B2 (en) Manufacturing method of enamel concrete board
JPH0214307B2 (en)
JP2622018B2 (en) Manufacturing method of glazed cement products
JPH05262579A (en) Glazed cement mortar product and its production