JPH04182331A - Cooling device for optical fiber - Google Patents

Cooling device for optical fiber

Info

Publication number
JPH04182331A
JPH04182331A JP2303905A JP30390590A JPH04182331A JP H04182331 A JPH04182331 A JP H04182331A JP 2303905 A JP2303905 A JP 2303905A JP 30390590 A JP30390590 A JP 30390590A JP H04182331 A JPH04182331 A JP H04182331A
Authority
JP
Japan
Prior art keywords
optical fiber
cooling
air blowing
blowing cooling
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2303905A
Other languages
Japanese (ja)
Other versions
JP2807335B2 (en
Inventor
Yukio Komura
幸夫 香村
Yasuhiro Naka
恭宏 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2303905A priority Critical patent/JP2807335B2/en
Publication of JPH04182331A publication Critical patent/JPH04182331A/en
Application granted granted Critical
Publication of JP2807335B2 publication Critical patent/JP2807335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/55Cooling or annealing the drawn fibre prior to coating using a series of coolers or heaters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/92Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles using means for gradually reducing the cross-section towards the outlet or around the preform draw end, e.g. tapered

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To control the vibration of an optical fiber by using a tapered hole-die air blowoff cooling part at the initial and final stages of the cooling parts arranged in multiple stages and a straight hole-die air blowoff cooling part in the intermediate stage. CONSTITUTION:An optical fiber preform 2 is heated in a melting furnace 3, delivered from a nozzle part 3a, passed through an air blowoff cooling part consisting of the tapered hole-die 14 and straight hole-die 7 arranged in multiple stages in the moving direction, cooled, coated with a coating die 5, cured by a curing device 6, received by a receiver 4 and spun. The optical fiber through- hole 16 of a cooling cylinder part 15 for passing an optical fiber 1 is tapered at the initial and final stages of the cooling part, air is circumferentially blown off, and the vibration of the optical fiber is controlled. The optical fiber through- hole 10 of a cooling cylinder part 9 for passing the optical fiber 1 is straightened at the intermediate stage, air is circumferentially blown off, and its cooling capacity is higher than the tapered hole-die.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ファイバ母材から紡糸された光ファイバを
、その移動方向に多段配置された各エアー吹出し冷却部
で冷却する光ファイバ冷却装置に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides an optical fiber cooling device that cools an optical fiber spun from an optical fiber preform using air blowing cooling units arranged in multiple stages in the direction of movement of the optical fiber. It is related to.

[従来の技術] 光ファイバ]−は、第4図に示すように、光ファイバ母
材2を溶融炉3を用いて約2000’Cで加熱しつつ引
取機4で引取りながら紡糸することにより得、得られた
光ファイバ」−は溶融炉3の下部のノズル部3aより送
り出し、被覆ダイス5に通して外周に樹脂を被覆し、次
に樹脂硬化器6に通して被覆樹脂の硬化を行うことによ
り製造している。なお、ノズル部3aは光ファイバ母+
」2のネックダウン部2aを安定化させるためのもので
ある。
[Prior Art] Optical fiber] is produced by spinning an optical fiber preform 2 while heating it at about 2000'C using a melting furnace 3 and taking it off with a take-off machine 4, as shown in FIG. The obtained optical fiber is sent out from the nozzle part 3a at the bottom of the melting furnace 3, passed through a coating die 5 to coat the outer periphery with resin, and then passed through a resin hardener 6 to harden the coated resin. Manufactured by Note that the nozzle part 3a is an optical fiber base +
This is for stabilizing the neck-down portion 2a of 2.

紡糸を高速(例えは、200 m/min )で実施す
る場合、紡糸直後の光ファイバ]にHe、N2゜エアー
等を吹き付け、被覆ダイス5に入る光ファイバ千の温度
を50℃以下にしている。光ファイバ十の温度かこれ以
上になっていると、被覆ダイス5内の樹脂温度か上昇す
るため、適正な厚みの被覆が行えない。
When spinning is carried out at a high speed (for example, 200 m/min), the temperature of the optical fiber entering the coating die 5 is kept below 50° C. by spraying He, N2° air, etc. onto the optical fiber immediately after spinning. . If the temperature of the optical fiber is at or above this temperature, the temperature of the resin in the coating die 5 will rise, making it impossible to coat the optical fiber with an appropriate thickness.

一方、製造コストの競争上から高価なT−T eを用い
ず、安価なエアーをコンプレッサーを用いて圧縮後、除
湿し、除塵して第5図に示す如き構造のエアー吹出し冷
却部7を光ファイバ」−の移動路に沿って第4図に示す
ように多段配置した光ファイバ冷却装置8から光ファイ
バ1に吹付けて冷却することが提案されている。これら
エアー吹出し冷却部7は、冷却筒部9を有し、該冷却筒
部8の軸心には光ファイバ十を貫通させる光ファイバ貫
通孔10かストレート孔として設けられ、該冷却筒部8
の外周の一部にはエアー人口11か設けられ、該冷却筒
部8内にはエアー人口1千に入ったエアーを調圧するバ
ッファ一部1−2が光ファイバ貫通孔10に対して同心
状に設けられ、該冷却筒部8の内周にはバッファ一部1
2から供給されるエアーを光ファイバ1に交叉する向き
で吹出すエアー吹出し口13が設けられた構造になって
いる。このようなタイプのエアー吹出し冷却部7を、本
発明ではストレート孔型のエアー吹出し冷却部と称する
On the other hand, due to competitive manufacturing costs, an expensive T-Te is not used, and after compressing cheap air using a compressor, dehumidifying and removing dust, the air blowing cooling section 7 having the structure shown in FIG. It has been proposed to cool the optical fiber 1 by spraying it from optical fiber cooling devices 8 arranged in multiple stages as shown in FIG. 4 along the path of movement of the fiber. These air blowing cooling parts 7 have a cooling cylinder part 9, and an optical fiber through hole 10 or a straight hole through which an optical fiber 10 is passed is provided at the axis of the cooling cylinder part 8.
An air volume 11 is provided on a part of the outer periphery of the cooling cylinder part 8, and a buffer part 1-2 for regulating the pressure of the air that has entered the air volume 1,000 is concentric with the optical fiber through hole 10. A buffer portion 1 is provided on the inner periphery of the cooling cylinder portion 8.
The structure is such that an air outlet 13 is provided to blow out air supplied from the optical fiber 1 in a direction crossing the optical fiber 1. In the present invention, this type of air blowing cooling section 7 is referred to as a straight hole type air blowing cooling section.

第4図及び第5図に示す如き構成の光ファイバ製造装置
では、光ファイバ千の線引き速度を、生産性の向上と、
原価低減のために更に高速度化(200m/min −
〜500〜600m/min )することが要求されて
いる。
In the optical fiber manufacturing apparatus configured as shown in FIGS. 4 and 5, the optical fiber drawing speed of 1,000 times can be increased by improving productivity.
Higher speed (200m/min -
~500~600m/min).

[発明が解決しようとする課題] 第5図に示すストレート孔型のエアー吹出し冷却部7の
みを用いた光ファイバ冷却装置8では、光ファイバ1の
線引き速度をパラメータとして冷却能力曲線を描くと、
第6図に実線で示すようになり、光ファイバ1の線引き
速度を上げるためにはエアー吹出し口13から吹出すエ
アーの流量を増加させる必要がある。
[Problems to be Solved by the Invention] In the optical fiber cooling device 8 using only the straight hole type air blowing cooling section 7 shown in FIG. 5, when the cooling capacity curve is drawn using the drawing speed of the optical fiber 1 as a parameter,
As shown by the solid line in FIG. 6, in order to increase the drawing speed of the optical fiber 1, it is necessary to increase the flow rate of air blown out from the air outlet 13.

一方、エアーの流量を大きくすると、第7図に実線で示
すように光ファイバ1の振動振幅が大きくなり、エアー
流量が約20β/ m i nで危険振幅とされている
0、1mmを越えてしまう問題点がある。
On the other hand, when the air flow rate is increased, the vibration amplitude of the optical fiber 1 increases as shown by the solid line in Figure 7, and when the air flow rate is about 20β/min, it exceeds the dangerous amplitude of 0.1 mm. There is a problem.

光ファイバ1の振動振幅が大きくなると、溶融炉3の光
ファイバ母材2のネックダウン部2aに影響し、光ファ
イバ1の強度低下の原因となり、また被覆ダイス5での
適正な樹脂の被覆が困難上なる問題点がある。
When the vibration amplitude of the optical fiber 1 increases, it affects the neck-down portion 2a of the optical fiber preform 2 in the melting furnace 3, causing a decrease in the strength of the optical fiber 1, and also prevents proper resin coating with the coating die 5. There are some serious problems.

本発明の目的は、光ファイバの振動を有効に防止しつつ
冷却を行うことができる光ファイバ冷却装置を提供する
ことにある。
An object of the present invention is to provide an optical fiber cooling device that can cool an optical fiber while effectively preventing vibration of the optical fiber.

[課題を解決するための手段] 上記の目的を達成するための本発明の詳細な説明すると
、下記の通りである。
[Means for Solving the Problems] A detailed explanation of the present invention for achieving the above object is as follows.

請求項(1)の発明は、光ファイバ母材から紡糸された
光ファイバを、その移動方向に多段配置されたエアー吹
出し冷却部で冷却する光ファイバ冷却装置において、 前記各エアー吹出し冷却部のうち初段と最終段のエアー
吹出し冷却部は、前記光ファイバが通過する冷却筒部の
光ファイバ貫通孔かテーパ孔となっていて、該テーパ孔
内にその周方向からエアーを吹出す構造のテーパ孔型の
エアー吹出し冷却部であり、 前記エアー吹出し冷却部のうち初段と最終段を除いた中
間段の各エアー吹出し冷却部は、前記光ファイバか通過
する冷却筒部の光ファイバ貫通孔がストレート孔となっ
ていて、該ストレート孔内にその周方向からエアーを吹
出す構造のストレート孔型のエアー吹出し冷却部である
ことを特徴とする 請求項(2)の発明は、請求項(1)において、ストレ
ート孔型の前記各エアー吹出し冷却部は、それぞれ冷却
筒部が独立した構造になっていることを特徴とする 請求項(3)の発明は、請求項(1)において、ストレ
ート孔型の前記各エアー吹出し冷却部は、各冷却筒部が
相互間で連続した構造になっていることを特徴とする。
The invention of claim (1) provides an optical fiber cooling device for cooling an optical fiber spun from an optical fiber preform with air blowing cooling sections arranged in multiple stages in the direction of movement of the optical fiber, including the following: The first-stage and final-stage air blowing cooling sections are optical fiber through holes or tapered holes in the cooling cylinder section through which the optical fiber passes, and the tapered holes have a structure in which air is blown into the tapered holes from the circumferential direction. The air blowing cooling section is a type of air blowing cooling section, and each of the air blowing cooling sections at the intermediate stage except for the first stage and the final stage among the air blowing cooling sections is such that the optical fiber through hole of the cooling cylinder part through which the optical fiber passes is a straight hole. The invention of claim (2) is characterized in that it is a straight hole type air blowing cooling part having a structure of blowing air into the straight hole from the circumferential direction thereof. The invention according to claim (3) is characterized in that each of the straight hole type air blowing cooling parts has an independent cooling cylinder part. Each of the air blowing cooling parts is characterized in that each cooling cylinder part has a continuous structure.

[作用] 請求項(1)に記載のテーパ孔型のエアー吹出し冷却部
は、冷却能力はストレート孔型のエアー吹出し冷却部よ
り劣るが、光ファイバに与える振動が小さいという特性
を持っている。
[Function] The tapered hole type air blowing cooling unit according to claim (1) has a characteristic that the cooling capacity is inferior to that of the straight hole type air blowing cooling unit, but the vibration imparted to the optical fiber is small.

このようなテーパ孔型のエアー吹出し冷却部を、各段の
エアー吹出し冷却部のうちの初段と最終段に用い、これ
ら初段と最終段との間の中間のエアー吹出し冷却部とし
てストレート孔型のエアー吹出し冷却部を用いると、光
ファイバの振動を抑制して該光ファイバの冷却を良好に
行えるようになる。
Such a tapered hole type air blowing cooling section is used for the first stage and the final stage of the air blowing cooling section of each stage, and a straight hole type air blowing cooling section is used as the intermediate air blowing cooling section between the first stage and the final stage. When the air blowing cooling unit is used, the vibration of the optical fiber can be suppressed and the optical fiber can be cooled well.

請求項(2)に記載のように、ストレート孔型の各エア
ー吹出し冷却部における各冷却筒部を独立した構造にす
ると、相互間の冷却筒部の間に空隙が存在し、各段のエ
アー吹出し口から吹出されたエアーは各段毎に冷却筒部
の両端から冷却筒部の外に排出させることができ、隣の
冷却筒部内に排出されるのを抑制でき、冷却を効率よく
行える。
As described in claim (2), when each cooling cylinder part in each straight hole type air blowing cooling part is made to have an independent structure, a gap exists between the mutual cooling cylinder parts, and the air at each stage is The air blown out from the outlet can be discharged from both ends of the cooling cylinder part to the outside of the cooling cylinder part for each stage, and it can be suppressed from being discharged into the adjacent cooling cylinder part, and cooling can be performed efficiently.

請求項(3)に記載のように、ストレート孔型の各エア
ー吹出し冷却部における各冷却筒部を相互間で連続した
構造にすると、これらストレート孔型のエアー吹出し冷
却部の設置作業が容易となる。
As described in claim (3), if each cooling cylinder part in each straight hole type air blowing cooling section is constructed to be continuous with each other, the installation work of these straight hole type air blowing cooling sections is facilitated. Become.

「実施例」 以下、本発明の実施例を図面を参照して詳細に説明する
。なお、前述した第4図及び第5図と対応する部分には
同一符号を例けて示している。
"Embodiments" Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that parts corresponding to those in FIGS. 4 and 5 described above are indicated by the same reference numerals.

第1図は、本実施例で用いるテーパ孔型のエアー吹出し
冷却部14の一実施例を示したものである。このテーパ
孔型のエアー吹出し冷却部14は、冷却筒部15を有し
、該冷却筒部15の軸心には光ファイバ千を貫通させる
光ファイバ貫通孔16かテーパ孔として設けられ、該冷
却筒部子5の外周の一部にはエアー人口17か設けられ
、該冷却筒部15内にはエアー人口17に入ったエアー
を調圧するバッファ一部上8か光ファイバ貫通孔46に
対して同心状に設けられ、該冷却筒部15の内周にはバ
ッファ一部18から供給されるエアーを光ファイバ1に
交叉する向きで吹出すエアー吹出し口19が設けられた
構造となっている。
FIG. 1 shows an embodiment of the tapered hole type air blowing cooling section 14 used in this embodiment. This tapered hole type air blowing cooling unit 14 has a cooling cylinder part 15, and an optical fiber through hole 16 for passing optical fibers through the cooling cylinder part 15 is provided as a tapered hole at the axis of the cooling cylinder part 15. An air port 17 is provided on a part of the outer periphery of the cylinder part 5, and a buffer portion for adjusting the pressure of the air entering the air port 17 is provided in the cooling cylinder part 15. The cooling tube portion 15 is provided concentrically with an air outlet 19 provided on the inner periphery of the cooling cylinder portion 15 for blowing out air supplied from the buffer portion 18 in a direction crossing the optical fiber 1.

このようなテーパ孔型のエアー吹出し冷却部14は、例
えは全長を50〜80mm、テーパ孔よりなる光ファイ
バ貫通孔」6の最大内径部の直径を20〜30mrr+
、最小内径部の直径を18〜3Qmm、テーパ部の半角
θを5〜1−2°とする。
Such a tapered hole type air blowing cooling unit 14 has a total length of 50 to 80 mm, and a diameter of 20 to 30 mrr+ at the maximum inner diameter of the tapered optical fiber through hole 6.
, the diameter of the minimum inner diameter portion is 18 to 3 Qmm, and the half angle θ of the tapered portion is 5 to 1-2°.

このようなテーパ孔型のエアー吹出し冷却部子4におけ
る光ファイバ貫通孔]6に光ファイバ1を300m/m
inの線速で通して冷却能力の実験をしたところ第6図
に破線で示す結果か得られ、また振動抑制能力の実験を
したところ第7図に破線で示す結果か得られた。
The optical fiber 1 is inserted into the optical fiber through hole 6 in such a tapered hole type air blowing cooling unit 4 at a distance of 300 m/m.
An experiment on the cooling capacity was conducted at a linear velocity of 1.5 in., and the results shown by the broken line in FIG. 6 were obtained, and an experiment on the vibration suppression ability was conducted, and the results shown by the broken line in FIG.

即ち、テーパ孔型のエアー吹出し冷却部14はストレー
ト孔型のエアー吹出し冷却部7に比べると、冷却能力は
劣るが、振動が小さく、しかも振動抑制能力があること
が判明した。また、テーパ孔が光ファイバ1を安定させ
る効果がある。
In other words, it has been found that the tapered hole type air blowing cooling section 14 has a lower cooling ability than the straight hole type air blowing cooling section 7, but has less vibration and vibration suppressing ability. Further, the tapered hole has the effect of stabilizing the optical fiber 1.

そこで本実施例の光ファイバ冷却装置8は、第4−図に
示すように、各段の各エアー吹出し冷却部のうち、初段
と最終段はテーパ孔型のエアー吹出し冷却部14を用い
、初段と最終段を除いた中間段はストレート孔型のエア
ー吹出し冷却部7を用いて構成している。この場合、初
段のエアー吹出し冷却部1−4は第2図に示すような向
きで使用し、最終段のエアー吹出し冷却部14は第2図
とは上下逆向きにして使用する。また、中間段のストレ
ート孔型のエアー吹出し冷却部7は4段とし、ノズル部
3aの先端から被覆ダイス5までの距離りは6mとして
いる。
Therefore, in the optical fiber cooling device 8 of this embodiment, as shown in FIG. The intermediate stages other than the final stage are constructed using a straight hole type air blowing cooling section 7. In this case, the air blowing cooling section 1-4 at the first stage is used in an orientation as shown in FIG. 2, and the air blowing cooling section 14 at the final stage is used in an upside-down direction from that shown in FIG. Further, the straight hole type air blowing cooling section 7 in the middle stage has four stages, and the distance from the tip of the nozzle part 3a to the coating die 5 is 6 m.

このような光ファイバ冷却装置8は、例えは表1のよう
な条件で使用する。
Such an optical fiber cooling device 8 is used under the conditions shown in Table 1, for example.

表1− ストレート孔型の各エアー吹出し冷却部7は、第3図に
示すように、各冷却筒部9を相互間で連結した構造とす
ることができる。
Table 1 - Each straight hole type air blowing cooling section 7 can have a structure in which each cooling cylinder section 9 is interconnected, as shown in FIG.

このような構造にすると、各エアー吹出し冷却部7の設
置作業が容易になる。
With such a structure, the installation work of each air blowing cooling section 7 becomes easy.

[発明の効果] 以上説明したように本発明に係る光ファイバ冷却装置に
よれは、下記のような効果を得ることができる。
[Effects of the Invention] As explained above, the optical fiber cooling device according to the present invention can provide the following effects.

−1,1− 請求項(1)で用いているテーパ孔型のエアー吹出し冷
却部は、冷却能力はストレート孔型のエアー吹出し冷却
部より劣るが、光ファイバに与える振動が小さいという
特性を持っている。従って、請求項(1)の発明では、
このようなテーパ孔型のエアー吹出し冷却部を、各段の
エアー吹出し冷却部のうちの初段と最終段に用い、これ
ら初段と最終段との間の中間のエアー吹出し冷却部とし
てストレート孔型のエアー吹出し冷却部を用いているの
で、光ファイバの振動を抑制しつつ該光ファイバの冷却
を良好に行うことができる。
-1,1- Although the tapered hole type air blowing cooling unit used in claim (1) has a cooling capacity inferior to that of the straight hole type air blowing cooling unit, it has the characteristic that vibrations exerted on the optical fiber are small. ing. Therefore, in the invention of claim (1),
Such a tapered hole type air blowing cooling section is used for the first stage and the final stage of the air blowing cooling section of each stage, and a straight hole type air blowing cooling section is used as the intermediate air blowing cooling section between the first stage and the final stage. Since the air blowing cooling section is used, the optical fiber can be cooled well while suppressing the vibration of the optical fiber.

請求項(2)の発明では、ストレート孔型の各エアー吹
出し冷却部における各冷却筒部を独立した構造にしてい
るので、相互間の冷却筒部の間に空隙が存在し、各段の
エアー吹出し口から吹出されたエアーは各段毎に冷却筒
部の両端から冷却筒部の外に排出されるようになり、隣
の冷却筒部内に排出されるのを抑制でき、冷却を効率よ
く行うことかできる。
In the invention of claim (2), since each cooling cylinder part in each straight hole type air blowing cooling part has an independent structure, a gap exists between the mutual cooling cylinder parts, and the air at each stage is The air blown out from the outlet is now discharged outside the cooling cylinder from both ends of the cooling cylinder at each stage, preventing it from being discharged into the adjacent cooling cylinder, resulting in efficient cooling. I can do it.

請求項(3)の発明では、ストレート孔型の各エアー吹
出し冷却部における各冷却筒部を相互間で連続した構造
にしているので、これらストレート孔型のエアー吹出し
冷却部の設置作業か容易となる利点がある。
In the invention of claim (3), since each cooling cylinder part in each straight hole type air blowing cooling section has a continuous structure, the installation work of these straight hole type air blowing cooling sections is easy. There are some advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例の光ファイバ冷却装置を用いた光ファ
イバ製造装置の一例の概略構成を示す断面図、第2図は
本実施例で用いているテーパ孔型のエアー吹出し冷却部
の一例の縦断面図、第3図はストレート孔型のエアー吹
出し冷却部の他の例を示す縦断面図、第4図は従来の光
ファイバ製造装置の概略構成を示す縦断面図、第5図は
ストレート孔型のエアー吹出し冷却部の一例の縦断面図
、第6図は従来と本発明の冷却能力の比較図、第7図は
従来と本発明の振動振幅の相違を示す比較図である。 ■・・・光ファイバ、2・・・光ファイバ母材、3・・
・溶融炉、4・・・引取機、5・・・被覆ダイス、6・
・・樹脂硬化器、7・・・ストレート孔型のエアー吹出
し冷却部、8・・光ファイバ冷却装置、9・・冷却筒部
、10・・光ファイバ貫通孔、1]・・・エアー人口、
]−2・・・バッファ一部、13・・・エアー吹出し口
、14・・テーパ孔型のエアー吹出し冷却部、15・・
・冷却筒部、1−6・・・光ファイバ貫通孔、17・・
・エアー人口、]8・・・バッファ一部、19・・・エ
アー吹出し口。
Fig. 1 is a sectional view showing a schematic configuration of an example of an optical fiber manufacturing apparatus using the optical fiber cooling device of this embodiment, and Fig. 2 is an example of a tapered hole type air blowing cooling section used in this embodiment. 3 is a vertical sectional view showing another example of a straight hole type air blowing cooling section, FIG. 4 is a vertical sectional view showing the schematic configuration of a conventional optical fiber manufacturing apparatus, and FIG. FIG. 6 is a longitudinal sectional view of an example of a straight hole type air blowing cooling section, FIG. 6 is a comparison diagram of the cooling capacity of the conventional and the present invention, and FIG. 7 is a comparison diagram showing the difference in vibration amplitude between the conventional and the present invention. ■...Optical fiber, 2...Optical fiber base material, 3...
・Melting furnace, 4... Taking machine, 5... Coated die, 6.
... Resin hardener, 7... Straight hole type air blowing cooling unit, 8... Optical fiber cooling device, 9... Cooling tube part, 10... Optical fiber through hole, 1]... Air population,
]-2...Buffer part, 13...Air outlet, 14...Tapered hole type air outlet cooling part, 15...
・Cooling cylinder part, 1-6...Optical fiber through hole, 17...
・Air population,] 8... Part of buffer, 19... Air outlet.

Claims (3)

【特許請求の範囲】[Claims] (1)光ファイバ母材から紡糸された光ファイバを、そ
の移動方向に多段配置されたエアー吹出し冷却部で冷却
する光ファイバ冷却装置において、前記各エアー吹出し
冷却部のうち初段と最終段のエアー吹出し冷却部は、前
記光ファイバが通過する冷却筒部の光ファイバ貫通孔が
テーパ孔となっていて、該テーパ孔内にその周方向から
エアーを吹出す構造のテーパ孔型のエアー吹出し冷却部
であり、 前記エアー吹出し冷却部のうち初段と最終段を除いた中
間段の各エアー吹出し冷却部は、前記光ファイバが通過
する冷却筒部の光ファイバ貫通孔がストレート孔となっ
ていて、該ストレート孔内にその周方向からエアーを吹
出す構造のストレート孔型のエアー吹出し冷却部である
ことを特徴とする光ファイバ冷却装置。
(1) In an optical fiber cooling device that cools an optical fiber spun from an optical fiber preform in air blowing cooling sections arranged in multiple stages in the direction of movement of the optical fiber, the air in the first and last stages of each of the air blowing cooling sections is The air blowing cooling section is a tapered hole type air blowing cooling section having a structure in which the optical fiber through hole of the cooling cylinder part through which the optical fiber passes is a tapered hole, and air is blown into the tapered hole from the circumferential direction. In each of the air blowing cooling units in the intermediate stage except for the first stage and the final stage, the optical fiber through hole of the cooling cylinder part through which the optical fiber passes is a straight hole, and An optical fiber cooling device characterized by having a straight hole type air blowing cooling section having a structure that blows air into the straight hole from the circumferential direction thereof.
(2)ストレート孔型の前記各エアー吹出し冷却部は、
それぞれ冷却筒部が独立した構造になっていることを特
徴とする請求項(1)に記載の光ファイバ冷却装置。
(2) Each straight hole type air blowing cooling section is
2. The optical fiber cooling device according to claim 1, wherein each of the cooling tube portions has an independent structure.
(3)ストレート孔型の前記各エアー吹出し冷却部は、
各冷却筒部が相互間で連続した構造になっていることを
特徴とする請求項(1)に記載の光ファイバ冷却装置。
(3) Each of the straight hole type air blowing cooling parts is
2. The optical fiber cooling device according to claim 1, wherein each of the cooling cylinder portions has a continuous structure.
JP2303905A 1990-11-13 1990-11-13 Optical fiber cooling device Expired - Lifetime JP2807335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2303905A JP2807335B2 (en) 1990-11-13 1990-11-13 Optical fiber cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2303905A JP2807335B2 (en) 1990-11-13 1990-11-13 Optical fiber cooling device

Publications (2)

Publication Number Publication Date
JPH04182331A true JPH04182331A (en) 1992-06-29
JP2807335B2 JP2807335B2 (en) 1998-10-08

Family

ID=17926680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2303905A Expired - Lifetime JP2807335B2 (en) 1990-11-13 1990-11-13 Optical fiber cooling device

Country Status (1)

Country Link
JP (1) JP2807335B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068157A1 (en) * 1999-05-10 2000-11-16 Pirelli Cavi E Sistemi S.P.A. Method and induction furnace for drawing large diameter preforms to optical fibres
EP1076045A2 (en) * 1999-08-09 2001-02-14 Lucent Technologies Inc. Apparatus for cooling an optical fibre drawn from a preform
JP2014231465A (en) * 2013-05-30 2014-12-11 住友電気工業株式会社 Apparatus and method for manufacturing glass fiber
JP2015535805A (en) * 2012-10-04 2015-12-17 コーニング インコーポレイテッド Method and apparatus for cooling an optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068157A1 (en) * 1999-05-10 2000-11-16 Pirelli Cavi E Sistemi S.P.A. Method and induction furnace for drawing large diameter preforms to optical fibres
US7814767B2 (en) 1999-05-10 2010-10-19 Prysmian Cavi E Sistemi Energia S.R.L. Method and induction furnace for drawing large diameter preforms to optical fibres
EP1076045A2 (en) * 1999-08-09 2001-02-14 Lucent Technologies Inc. Apparatus for cooling an optical fibre drawn from a preform
EP1076045A3 (en) * 1999-08-09 2001-05-16 Lucent Technologies Inc. Apparatus for cooling an optical fibre drawn from a preform
JP2015535805A (en) * 2012-10-04 2015-12-17 コーニング インコーポレイテッド Method and apparatus for cooling an optical fiber
JP2014231465A (en) * 2013-05-30 2014-12-11 住友電気工業株式会社 Apparatus and method for manufacturing glass fiber

Also Published As

Publication number Publication date
JP2807335B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
JP2674656B2 (en) Method and apparatus for cooling molten filament in spinning device
US3954361A (en) Melt blowing apparatus with parallel air stream fiber attenuation
US5075161A (en) Extremely fine polyphenylene sulphide fibres
US5173310A (en) Device for cooling molten filaments in spinning apparatus
CA2274771A1 (en) Nonwoven process and apparatus
KR910000732B1 (en) Method and apparatus for producing optical fiber
JP5019460B2 (en) Device for forming fiber felt
JPH04182331A (en) Cooling device for optical fiber
RU1797601C (en) Device for fabrication of rock wool
JP2009186772A (en) Manufacturing device of plastic optical fiber, and manufacturing method thereof
JPH0432775B2 (en)
US5100450A (en) Method and apparatus for producing fibers
US5015278A (en) Open bottomed spinner for mineral fibers
TW561204B (en) Molten yarn take-up device
JPH0359019B2 (en)
JPH0157053B2 (en)
JP2002038328A (en) Apparatus for melt spinning
JPS58104032A (en) Furnace for spinning optical fiber
JPH08218217A (en) Apparatus for cooling yarn
JPH01208345A (en) Production of optical fiber and apparatus therefor
JPH0465020B2 (en)
JP2928721B2 (en) Method and apparatus for coating optical fiber
JP3148386B2 (en) Dry spinning method
JPH063532A (en) Drawing method for optical fiber
JPH0627372B2 (en) Pitch-type carbon fiber centrifugal spinning device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13