JP2014231465A - Apparatus and method for manufacturing glass fiber - Google Patents

Apparatus and method for manufacturing glass fiber Download PDF

Info

Publication number
JP2014231465A
JP2014231465A JP2013113753A JP2013113753A JP2014231465A JP 2014231465 A JP2014231465 A JP 2014231465A JP 2013113753 A JP2013113753 A JP 2013113753A JP 2013113753 A JP2013113753 A JP 2013113753A JP 2014231465 A JP2014231465 A JP 2014231465A
Authority
JP
Japan
Prior art keywords
glass fiber
cooling pipe
cooling
drawing direction
insertion passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013113753A
Other languages
Japanese (ja)
Other versions
JP6291727B2 (en
Inventor
成樹 越水
Seiki Koshimizu
成樹 越水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013113753A priority Critical patent/JP6291727B2/en
Priority to CN201420287264.5U priority patent/CN203999369U/en
Publication of JP2014231465A publication Critical patent/JP2014231465A/en
Application granted granted Critical
Publication of JP6291727B2 publication Critical patent/JP6291727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/55Cooling or annealing the drawn fibre prior to coating using a series of coolers or heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass fiber manufacturing apparatus and a manufacturing method, which can cool a glass fiber in an excellent cooling efficiency while preventing the occurrence of a deficiency that a glass fiber contacts with a cooling device and breaks.SOLUTION: An apparatus for manufacturing a glass fiber G1 comprises: a heating furnace 2 for heating and softening a glass preform G, and a cooling device 7 for cooling the glass fiber G1 drawn from the glass preform G softened in the heating furnace 2. The cooling device 7 includes a cylindrical cooling pipe 21 having an insertion passage 22 therein for passing the glass fiber G1 advancing in a fiber drawing direction A and adapted to be supplied with a cooling gas in the insertion passage 22. In the cooling pipe 21, the distance normal to the drawing direction A and between the inner face of the insertion passage 22 and the glass fiber G1 is made shorter toward the downstream side of the drawing direction A.

Description

本発明は、ガラス母材からガラスファイバを線引きして製造するガラスファイバの製造装置および製造方法に関する。   The present invention relates to a glass fiber manufacturing apparatus and a manufacturing method for manufacturing a glass fiber by drawing a glass fiber from a glass base material.

光ファイバは、コアとクラッドとを有するガラスファイバに樹脂を被覆した構成のものが知られている。この光ファイバを構成するガラスファイバは、石英等の材料で製造されたガラス母材の下端側を加熱して軟化させ、この軟化させた部分を引き伸ばして細径化することで製造される。引き伸ばされた後の高温のガラスファイバは、ヘリウム等の冷却ガスが供給される筒状の冷却装置に通されることで樹脂の被覆前に強制的に冷却される(例えば、特許文献1参照)。   An optical fiber having a configuration in which a glass fiber having a core and a cladding is coated with a resin is known. The glass fiber constituting the optical fiber is manufactured by heating and softening the lower end side of a glass preform made of a material such as quartz, and stretching the softened portion to reduce the diameter. The high-temperature glass fiber after being stretched is forcedly cooled before the resin coating by passing through a cylindrical cooling device to which a cooling gas such as helium is supplied (see, for example, Patent Document 1). .

特開平11−130458号公報JP-A-11-130458 特開2007−63086号公報JP 2007-63086 A 特開2004−250292号公報JP 2004-250292 A 特開平11−171582号公報JP-A-11-171582

ガラス母材の下端部から樹脂を被覆する被覆装置までの区間では、線引きされたガラスファイバが支持されていないので、ガラスファイバが振動する線振れと呼ばれる現象が生じる場合がある。この線振れによって、ガラスファイバが冷却装置における挿通路の内面に接触して断線するおそれがある。一方、冷却装置におけるガラスファイバの冷却効率は、ガラスファイバが通される挿通路の内面とガラスファイバとの距離や冷却ガスの流量などによって決まる。ガラスファイバの接触による断線を防ぐために、冷却装置における挿通路の内径を大きくすると、ガラスファイバの冷却効率が低下してしまう。このように、ガラスファイバの断線を防ぐことを考慮すると、冷却装置による冷却効率を上げることが困難であった。   In the section from the lower end portion of the glass base material to the coating device that coats the resin, the drawn glass fiber is not supported, and thus a phenomenon called line runout in which the glass fiber vibrates may occur. Due to this line runout, the glass fiber may come into contact with the inner surface of the insertion path in the cooling device and break. On the other hand, the cooling efficiency of the glass fiber in the cooling device is determined by the distance between the inner surface of the insertion path through which the glass fiber passes and the glass fiber, the flow rate of the cooling gas, and the like. If the inner diameter of the insertion path in the cooling device is increased in order to prevent disconnection due to the contact of the glass fiber, the cooling efficiency of the glass fiber is lowered. As described above, in consideration of preventing the breakage of the glass fiber, it is difficult to increase the cooling efficiency by the cooling device.

本発明は、ガラスファイバが冷却装置に接触して断線する不具合の発生を防止しつつ、良好な冷却効率でガラスファイバを冷却することが可能なガラスファイバの製造装置および製造方法を提供することを目的とする。   The present invention provides a glass fiber manufacturing apparatus and manufacturing method capable of cooling a glass fiber with good cooling efficiency while preventing the occurrence of a problem that the glass fiber contacts the cooling device and breaks. Objective.

本発明のガラスファイバの製造装置は、
ガラス母材を加熱して軟化させる加熱炉と、
前記加熱炉で軟化された前記ガラス母材から線引きされたガラスファイバを冷却する冷却装置と、を備え、
前記冷却装置は、線引き方向へ進行する前記ガラスファイバを通過させる挿通路を内部に有するとともに前記挿通路内に冷却ガスが供給される筒状の冷却管を有し、
前記冷却管は、前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離が、前記線引き方向の下流側に向かうほど小さい。
The glass fiber manufacturing apparatus of the present invention comprises:
A heating furnace that heats and softens the glass base material;
A cooling device for cooling the glass fiber drawn from the glass base material softened in the heating furnace,
The cooling device has a cylindrical cooling pipe having an insertion passage for allowing the glass fiber traveling in the drawing direction to pass therethrough and a cooling gas being supplied into the insertion passage,
In the cooling pipe, the distance perpendicular to the drawing direction between the inner surface of the insertion passage and the glass fiber is smaller toward the downstream side in the drawing direction.

本発明のガラスファイバの製造方法は、
加熱して軟化させたガラス母材からガラスファイバを線引きし、線引き方向へ進行する前記ガラスファイバを、冷却ガスが供給される挿通路を内部に有する冷却管の前記挿通路に通過させて冷却する工程で、
前記冷却管の前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離を、前記線引き方向の下流側に向かうほど小さくしている。
The method for producing the glass fiber of the present invention comprises:
A glass fiber is drawn from a glass base material that has been softened by heating, and the glass fiber that advances in the drawing direction is passed through the insertion passage of a cooling pipe having an insertion passage to which a cooling gas is supplied to cool the glass fiber. In the process,
The distance orthogonal to the drawing direction between the inner surface of the insertion path of the cooling pipe and the glass fiber is reduced toward the downstream side in the drawing direction.

本発明によれば、ガラスファイバが冷却装置に接触して断線する不具合の発生を防止しつつ、良好な冷却効率でガラスファイバを冷却することができる。   ADVANTAGE OF THE INVENTION According to this invention, glass fiber can be cooled by favorable cooling efficiency, preventing generation | occurrence | production of the malfunction which a glass fiber contacts a cooling device and breaks.

本発明に係るガラスファイバの製造装置を備えた光ファイバの製造装置の概略構成図である。It is a schematic block diagram of the optical fiber manufacturing apparatus provided with the glass fiber manufacturing apparatus which concerns on this invention. 冷却装置の概略断面図である。It is a schematic sectional drawing of a cooling device. 長手方向に亘って同一内径の挿通路を有する冷却管の概略断面図である。It is a schematic sectional drawing of the cooling pipe which has the insertion path of the same internal diameter over the longitudinal direction. 変形例1に係る冷却管の概略断面図である。6 is a schematic cross-sectional view of a cooling pipe according to Modification 1. FIG. 変形例2に係る冷却管の概略断面図である。6 is a schematic cross-sectional view of a cooling pipe according to Modification 2. FIG. 変形例3に係る冷却管の概略断面図である。10 is a schematic cross-sectional view of a cooling pipe according to Modification 3. FIG.

〈本発明の実施形態の概要〉
最初に本発明の実施形態の概要を説明する。
本発明にかかるガラスファイバの製造装置の一実施形態は、
(1)ガラス母材を加熱して軟化させる加熱炉と、
前記加熱炉で軟化された前記ガラス母材から線引きされたガラスファイバを冷却する冷却装置と、を備え、
前記冷却装置は、線引き方向へ進行する前記ガラスファイバを通過させる挿通路を内部に有するとともに前記挿通路内に冷却ガスが供給される筒状の冷却管を有し、
前記冷却管は、前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離が、前記線引き方向の下流側に向かうほど小さい。
(1)の構成によれば、冷却管の挿通路の内面とガラスファイバとの線引き方向に直交する距離が、線引き方向の下流側に向かうほど小さい。一般的にガラスファイバの線振れは一次モードの振動となるため、固定点の中間部で最大となる。つまり、通常の装置の配置を考えると、冷却装置の上部ほど線振れが大きくなるため、挿通路の内面とガラスファイバとの距離を上部ほど大きく取ることで、ガラスファイバの線振れが大きい箇所での挿通路の内面とガラスファイバとの接触を防ぐことができる。また、ガラスファイバにより冷却ガスが下流側に牽引されるので、挿通路の内面とガラスファイバとの距離が小さい下流側の冷却ガス濃度が高くなって、冷却効率がさらに向上する。これにより、ガラスファイバが冷却装置に接触して断線する不具合の発生を防止しつつ、良好な冷却効率でガラスファイバを冷却することができる。したがって、高品質なガラスファイバを歩留まりよく製造することができる。
<Outline of Embodiment of the Present Invention>
First, an outline of an embodiment of the present invention will be described.
One embodiment of a glass fiber manufacturing apparatus according to the present invention,
(1) a heating furnace that heats and softens the glass base material;
A cooling device for cooling the glass fiber drawn from the glass base material softened in the heating furnace,
The cooling device has a cylindrical cooling pipe having an insertion passage for allowing the glass fiber traveling in the drawing direction to pass therethrough and a cooling gas being supplied into the insertion passage,
In the cooling pipe, the distance perpendicular to the drawing direction between the inner surface of the insertion passage and the glass fiber is smaller toward the downstream side in the drawing direction.
According to the structure of (1), the distance orthogonal to the drawing direction of the inner surface of the insertion path of a cooling pipe and glass fiber is so small that it goes to the downstream of a drawing direction. In general, the glass fiber linear vibration becomes the vibration of the primary mode, and thus becomes the maximum at the intermediate portion of the fixed point. In other words, considering the normal arrangement of the device, the upper part of the cooling device has more line runout. The contact between the inner surface of the insertion path and the glass fiber can be prevented. Further, since the cooling gas is pulled downstream by the glass fiber, the cooling gas concentration on the downstream side where the distance between the inner surface of the insertion path and the glass fiber is small is increased, and the cooling efficiency is further improved. Thereby, it is possible to cool the glass fiber with a good cooling efficiency while preventing the occurrence of a problem that the glass fiber contacts the cooling device and breaks. Therefore, a high quality glass fiber can be manufactured with a high yield.

(2)前記冷却管は、前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離が、前記冷却管の入口部で最も大きく、前記冷却管の出口部で最も小さい構成としてもよい。
(2)の構成によれば、冷却管の入口部を最も大きく、出口部を最も小さくしているため、入口部側でのガラスファイバの挿通路の内面との接触をさらに防ぎやすく、また、冷却効率をさらに向上させやすい。
(2) The cooling pipe may be configured such that a distance perpendicular to the drawing direction between the inner surface of the insertion passage and the glass fiber is the largest at the inlet of the cooling pipe and the smallest at the outlet of the cooling pipe. Good.
According to the configuration of (2), since the inlet portion of the cooling pipe is the largest and the outlet portion is the smallest, it is easier to prevent contact with the inner surface of the glass fiber insertion path on the inlet portion side, It is easy to further improve the cooling efficiency.

(3)前記冷却管は、前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離が、前記冷却管の入口部から前記冷却管の出口部へ向かって徐々に小さくなる構成としてもよい。
(3)の構成によれば、挿通路における冷却ガスの流れを円滑にしやすくなり、冷却効率のさらなる向上を図ることができる。
(3) The cooling pipe is configured such that a distance perpendicular to the drawing direction between the inner surface of the insertion passage and the glass fiber gradually decreases from an inlet portion of the cooling pipe toward an outlet portion of the cooling pipe. Also good.
According to the structure of (3), it becomes easy to make the flow of the cooling gas in an insertion path smooth, and can aim at the further improvement of cooling efficiency.

(4)前記冷却管は、筒状に形成された複数の分割体が前記線引き方向に沿って連結されていてもよい。
(4)の構成によれば、複数の分割体を連結させて冷却管を構成しているので、長尺な冷却管を作製することが容易である。
(4) In the cooling pipe, a plurality of divided bodies formed in a cylindrical shape may be connected along the drawing direction.
According to the structure of (4), since the cooling pipe is comprised by connecting a some division body, it is easy to produce a elongate cooling pipe.

(5)前記冷却管は、前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離が、前記分割体の接続部で連続して変化していてもよい。
(5)の構成によれば、挿通路における冷却ガスの流れを円滑にしやすくなり、冷却効率のさらなる向上を図ることができる。
(5) In the cooling pipe, a distance perpendicular to the drawing direction between the inner surface of the insertion passage and the glass fiber may continuously change at the connection portion of the divided body.
According to the structure of (5), it becomes easy to make the flow of the cooling gas in an insertion path smooth, and it can aim at the further improvement of cooling efficiency.

また、本発明にかかるガラスファイバの製造方法の一実施形態は、
(6)加熱して軟化させたガラス母材からガラスファイバを線引きし、線引き方向へ進行する前記ガラスファイバを、冷却ガスが供給される挿通路を内部に有する冷却管の前記挿通路に通過させて冷却する工程で、
前記冷却管の前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離を、前記線引き方向の下流側に向かうほど小さくしている。
(6)の構成によれば、(1)の製造装置と同様に、ガラスファイバが冷却管に接触して断線する不具合の発生を防止しつつ、良好な冷却効率でガラスファイバを冷却することができる。
In addition, an embodiment of a method for producing a glass fiber according to the present invention,
(6) A glass fiber is drawn from a glass base material that has been softened by heating, and the glass fiber that advances in the drawing direction is passed through the insertion passage of a cooling pipe having an insertion passage to which cooling gas is supplied. In the process of cooling
The distance orthogonal to the drawing direction between the inner surface of the insertion path of the cooling pipe and the glass fiber is reduced toward the downstream side in the drawing direction.
According to the structure of (6), like the manufacturing apparatus of (1), it is possible to cool the glass fiber with good cooling efficiency while preventing the occurrence of the problem that the glass fiber contacts the cooling pipe and breaks. it can.

〈本発明の実施形態の詳細〉
以下、本発明に係るガラスファイバの製造装置および製造方法の実施の形態の例を、図面を参照して説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<Details of Embodiment of the Present Invention>
Hereinafter, an example of an embodiment of a manufacturing device and a manufacturing method of a glass fiber concerning the present invention is explained with reference to drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.

(製造装置の構成)
図1は、本実施形態に係るガラスファイバの製造装置を備えた光ファイバの製造装置の概略構成図である。
図1に示すように、ガラスファイバの製造装置1は、その最も上流側に、ガラス母材Gを加熱する加熱炉2を備え、その下流側に冷却装置7、外径測定器8を備えている。加熱炉2は、内側にガラス母材Gが供給される円筒状の炉心管3と、この炉心管3を囲む発熱体4とを備えている。発熱体4を発熱させることで炉心管3が昇温して、その内側の空間にガラス母材Gを加熱して軟化させる加熱領域が形成される。また、加熱炉2には、加熱領域にヘリウムや窒素等のパージガスを供給するガス供給部5が設けられている。
(Configuration of manufacturing equipment)
FIG. 1 is a schematic configuration diagram of an optical fiber manufacturing apparatus including a glass fiber manufacturing apparatus according to the present embodiment.
As shown in FIG. 1, the glass fiber manufacturing apparatus 1 includes a heating furnace 2 for heating the glass base material G on the most upstream side, and includes a cooling device 7 and an outer diameter measuring device 8 on the downstream side. Yes. The heating furnace 2 includes a cylindrical furnace core tube 3 to which a glass base material G is supplied, and a heating element 4 surrounding the furnace core tube 3. Heating the heating element 4 raises the temperature of the core tube 3, and a heating region is formed in the inner space to heat and soften the glass base material G. The heating furnace 2 is provided with a gas supply unit 5 for supplying a purge gas such as helium or nitrogen to the heating region.

ガラス母材Gは、送り手段6によってその上部の支持棒部分が把持されて、炉心管3の内側の加熱領域にその下端部分が位置するように加熱炉2内に送られる。このように、加熱炉2内に供給されたガラス母材Gは、その下端側が加熱領域内で加熱されて軟化し、下方に引き伸ばされて細径化され、ガラスファイバG1が得られる。   The glass base material G is fed into the heating furnace 2 such that the upper support rod portion thereof is gripped by the feeding means 6 and the lower end portion thereof is positioned in the heating region inside the core tube 3. As described above, the glass base material G supplied into the heating furnace 2 is heated and softened at the lower end side in the heating region, and is drawn downward to be reduced in diameter to obtain a glass fiber G1.

加熱炉2の下方(下流側)には、ヘリウムガス等の冷却ガスを用いた冷却装置7が設けられており、加熱炉2を出た直後のガラスファイバG1は、この冷却装置7によって強制的に冷却される。これにより、ガラスファイバG1が室温近くまで急速に冷却される。   Below the heating furnace 2 (downstream side), a cooling device 7 using a cooling gas such as helium gas is provided, and the glass fiber G1 immediately after leaving the heating furnace 2 is forced by the cooling device 7. To be cooled. Thereby, the glass fiber G1 is rapidly cooled to near room temperature.

また、冷却装置7の下流側には、例えばレーザ光式の外径測定器8が設けられており、冷却装置7を出たガラスファイバG1は、この外径測定器8によりその外径が測定され、線引き時におけるガラスファイバG1の外径が管理される。   Further, for example, a laser beam type outer diameter measuring device 8 is provided on the downstream side of the cooling device 7, and the outer diameter of the glass fiber G1 exiting the cooling device 7 is measured by the outer diameter measuring device 8. The outer diameter of the glass fiber G1 at the time of drawing is managed.

上記ガラスファイバの製造装置1の下流側には、ガラスファイバG1に紫外線硬化型樹脂を塗布するダイス9および塗布された紫外線硬化型樹脂を硬化させるための紫外線照射装置10が順に設けられている。このダイス9および紫外線照射装置10を通過したガラスファイバG1は、その外周に紫外線硬化型樹脂の被覆層が形成され、光ファイバG2とされる。   On the downstream side of the glass fiber manufacturing apparatus 1, a die 9 for applying an ultraviolet curable resin to the glass fiber G1 and an ultraviolet irradiation apparatus 10 for curing the applied ultraviolet curable resin are sequentially provided. The glass fiber G1 that has passed through the die 9 and the ultraviolet irradiation device 10 is formed with an ultraviolet curable resin coating layer on the outer periphery thereof to form an optical fiber G2.

その後、光ファイバG2は、ガイドローラ11,12を介してキャプスタン13に引き込まれ、スクリーニング装置14およびダンサローラ15,16を介して巻き取りボビン17に送られて巻き取られる。   Thereafter, the optical fiber G2 is drawn into the capstan 13 via the guide rollers 11 and 12, and sent to the take-up bobbin 17 via the screening device 14 and the dancer rollers 15 and 16, and taken up.

(冷却装置の構成)
次に、上記のガラスファイバの製造装置1を構成する冷却装置7について説明する。
図2は、冷却装置7の概略断面図である。
(Configuration of cooling device)
Next, the cooling device 7 constituting the glass fiber manufacturing apparatus 1 will be described.
FIG. 2 is a schematic cross-sectional view of the cooling device 7.

図2に示すように、冷却装置7は、筒状の冷却管21を備えている。この冷却管21には、上下に貫通する挿通路22が形成されている。この冷却管21は、その上端が入口部21aとされ、下端が出口部21bとされており、ガラス母材Gから線引きされたガラスファイバG1が、入口部21aから引き込まれて出口部21bから引き出される。つまり、冷却管21には、挿通路22の略中心に、線引き方向Aの下流側へ進行するガラスファイバG1が挿通されて通過される。   As shown in FIG. 2, the cooling device 7 includes a cylindrical cooling pipe 21. The cooling pipe 21 is formed with an insertion passage 22 penetrating vertically. The cooling pipe 21 has an upper end as an inlet portion 21a and a lower end as an outlet portion 21b. The glass fiber G1 drawn from the glass base material G is drawn from the inlet portion 21a and pulled out from the outlet portion 21b. It is. That is, the glass fiber G1 that travels downstream in the drawing direction A is inserted through and passed through the cooling pipe 21 at substantially the center of the insertion passage 22.

冷却管21には、その上端近傍に、冷却ガス供給管23が接続されており、この冷却ガス供給管23から挿通路22内に、冷却ガスが供給される。冷却ガスとしては、熱伝導性に優れたヘリウムガス等が用いられる。   A cooling gas supply pipe 23 is connected to the cooling pipe 21 in the vicinity of its upper end, and the cooling gas is supplied from the cooling gas supply pipe 23 into the insertion path 22. As the cooling gas, helium gas having excellent thermal conductivity is used.

冷却管21の挿通路22は、ガラスファイバGの線引き方向Aの下流側に向かって次第に窄められている。すなわち、この冷却管21は、挿通路22の内面22aと挿通路22を通過するガラスファイバG1との線引き方向Aに直交する距離が、線引き方向Aの下流側に向かうほど小さくなるように形成されている。   The insertion passage 22 of the cooling pipe 21 is gradually narrowed toward the downstream side in the drawing direction A of the glass fiber G. That is, the cooling pipe 21 is formed such that the distance perpendicular to the drawing direction A between the inner surface 22a of the insertion path 22 and the glass fiber G1 passing through the insertion path 22 decreases toward the downstream side in the drawing direction A. ing.

具体的には、冷却管21は、挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が、冷却管21の入口部21aで最も大きく、冷却管21の出口部21bで最も小さい。さらに、冷却管21は、挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が、冷却管21の入口部21aから出口部21bへ向かって徐々に小さくなるように形成されている。   Specifically, in the cooling pipe 21, the distance perpendicular to the drawing direction A between the inner surface 22a of the insertion path 22 and the glass fiber G1 is the largest at the inlet 21a of the cooling pipe 21, and at the outlet 21b of the cooling pipe 21. Smallest. Further, the cooling pipe 21 is formed such that the distance perpendicular to the drawing direction A between the inner surface 22a of the insertion passage 22 and the glass fiber G1 gradually decreases from the inlet portion 21a of the cooling pipe 21 toward the outlet portion 21b. ing.

本例の冷却管21は、例えば全長(線引き方向Aに沿う長さ)が5m、入口部21aにおける内径が10mm、出口部21bにおける内径が5mm程度であり、挿通路22は、入口部21aから出口部21bへ向かって内径が10mmから5mmとなるようなテーパ面形状とされている。   The cooling pipe 21 of this example has, for example, a total length (length along the drawing direction A) of 5 m, an inner diameter of the inlet portion 21a of about 10 mm, an inner diameter of the outlet portion 21b of about 5 mm, and the insertion passage 22 extends from the inlet portion 21a. A tapered surface is formed such that the inner diameter is 10 mm to 5 mm toward the outlet 21 b.

この冷却管21の挿通路22に通されるガラスファイバG1は、ガラス母材Gの下端部から樹脂を塗布するダイス9までの区間が、そのパスライン上での位置が拘束されない無拘束区間Lとされている。一方、冷却管21は、挿通路22が最大径とされた入口部21aが、出口部21bに比べてガラスファイバG1の無拘束区間Lにおける中央部Lcに近い位置に配置されるように設置されている。   The glass fiber G1 passed through the insertion passage 22 of the cooling pipe 21 has an unconstrained section L in which the position from the lower end of the glass base material G to the die 9 for applying the resin is not restrained on the pass line. It is said that. On the other hand, the cooling pipe 21 is installed such that the inlet portion 21a having the maximum diameter of the insertion passage 22 is disposed closer to the central portion Lc in the unconstrained section L of the glass fiber G1 than the outlet portion 21b. ing.

(ガラスファイバの冷却工程)
このような冷却管21を備えた冷却装置7において、線引きされたガラスファイバG1は、上端近傍から冷却ガスが供給される冷却管21の挿通路22内を線引き方向Aの下流側へ進行して通過する。そして、ガラスファイバG1は、挿通路22内を通過する際に冷却ガスによって室温近くまで急速に冷却される。
(Cooling process of glass fiber)
In the cooling device 7 including such a cooling pipe 21, the drawn glass fiber G1 travels downstream in the drawing direction A through the insertion path 22 of the cooling pipe 21 to which the cooling gas is supplied from the vicinity of the upper end. pass. The glass fiber G1 is rapidly cooled to near room temperature by the cooling gas when passing through the insertion passage 22.

このとき、挿通路22内では、線引き方向Aの下流側へ進行するガラスファイバG1によって、線引き方向Aの上流側から下流側へ向かう冷却ガスの牽引流が生じる。冷却管21の挿通路22は下流側ほど内径が小さいので、牽引流によって下流側の冷却ガス濃度が高くなって冷却効率が向上し、ガラスファイバG1が効率良く冷却されることとなる。   At this time, in the insertion passage 22, a traction flow of the cooling gas from the upstream side in the drawing direction A to the downstream side is generated by the glass fiber G <b> 1 that travels downstream in the drawing direction A. Since the insertion path 22 of the cooling pipe 21 has a smaller inner diameter toward the downstream side, the cooling gas concentration on the downstream side is increased by the traction flow, the cooling efficiency is improved, and the glass fiber G1 is efficiently cooled.

また、線引きされて高速で下流側へ進行するガラスファイバG1は、無拘束区間Lで振動して線振れが生じることがあり、その線振れは通常、無拘束区間Lの中央部Lc付近で大きくなる。本例の冷却管21は、ガラスファイバG1の無拘束区間Lにおける中央部Lcに近い位置に配置される入口部21aが挿通路22の最大径とされ、挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が最も大きい。そのため、線振れするガラスファイバG1の挿通路22の内面22aへの接触が防止される。   Further, the glass fiber G1 that is drawn and travels downstream at a high speed may vibrate in the unconstrained section L to cause a line runout, and the line runout is usually large near the central portion Lc of the unconstrained section L. Become. In the cooling pipe 21 of this example, the inlet portion 21a disposed at a position near the central portion Lc in the unconstrained section L of the glass fiber G1 is the maximum diameter of the insertion passage 22, and the inner surface 22a of the insertion passage 22 and the glass fiber G1. The distance perpendicular to the line drawing direction A is the largest. Therefore, contact with the inner surface 22a of the insertion path 22 of the glass fiber G1 which shakes is prevented.

本例の冷却管21に対する比較として、図3に、長手方向にわたって同一内径の挿通路を有する冷却管を示す。
図3に示す、長手方向にわたって同一内径の冷却管121において、冷却ガス供給管123から供給される冷却ガスによる冷却効率を向上させるために、挿通路122の内径を小さくすると、特に、線振れが大きくなるガラスファイバG1の無拘束区間Lの中央部Lcに近い位置で挿通路122の内面122aに接触し、ガラスファイバG1が断線するおそれが高くなる。
As a comparison with the cooling pipe 21 of this example, FIG. 3 shows a cooling pipe having an insertion passage having the same inner diameter over the longitudinal direction.
In the cooling pipe 121 having the same inner diameter along the longitudinal direction shown in FIG. There is a high possibility that the glass fiber G1 is disconnected by coming into contact with the inner surface 122a of the insertion path 122 at a position near the central portion Lc of the unconstrained section L of the glass fiber G1 that becomes large.

そのため、このような冷却管121では、ガラスファイバG1の挿通路122の内面122aへの接触による断線を防ぐために、長手方向にわたってある程度大きな内径を保つように設計しなければならない。その場合、冷却ガスの使用量を増加させる必要が生じたり、ガラスファイバG1の冷却効率が制限されたりしてしまう。   Therefore, in such a cooling pipe 121, in order to prevent disconnection due to contact with the inner surface 122a of the insertion path 122 of the glass fiber G1, it is necessary to design the inner diameter to a certain extent in the longitudinal direction. In that case, it becomes necessary to increase the amount of cooling gas used, or the cooling efficiency of the glass fiber G1 is limited.

これに対して、上記実施形態の冷却管21によれば、冷却管21の挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が、線引き方向Aの下流側に向かうほど小さいので、ガラスファイバG1の線振れが大きい箇所での挿通路22の内面22aとの接触を防ぎつつ、冷却ガスの濃度を高くして冷却効率の向上を図ることができ、少ない冷却ガスでも十分に冷却することができる。これにより、断線等の不具合を生じさせることなく、ガラスファイバG1を効率良く冷却することができる。すなわち、高品質のガラスファイバG1をガラス母材Gから線引きして製造することができ、さらには高品質の光ファイバG2を製造することができる。   On the other hand, according to the cooling pipe 21 of the said embodiment, the distance orthogonal to the drawing direction A of the inner surface 22a of the insertion path 22 of the cooling pipe 21 and the glass fiber G1 goes to the downstream of the drawing direction A. Since it is small, it is possible to improve the cooling efficiency by increasing the concentration of the cooling gas while preventing the contact with the inner surface 22a of the insertion path 22 at the location where the linear fluctuation of the glass fiber G1 is large. Can be cooled to. Thereby, the glass fiber G1 can be efficiently cooled without causing problems such as disconnection. That is, a high-quality glass fiber G1 can be manufactured by drawing from the glass base material G, and further, a high-quality optical fiber G2 can be manufactured.

特に、冷却管21の挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が、冷却管21の入口部21aで最も大きく、冷却管21の出口部21bで最も小さくいので、より確実に、入口部21a側でのガラスファイバG1の挿通路22の内面22aとの接触を抑制しつつ出口部21b側での冷却効率の向上を図ることができる。   In particular, the distance perpendicular to the drawing direction A between the inner surface 22a of the insertion passage 22 of the cooling pipe 21 and the glass fiber G1 is the largest at the inlet 21a of the cooling pipe 21 and the smallest at the outlet 21b of the cooling pipe 21. Thus, it is possible to improve the cooling efficiency on the outlet portion 21b side while suppressing the contact with the inner surface 22a of the insertion path 22 of the glass fiber G1 on the inlet portion 21a side more reliably.

また、冷却管21の挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が、冷却管21の入口部21aから冷却管21の出口部21bへ向かって徐々に小さくなるので、冷却ガスの流れが円滑になり、ガラスファイバG1の線振れを抑制しつつ冷却効率をさらに向上させることができる。   Further, the distance orthogonal to the drawing direction A between the inner surface 22a of the insertion passage 22 of the cooling pipe 21 and the glass fiber G1 gradually decreases from the inlet portion 21a of the cooling pipe 21 toward the outlet portion 21b of the cooling pipe 21. The flow of the cooling gas becomes smooth, and the cooling efficiency can be further improved while suppressing the fluctuation of the glass fiber G1.

そして、本実施形態によれば、入口部の内径が本実施形態と同じで全長5mの長手方向にわたって同一内径の冷却管121を用いた場合と比較して、ガラスファイバG1の断線頻度を悪化させることなく、冷却ガスとして同じ流量のヘリウムを用いたときの冷却管21の出口部21bでのガラスファイバG1の温度を、5℃下げることができた。   And according to this embodiment, compared with the case where the inner diameter of an inlet_port | entrance part is the same as this embodiment, and uses the cooling pipe 121 of the same internal diameter over the longitudinal direction of 5 m in total length, the disconnection frequency of the glass fiber G1 is worsened. Without this, the temperature of the glass fiber G1 at the outlet 21b of the cooling pipe 21 when helium was used at the same flow rate as the cooling gas could be lowered by 5 ° C.

次に、冷却管の他の実施形態例について説明する。
(変形例1)
図4は、変形例1に係る冷却管の概略断面図である。
図4に示すように、変形例1に係る冷却管21Aは、長手方向にわたって外径が同一径である。そして、この冷却管21Aの場合も、挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が、冷却管21Aの入口部21aから出口部21bへ向かって徐々に小さくなるように形成されている。これにより、冷却管21Aは、挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が、冷却管21Aの入口部21aで最も大きく、冷却管21Aの出口部21bで最も小さくなっている。
Next, another embodiment of the cooling pipe will be described.
(Modification 1)
FIG. 4 is a schematic cross-sectional view of a cooling pipe according to Modification 1.
As illustrated in FIG. 4, the cooling pipe 21 </ b> A according to the first modification has the same outer diameter in the longitudinal direction. And also in this cooling pipe 21A, the distance orthogonal to the drawing direction A between the inner surface 22a of the insertion path 22 and the glass fiber G1 gradually decreases from the inlet portion 21a to the outlet portion 21b of the cooling pipe 21A. Is formed. As a result, in the cooling pipe 21A, the distance orthogonal to the drawing direction A between the inner surface 22a of the insertion path 22 and the glass fiber G1 is the largest at the inlet 21a of the cooling pipe 21A and the smallest at the outlet 21b of the cooling pipe 21A. It has become.

上記の製造装置1の冷却管21に代えてこの変形例1に係る冷却管21Aを用いた場合も、冷却管21を用いた場合と同様に、ガラスファイバG1の線振れが大きい箇所での挿通路22の内面22aとの接触を防ぎつつ、下流側で冷却ガスの濃度を高くして冷却効率の向上を図ることができる。   Even when the cooling pipe 21A according to the first modification is used in place of the cooling pipe 21 of the manufacturing apparatus 1 described above, as in the case where the cooling pipe 21 is used, the glass fiber G1 is inserted at a location where the line runout is large. While preventing the contact with the inner surface 22a of the passage 22, the cooling gas concentration can be increased on the downstream side to improve the cooling efficiency.

(変形例2)
図5は、変形例2に係る冷却管の概略断面図である。
図5に示すように、変形例2に係る冷却管21Bは、筒状に形成された複数の分割体31a,31bがガラスファイバG1の線引き方向Aに沿って連結されて構成されている。それぞれの分割体31a,31bは、下端側へ向かって次第に縮径する貫通孔32a,32bを有しており、冷却管21Bは、各分割体31a,31bを連結することで貫通孔32a,32bが連通し、挿通路22を形成している。
(Modification 2)
FIG. 5 is a schematic cross-sectional view of a cooling pipe according to the second modification.
As shown in FIG. 5, the cooling pipe 21 </ b> B according to the modification 2 is configured by connecting a plurality of divided bodies 31 a and 31 b formed in a cylindrical shape along a drawing direction A of the glass fiber G <b> 1. Each of the divided bodies 31a and 31b has through holes 32a and 32b that gradually reduce in diameter toward the lower end side, and the cooling pipe 21B connects the divided bodies 31a and 31b to thereby form the through holes 32a and 32b. Communicate with each other to form an insertion passage 22.

この冷却管21Bは、上方側の分割体31aの下端における貫通孔32aの内径と、下方側の分割体31bの上端における貫通孔32bの内径とが同一寸法である。これにより、この冷却管21Bでは、その挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が、分割体31a,31bの接続部で連続して変化している。   In the cooling pipe 21B, the inner diameter of the through hole 32a at the lower end of the upper divided body 31a is the same as the inner diameter of the through hole 32b at the upper end of the lower divided body 31b. Thereby, in this cooling pipe 21B, the distance orthogonal to the drawing direction A between the inner surface 22a of the insertion path 22 and the glass fiber G1 continuously changes at the connecting portions of the divided bodies 31a and 31b.

したがって、変形例2に係る冷却管21Bも、挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が、冷却管21Bの入口部21aから出口部21bへ向かって徐々に小さくなるように形成されている。これにより、冷却管21Bは、挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が、冷却管21Bの入口部21aで最も大きく、冷却管21Bの出口部21bで最も小さくなっている。冷却管21Bには、それぞれの分割体31a,31bの上端近傍に、冷却ガス供給管23が接続されており、これらの冷却ガス供給管23から挿通路22内に、冷却ガスが供給される。   Therefore, also in the cooling pipe 21B according to the modified example 2, the distance orthogonal to the drawing direction A between the inner surface 22a of the insertion path 22 and the glass fiber G1 is gradually decreased from the inlet portion 21a to the outlet portion 21b of the cooling pipe 21B. It is formed to become. As a result, in the cooling pipe 21B, the distance orthogonal to the drawing direction A between the inner surface 22a of the insertion path 22 and the glass fiber G1 is the largest at the inlet 21a of the cooling pipe 21B and the smallest at the outlet 21b of the cooling pipe 21B. It has become. A cooling gas supply pipe 23 is connected to the cooling pipe 21B in the vicinity of the upper ends of the respective divided bodies 31a and 31b, and the cooling gas is supplied into the insertion passage 22 from these cooling gas supply pipes 23.

上記の製造装置1の冷却管21に代えてこの変形例2に係る冷却管21Bを用いた場合も、冷却管21,21Aを用いた場合と同様に、ガラスファイバG1の線振れが大きい箇所での挿通路22の内面22aとの接触を防ぎつつ、下流側で冷却ガスの濃度を高くして冷却効率の向上を図ることができる。特に、複数の分割体31a,31bを連結させて冷却管21Bが構成されているので、長尺な冷却管21Bを容易に作製することができる。また、挿通路22内には、各分割体31a,31bの上端近傍から冷却ガスが供給されるので、さらなる冷却効率の向上を図ることができる。また、分割体31a,31bの接続部において、挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が連続して変化しているので、挿通路22における冷却ガスの流れを円滑にしやすくなり、冷却効率を向上させることができる。   Even when the cooling pipe 21B according to the second modification is used in place of the cooling pipe 21 of the manufacturing apparatus 1, the glass fiber G1 has a large runout as in the case where the cooling pipes 21 and 21A are used. It is possible to improve the cooling efficiency by increasing the concentration of the cooling gas on the downstream side while preventing contact with the inner surface 22a of the insertion passage 22. In particular, since the cooling pipe 21B is configured by connecting the plurality of divided bodies 31a and 31b, the long cooling pipe 21B can be easily manufactured. Moreover, since cooling gas is supplied in the insertion path 22 from the upper end vicinity of each division body 31a, 31b, the improvement of further cooling efficiency can be aimed at. In addition, since the distance perpendicular to the drawing direction A between the inner surface 22a of the insertion passage 22 and the glass fiber G1 continuously changes at the connection part of the divided bodies 31a and 31b, the flow of the cooling gas in the insertion passage 22 is changed. It becomes easy to make smooth and can improve cooling efficiency.

(変形例3)
図6は、変形例3に係る冷却管の概略断面図である。
図6に示すように、変形例3に係る冷却管21Cは、冷却管21Bと同様に、筒状に形成された複数の分割体35a,35bがガラスファイバG1の線引き方向Aに沿って連結されて構成されている。この冷却管21Cでは、例えば、互いに同一形状の分割体35a,35bが用いられている。それぞれの分割体35a,35bは、下端側へ向かって次第に縮径する貫通孔36a,36bを有しており、冷却管21Cは、各分割体35a,35bを連結することで貫通孔36a,36bが連通し、挿通路22を形成している。
(Modification 3)
FIG. 6 is a schematic cross-sectional view of a cooling pipe according to Modification 3.
As shown in FIG. 6, in the cooling pipe 21C according to the modification 3, a plurality of divided bodies 35a and 35b formed in a cylindrical shape are connected along the drawing direction A of the glass fiber G1 in the same manner as the cooling pipe 21B. Configured. In the cooling pipe 21C, for example, divided bodies 35a and 35b having the same shape are used. Each of the divided bodies 35a and 35b has through holes 36a and 36b that gradually decrease in diameter toward the lower end side, and the cooling pipe 21C connects the divided bodies 35a and 35b to thereby connect the through holes 36a and 36b. Communicate with each other to form an insertion passage 22.

冷却管21Cでは、上方側の分割体35aの下端における貫通孔36aの内径が、下方側の分割体35bの上端における貫通孔36bの内径よりも小さい。これにより、冷却管21Cでは、挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離の変化が、分割体35の接続部で不連続となっている。冷却管21Cは、この不連続な部分を有するものの、挿通路22の内面22aとガラスファイバG1との線引き方向Aに直交する距離が、冷却管21Cの入口部21aで最も大きく、線引き方向Aの下流側に向かうほど小さくなり、冷却管21Cの出口部21bで最も小さくなっている。また、冷却管21Cには、それぞれの分割体35a,35bの上端近傍に、冷却管21Bと同様に冷却ガス供給管23が接続されている。   In the cooling pipe 21C, the inner diameter of the through hole 36a at the lower end of the upper divided body 35a is smaller than the inner diameter of the through hole 36b at the upper end of the lower divided body 35b. Thereby, in the cooling pipe 21 </ b> C, the change in the distance orthogonal to the drawing direction A between the inner surface 22 a of the insertion passage 22 and the glass fiber G <b> 1 is discontinuous at the connecting portion of the divided body 35. Although the cooling pipe 21C has this discontinuous portion, the distance perpendicular to the drawing direction A between the inner surface 22a of the insertion path 22 and the glass fiber G1 is the largest at the inlet portion 21a of the cooling pipe 21C, and the cooling pipe 21C It becomes smaller toward the downstream side, and is smallest at the outlet 21b of the cooling pipe 21C. In addition, a cooling gas supply pipe 23 is connected to the cooling pipe 21C in the vicinity of the upper ends of the respective divided bodies 35a and 35b similarly to the cooling pipe 21B.

上記の製造装置1の冷却管21に代えてこの変形例3に係る冷却管21Cを用いた場合も、冷却管21,21A,21Bを用いた場合と略同様に、ガラスファイバG1の線振れが大きい箇所での挿通路22の内面22aとの接触を防ぎつつ、下流側で冷却ガスの濃度を高くして冷却効率の向上を図ることができる。また、冷却管21Bと同様に、長尺な冷却管21Cを容易に作製することができ、さらなる冷却効率の向上を図ることができる。しかも、分割体35a,35bを同一形状とすることで、部品の共通化によるコスト削減を図ることができる。   Even when the cooling pipe 21C according to the third modification is used in place of the cooling pipe 21 of the manufacturing apparatus 1 described above, the line vibration of the glass fiber G1 is substantially the same as when the cooling pipes 21, 21A, and 21B are used. The cooling efficiency can be improved by increasing the concentration of the cooling gas on the downstream side while preventing contact with the inner surface 22a of the insertion passage 22 at a large location. Further, similarly to the cooling pipe 21B, the long cooling pipe 21C can be easily manufactured, and the cooling efficiency can be further improved. In addition, by making the divided bodies 35a and 35b have the same shape, it is possible to reduce costs by sharing parts.

1:製造装置
2:加熱炉
3:炉心管
4:発熱体
5:ガス供給部
6:送り手段
7:冷却装置
8:外径測定器
9:ダイス
10:紫外線照射装置
11,12:ガイドローラ
13:キャプスタン
14:スクリーニング装置
15,16:ダンサローラ
17:巻き取りボビン
21,21A,21B,21C,121:冷却管
21a:入口部
21b:出口部
22,122:挿通路
23,123:冷却ガス供給管
22a,122a:内面
31a,31b,35a,35b:分割体
32a,32b,36a,36b:貫通孔
A:線引き方向
G:ガラス母材
G1:ガラスファイバ
G2:光ファイバ
L:無拘束区間
Lc:中央部
1: Manufacturing device 2: Heating furnace 3: Furnace core tube 4: Heating element 5: Gas supply unit 6: Feeding means 7: Cooling device 8: Outer diameter measuring device 9: Die 10: Ultraviolet irradiation device 11, 12: Guide roller 13 : Capstan 14: Screening device 15, 16: Dancer roller 17: Winding bobbins 21, 21 A, 21 B, 21 C, 121: Cooling pipe 21 a: Inlet part 21 b: Outlet part 22, 122: Insertion passage 23, 123: Cooling gas supply Tubes 22a, 122a: Inner surfaces 31a, 31b, 35a, 35b: Divided bodies 32a, 32b, 36a, 36b: Through holes A: Drawing direction G: Glass preform G1: Glass fiber G2: Optical fiber L: Unconstrained section Lc: Center

Claims (6)

ガラス母材を加熱して軟化させる加熱炉と、
前記加熱炉で軟化された前記ガラス母材から線引きされたガラスファイバを冷却する冷却装置と、を備え、
前記冷却装置は、線引き方向へ進行する前記ガラスファイバを通過させる挿通路を内部に有するとともに前記挿通路内に冷却ガスが供給される筒状の冷却管を有し、
前記冷却管は、前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離が、前記線引き方向の下流側に向かうほど小さい、ガラスファイバの製造装置。
A heating furnace that heats and softens the glass base material;
A cooling device for cooling the glass fiber drawn from the glass base material softened in the heating furnace,
The cooling device has a cylindrical cooling pipe having an insertion passage for allowing the glass fiber traveling in the drawing direction to pass therethrough and a cooling gas being supplied into the insertion passage,
The cooling pipe is a glass fiber manufacturing apparatus in which a distance perpendicular to the drawing direction between the inner surface of the insertion path and the glass fiber is smaller toward the downstream side in the drawing direction.
前記冷却管は、前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離が、前記冷却管の入口部で最も大きく、前記冷却管の出口部で最も小さい、請求項1に記載のガラスファイバの製造装置。   2. The cooling pipe according to claim 1, wherein a distance perpendicular to the drawing direction between the inner surface of the insertion passage and the glass fiber is the largest at the inlet of the cooling pipe and the smallest at the outlet of the cooling pipe. Glass fiber manufacturing equipment. 前記冷却管は、前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離が、前記冷却管の入口部から前記冷却管の出口部へ向かって徐々に小さくなる、請求項1または請求項2に記載のガラスファイバの製造装置。   The distance between the inner surface of the insertion passage and the glass fiber that is perpendicular to the drawing direction of the cooling pipe gradually decreases from an inlet portion of the cooling pipe toward an outlet portion of the cooling pipe. The glass fiber manufacturing apparatus according to claim 2. 前記冷却管は、筒状に形成された複数の分割体が前記線引き方向に沿って連結されている、請求項1から3のいずれか一項に記載のガラスファイバの製造装置。   The said cooling pipe is a glass fiber manufacturing apparatus as described in any one of Claim 1 to 3 with which the several division body formed in the cylinder shape is connected along the said drawing direction. 前記冷却管は、前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離が、前記分割体の接続部で連続して変化している、請求項4に記載のガラスファイバの製造装置。   The said cooling pipe manufactures the glass fiber of Claim 4 with which the distance orthogonal to the said drawing direction of the inner surface of the said insertion path and the said glass fiber is changing continuously in the connection part of the said division body. apparatus. 加熱して軟化させたガラス母材からガラスファイバを線引きし、線引き方向へ進行する前記ガラスファイバを、冷却ガスが供給される挿通路を内部に有する冷却管の前記挿通路に通過させて冷却する工程で、
前記冷却管の前記挿通路の内面と前記ガラスファイバとの前記線引き方向に直交する距離を、前記線引き方向の下流側に向かうほど小さくしている、ガラスファイバの製造方法。
A glass fiber is drawn from a glass base material that has been softened by heating, and the glass fiber that advances in the drawing direction is passed through the insertion passage of a cooling pipe having an insertion passage to which a cooling gas is supplied to cool the glass fiber. In the process,
The glass fiber manufacturing method, wherein a distance perpendicular to the drawing direction between the inner surface of the insertion passage of the cooling pipe and the glass fiber is reduced toward the downstream side in the drawing direction.
JP2013113753A 2013-05-30 2013-05-30 Glass fiber manufacturing apparatus and manufacturing method Active JP6291727B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013113753A JP6291727B2 (en) 2013-05-30 2013-05-30 Glass fiber manufacturing apparatus and manufacturing method
CN201420287264.5U CN203999369U (en) 2013-05-30 2014-05-30 The manufacturing installation of glass optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113753A JP6291727B2 (en) 2013-05-30 2013-05-30 Glass fiber manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2014231465A true JP2014231465A (en) 2014-12-11
JP6291727B2 JP6291727B2 (en) 2018-03-14

Family

ID=52039399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113753A Active JP6291727B2 (en) 2013-05-30 2013-05-30 Glass fiber manufacturing apparatus and manufacturing method

Country Status (2)

Country Link
JP (1) JP6291727B2 (en)
CN (1) CN203999369U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107900297B (en) * 2017-11-07 2019-10-15 浙江大学 A kind of preparation method of Ni-Mn-Ga suitable shape memory alloy micrometer fibers
JP7159974B2 (en) * 2019-05-23 2022-10-25 住友電気工業株式会社 Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP7266788B2 (en) * 2019-09-09 2023-05-01 住友電気工業株式会社 Optical fiber manufacturing method and optical fiber cooling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246837A (en) * 1986-04-21 1987-10-28 Sumitomo Electric Ind Ltd Drawing furnace for optical fiber
JPH04182331A (en) * 1990-11-13 1992-06-29 Furukawa Electric Co Ltd:The Cooling device for optical fiber
JPH05186238A (en) * 1992-01-13 1993-07-27 Fujikura Ltd Optical fiber-spinning machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246837A (en) * 1986-04-21 1987-10-28 Sumitomo Electric Ind Ltd Drawing furnace for optical fiber
JPH04182331A (en) * 1990-11-13 1992-06-29 Furukawa Electric Co Ltd:The Cooling device for optical fiber
JPH05186238A (en) * 1992-01-13 1993-07-27 Fujikura Ltd Optical fiber-spinning machine

Also Published As

Publication number Publication date
CN203999369U (en) 2014-12-10
JP6291727B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP5986540B2 (en) Manufacturing apparatus and manufacturing method for optical fiber
CN113292241B (en) Optical fiber drawing furnace, optical fiber preparation device, optical fiber preparation method and small-diameter optical fiber
JP6291727B2 (en) Glass fiber manufacturing apparatus and manufacturing method
CN111032588B (en) Method for manufacturing optical fiber
WO2017026498A1 (en) Method for manufacturing optical fiber strand
JP2015027937A (en) Method of drawing glass base material
US9676659B2 (en) Method of manufacturing an optical fiber
CN101784493B (en) Device for producing optical fiber and method for producing optical fiber
JP5251306B2 (en) Optical fiber manufacturing method and manufacturing apparatus
JP5910278B2 (en) Optical fiber manufacturing method
US20050188728A1 (en) Apparatus and method for manufacturing optical fiber including rotating optical fiber preforms during draw
JP2003335545A (en) Method and apparatus for drawing optical fiber
JP2012082092A (en) Method and apparatus for manufacturing multicore tape fiber strand
JP2018048050A (en) Manufacturing method and manufacturing device of optical fiber
JP6724121B2 (en) Non-contact direction changer, optical fiber manufacturing method, and non-contact direction changer
JP2004352583A (en) Method and apparatus for manufacturing optical fiber
JP2010269971A (en) Method for manufacturing optical fiber
JP2005289764A (en) Method of manufacturing optical fiber
US20240150219A1 (en) Hollow core optical fibers and methods of making
JP2005289729A (en) Method of manufacturing optical fiber
JP6252652B2 (en) Optical fiber manufacturing method
KR100704070B1 (en) Furnace for drawing down optical fiber preform into optical fiber
JP2020007183A (en) Apparatus and method for manufacturing primary coated optical fiber
JP2021095297A (en) Method for manufacturing optical fiber
JP2016003175A (en) Cooling device for optical fiber, and production method of optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180129

R150 Certificate of patent or registration of utility model

Ref document number: 6291727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250