JPH0418218B2 - - Google Patents

Info

Publication number
JPH0418218B2
JPH0418218B2 JP58129430A JP12943083A JPH0418218B2 JP H0418218 B2 JPH0418218 B2 JP H0418218B2 JP 58129430 A JP58129430 A JP 58129430A JP 12943083 A JP12943083 A JP 12943083A JP H0418218 B2 JPH0418218 B2 JP H0418218B2
Authority
JP
Japan
Prior art keywords
chamber
condenser
compressor
pressure
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58129430A
Other languages
Japanese (ja)
Other versions
JPS6023759A (en
Inventor
Shuichi Takada
Rikuo Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP12943083A priority Critical patent/JPS6023759A/en
Publication of JPS6023759A publication Critical patent/JPS6023759A/en
Publication of JPH0418218B2 publication Critical patent/JPH0418218B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、冷凍用圧縮機の消費動力を節減でき
るようにした省エネルギ型冷凍装置、すなわちヒ
ートポンプ及び冷凍機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an energy-saving refrigeration system, that is, a heat pump and a refrigerator, which can reduce power consumption of a refrigeration compressor.

従来の、例えば冷凍装置の一つである温水製造
を目的としたヒートポンプにおいては、凝縮器に
は仕切りがなく、圧縮機の最終段羽根車によつて
吐出された全冷媒ガスが温度レベル例えば温度80
℃の温水を得るには85℃で凝縮する方式が採用さ
れてきた。したがつて、例えば40℃の温水を80℃
に温度上昇させるには、凝縮器の冷媒温度は、第
1図の温度(特性)線図における直線aが示すよ
うにほヾ85℃であるため、コンデンサの温水曲線
bが示す40℃の冷却水入口と上記85℃の冷媒出口
とでは、温度差が45℃もあつてエネルギー損失が
大きい欠点があつた。また、蒸発器内の冷媒温度
と被冷却流体(熱源水)との温度差も大きいため
エネルギー損失が大きく、これらが冷凍圧縮機の
消費動力をそれだけ大きくしていた。
In a conventional heat pump for producing hot water, which is a type of refrigeration equipment, for example, there is no partition in the condenser, and the entire refrigerant gas discharged by the final stage impeller of the compressor is kept at a temperature level, e.g. 80
To obtain hot water at 85°C, a method has been adopted that condenses water at 85°C. Therefore, for example, 40℃ hot water can be heated to 80℃.
In order to increase the temperature to There was a temperature difference of 45°C between the water inlet and the above-mentioned 85°C refrigerant outlet, resulting in a large energy loss. Furthermore, the difference in temperature between the refrigerant in the evaporator and the fluid to be cooled (heat source water) is large, resulting in large energy losses, which increases the power consumption of the refrigeration compressor.

上記の問題点に対処するために、互いに独立し
た複数個の各凝縮器及び各蒸発器と各圧縮機とを
別々に連通させて別個のヒートポンプ回路を構成
し、これらのヒートポンプ回路の各凝縮器を、該
凝縮器内を流れる被加熱流体が熱交換されながら
温度を上昇するように直列に接続するようにし、
また各蒸発器内を流れる加熱流体と上記各凝縮器
内を流れる被加熱流体とが互いに向流状ヒートポ
ンプ回路によつて結ばれるようにした省エネルギ
型ヒートポンプが提案されており、(特開昭55−
134254号公報参照)、また、二つ以上の互いに独
立した各凝縮器と各蒸発器とを、隔壁によつて分
割された一つの胴内に納めるようにした冷凍装置
も既に提案されている(特開昭56−23671号公報
参照)。
In order to deal with the above-mentioned problems, a plurality of independent condensers and evaporators are communicated with each compressor to form a separate heat pump circuit, and each condenser in these heat pump circuits are connected in series so that the heated fluid flowing through the condenser increases the temperature while exchanging heat,
In addition, an energy-saving heat pump has been proposed in which the heated fluid flowing in each evaporator and the heated fluid flowing in each condenser are connected to each other by a countercurrent heat pump circuit. 55−
134254), and a refrigeration system in which two or more mutually independent condensers and evaporators are housed in a single shell divided by a partition wall has already been proposed ( (Refer to Japanese Patent Application Laid-Open No. 56-23671).

ところが、上記各提案されたものは、何れも、
個別に独立した冷媒回路によつて構成されている
ため、装置が大型化してコストが増大するという
問題点があるばかりでなく、高温側の冷凍機の圧
縮機の軸受部に供給される潤滑油中には、圧力が
高いために大量の冷媒が溶け込むことになり、こ
れによつて潤滑油の粘度の低下、フオーミング現
象などにより、最悪の場合は軸主の破損に至ると
いう問題点があつた。
However, each of the above proposals,
Since it is composed of individual refrigerant circuits, there are problems in that the equipment becomes larger and costs increase, and the lubricating oil supplied to the bearings of the compressor of the high-temperature side refrigerator Due to the high pressure inside, a large amount of refrigerant dissolves, which causes problems such as a decrease in the viscosity of the lubricating oil and a forming phenomenon, which in the worst case can lead to damage to the shaft main body. .

特に性能のよい高沸点系冷媒程溶け込み量が多
いため、この傾向は著しかつた。
In particular, this tendency was remarkable because the higher the performance of the refrigerant, the higher the amount of dissolution.

本発明は、上記従来技術の問題点を解決し、凝
縮器内で温水に放熱する冷媒ガスの温度レベル
と、この中を通過する温水の温度との差をできる
だけ少なくすることにより、圧縮機圧力段の圧縮
仕事を少なくして省エネルギとすると共に、冷媒
系を同一にすることによつて一つの容器として扱
うことができ、耐圧・気密試験が容易となり保守
が容易となるばかりでなく、圧縮機の潤滑系を冷
媒回路の吸込圧に保つことによつて潤滑系の特性
を向上させるようにした冷凍装置を提供すること
を目的としている。
The present invention solves the above problems of the prior art and reduces the compressor pressure by minimizing the difference between the temperature level of the refrigerant gas that radiates heat to hot water in the condenser and the temperature of the hot water passing through it. In addition to saving energy by reducing the compression work of the stages, by using the same refrigerant system, it can be treated as one container, which not only facilitates pressure resistance and airtightness tests and maintenance, but also It is an object of the present invention to provide a refrigeration system in which the characteristics of the lubrication system are improved by maintaining the lubrication system of the machine at the suction pressure of the refrigerant circuit.

上記の目的を達成するために、本発明は、蒸発
器、複数個の凝縮器、圧縮ガスを送る複数の圧縮
段、複数個の減圧装置及びこれらの機器を接続す
る配管等からなる冷凍装置において、上記複数の
圧縮段を、各段室が互いに連通された多段圧縮機
によつて構成すると共に、上記凝縮器を、内部が
圧力の異なつた複数の室に仕切られた一個の凝縮
器によつて構成し、上記多段圧縮機の少くとも一
つの段室から次段室へ吐出される冷媒ガスの一部
を分流して圧力の対応する上記凝縮器のそれぞれ
の仕切室へ送り込むようにして、凝縮器の各仕切
室と上記多段圧縮機の対応する圧力段とを別々に
連通させ、これら凝縮器の隣設した各仕切室を減
圧装置を介して連通させると共に、最終低圧側仕
切室と、蒸発器とを減圧装置を介して接続するよ
うにし、冷媒回路の一部を上記圧縮機の各段室で
接続させることによつて全体として一つの冷媒回
路で構成し、且つ圧縮機の潤滑系を冷媒回路の吸
込圧に保つよう構成したことを特徴としている。
In order to achieve the above object, the present invention provides a refrigeration system comprising an evaporator, a plurality of condensers, a plurality of compression stages for sending compressed gas, a plurality of pressure reducing devices, piping connecting these devices, etc. , the plurality of compression stages are constituted by a multi-stage compressor in which the stage chambers are communicated with each other, and the condenser is constituted by a single condenser whose interior is partitioned into a plurality of chambers having different pressures. A part of the refrigerant gas discharged from at least one stage chamber of the multistage compressor to the next stage chamber is divided and sent to each partition chamber of the condenser with a corresponding pressure, Each partition of the condenser and the corresponding pressure stage of the multi-stage compressor are communicated separately, and each of the adjacent partitions of the condenser is communicated via a pressure reducing device, and a final low-pressure side partition, The refrigerant circuit is connected to the evaporator via a pressure reducing device, and a part of the refrigerant circuit is connected to each stage chamber of the compressor, so that the entire refrigerant circuit is configured as one refrigerant circuit, and the lubrication system of the compressor It is characterized by being configured to maintain the pressure at the suction pressure of the refrigerant circuit.

以下、本発明の実施例を、図面と共に説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第2図は、本発明の第1実施例を示す多段ター
ボ冷凍装置の要部断面図である。冷凍装置は圧縮
機A、凝縮器B及び蒸発器Cからなり、この実施
例の場合、圧縮機Aは、4枚の羽根車1を備え、
第2段目以降の各羽根車室A2,A3と次段の羽根
車室A3,A4との各連通路の途中から凝縮器Bへ
通ずる連通管2が接続され、冷媒ガスは各羽根車
1で加圧されて次段の羽根車室に順次送られる
が、その一部は分流されて羽根車室A2,A3から
別々に連絡管2を通つて、凝縮器Bの対応する仕
切室に送られるようになつている。また、圧縮機
Aの1段目と2段目の各羽根車室A1,A2の中間
位置の下方には、蒸発器Cの各仕切室C1,C2
連通するための連通管4が接続され、途中に容量
制御弁5が設けられている。
FIG. 2 is a sectional view of essential parts of a multi-stage turbo refrigeration system showing a first embodiment of the present invention. The refrigeration system consists of a compressor A, a condenser B, and an evaporator C, and in the case of this embodiment, the compressor A is equipped with four impellers 1,
A communication pipe 2 leading to the condenser B is connected from the middle of each communication path between each of the impeller chambers A 2 and A 3 in the second and subsequent stages and the impeller chambers A 3 and A 4 in the next stage, and the refrigerant gas is The pressure is pressurized by each impeller 1 and sent to the next stage impeller chamber, but a part of the pressure is divided and passed through the connecting pipe 2 from the impeller chambers A 2 and A 3 separately to the condenser B. It is now sent to the corresponding partition. Furthermore, below the intermediate position between the impeller chambers A 1 and A 2 of the first and second stages of the compressor A, there is a communication pipe for communicating with the partition chambers C 1 and C 2 of the evaporator C. 4 is connected, and a capacity control valve 5 is provided in the middle.

凝縮器Bは、内部に温水の通る冷却管6が多数
設けられていることは従来のものと変りはない
が、内部が隔壁7によつて複数の仕切室B12
B3,B4に仕切られ、第1仕切室B12は圧縮機の第
2段羽根車室A2の連通路に、同様に第2及び第
3仕切室B3,B4は圧縮機の第3段及び第4段各
羽根車室A3,A4の連通路にそれぞれ連絡管2に
よつて接続されている。また各仕切室で凝縮され
た冷媒液を高圧側B4から順次低圧側B3〜B12へ導
くようにするために、各仕切室の下部に減圧弁1
5,16を具えた管路17,18が設けられてい
る。
The condenser B is the same as the conventional one in that a large number of cooling pipes 6 through which hot water flows are provided inside, but the inside is divided into a plurality of partitioned chambers B 12 , 12 by partition walls 7 .
B 3 and B 4 , the first partition B 12 is connected to the communication path of the second stage impeller chamber A 2 of the compressor, and the second and third partition chambers B 3 and B 4 are connected to the compressor. The impeller chambers A 3 and A 4 of the third and fourth stages are connected to communication passages through communication pipes 2, respectively. In addition, in order to guide the refrigerant liquid condensed in each partition from the high pressure side B 4 to the low pressure sides B 3 to B 12 sequentially, a pressure reducing valve 1 is installed at the bottom of each partition.
Conduits 17, 18 with 5, 16 are provided.

また蒸発器Cは、下部に熱交換用被冷却管9が
設けられている外、隔壁11によつて室C1とC2
の2室に仕切られ、室C1への冷媒液は、連絡管
8と膨張弁12を経て凝縮器Bより導入され、ま
た室C2へは、導管20と膨張弁19を経て室C1
より減圧して導入される。また蒸発した冷媒ガス
は、連絡管4を経て室C1から第1と第2の羽根
車室の中間室へ、また室C2から第1羽根車の入
口部へ戻されるように構成されている。
In addition, the evaporator C is provided with a cooled tube 9 for heat exchange at the lower part, and is divided into chambers C 1 and C 2 by a partition wall 11.
The refrigerant liquid to the chamber C1 is introduced from the condenser B through the connecting pipe 8 and the expansion valve 12 , and the refrigerant liquid to the chamber C1 is introduced into the chamber C2 through the conduit 20 and the expansion valve 19.
It is introduced at a lower pressure. Further, the evaporated refrigerant gas is configured to be returned from the chamber C 1 to the intermediate chamber between the first and second impeller chambers through the communication pipe 4 and from the chamber C 2 to the inlet of the first impeller. There is.

この実施例によれば、圧縮機Aの羽根車1が回
転すると、冷媒ガスは、各羽根車1で加圧され前
記のように対応する凝縮器室へ分流して送られ
る。そしてここで各室の冷媒ガスは、冷却管6を
通る温水と熱交換して冷却され液化されるが、こ
の際、凝縮器の各仕切室へ送り込まれる冷媒ガス
の圧力は段階的に高くなつており、冷媒ガスの温
度レベル(凝縮温度)も、B12室からB4室へ向か
つて段階的に高くなつている。このように、凝縮
器各仕切室が要求する凝縮温度を、(各仕切室を
通過する温水温度+適当な温度差)に留めること
ができるので、それだけ圧縮機各段の圧縮仕事が
従来の仕切室のないもの(単一室の凝縮器)に比
べて少なくて済むことになり、省エネルギとな
る。また、冷媒凝縮液はB4から減圧弁15を通
つてB3に入ると、室B4とB3との冷媒液の温度差
によつて、その一部がフラツシユする。フラツシ
ユ蒸気はB3を通る冷却管を加熱する。室B12にて
も同じことが行なわれ、同じ冷媒循環量でも、各
仕切室から直接凝縮室から蒸発室に冷媒を戻す場
合に比較して、加熱能力が増大する。従つて同一
加熱能力では所要動力が減少する。蒸発器Cの第
1仕切室C1に膨張弁12を通つて送られた冷媒
液は、圧縮機の1段目と2段目の中間圧力まで膨
張し一部が蒸発して中間温度の冷媒ガスとなり、
液と分離しエリミネータ10を通り、連絡管4を
経て第1段と第2段の中間の圧縮機室に吸入され
る−いわゆるエコノマイザの作用を行なうばかり
でなく、該第1仕切室C1と、減圧弁19を経て
更に減圧されて蒸発した第2仕切室C2とによつ
て、冷却管9を流れる被冷却流体を冷却するに際
し、該流体の温度と各室での冷媒ガスの蒸発温度
との差が少なくなるので、それだけ圧縮機の圧縮
仕事が少なくて済む。
According to this embodiment, when the impeller 1 of the compressor A rotates, the refrigerant gas is pressurized by each impeller 1 and is divided and sent to the corresponding condenser chamber as described above. Here, the refrigerant gas in each chamber is cooled and liquefied by exchanging heat with the hot water passing through the cooling pipe 6, but at this time, the pressure of the refrigerant gas sent into each partition of the condenser is gradually increased. The temperature level (condensation temperature) of the refrigerant gas also increases gradually from room B12 to room B4 . In this way, the condensation temperature required by each condenser compartment can be kept at (hot water temperature passing through each compartment + appropriate temperature difference), so the compression work of each stage of the compressor is reduced compared to conventional partitions. Compared to a condenser without a chamber (single chamber condenser), it requires less energy, resulting in energy savings. Furthermore, when the refrigerant condensate enters B3 from B4 through the pressure reducing valve 15, a portion of it flashes due to the temperature difference between the refrigerant liquids in chambers B4 and B3 . The flash steam heats the cooling pipe passing through B3 . The same thing is done in chamber B 12 , and with the same amount of refrigerant circulation, the heating capacity is increased compared to the case where the refrigerant is returned from each compartment directly from the condensing chamber to the evaporation chamber. Therefore, the required power is reduced for the same heating capacity. The refrigerant liquid sent to the first partition chamber C1 of the evaporator C through the expansion valve 12 expands to an intermediate pressure between the first and second stages of the compressor, and a portion evaporates to become refrigerant at an intermediate temperature. becomes gas,
It is separated from the liquid, passes through the eliminator 10, and is sucked into the compressor chamber between the first and second stages through the connecting pipe 4 . When cooling the fluid to be cooled flowing through the cooling pipe 9 by the second partition chamber C2 whose pressure is further reduced through the pressure reducing valve 19 and evaporated, the temperature of the fluid and the evaporation temperature of the refrigerant gas in each chamber are Since the difference between the

また、この実施例によれば、多段圧縮機の2段
目以降の各羽根車室から次段の羽根車室へ吐出さ
れる冷媒ガスの一部を分流して対応する凝縮器の
仕切室へ送り込むようにし、冷媒回路の一部を2
段目以降の各羽根車室で接続させ全体として一つ
の冷媒回路で構成しているので、第6図に示すよ
うに、一般のターボ冷凍機の多段圧縮機の軸受潤
滑と同様に、多段羽根車軸101を両端で支持す
るため吸込側軸受102aと吐出側軸受102b
をそれぞれ収容した両軸受室103aと103b
は、バランス通路105を介して圧縮機の吸込側
に連通され低圧に保持された油タンク106に、
通路104a,104bを介して連通させること
が可能となり、従つて、運転時吐出側の高温高圧
の冷媒ガスが吐出側軸受室103bに漏出して
も、該軸受室103bは上記のように低圧に保持
されているので、油ポンプ107、オイルクーラ
108、潤滑油回路109を経て強制潤滑されて
いる潤滑油中に溶け込む冷媒ガスの溶解量は少な
くて済み、これによつて潤滑油の劣化が防止さ
れ、軸受の長期間使用が可能となる。
Further, according to this embodiment, a part of the refrigerant gas discharged from each impeller chamber of the second and subsequent stages of the multistage compressor to the impeller chamber of the next stage is diverted to the partition chamber of the corresponding condenser. Part of the refrigerant circuit is
Since each impeller chamber from the stage onward is connected and the entire refrigerant circuit is composed of one refrigerant circuit, as shown in Figure 6, the multi-stage impeller A suction side bearing 102a and a discharge side bearing 102b are used to support the axle 101 at both ends.
Both bearing chambers 103a and 103b respectively housed
is connected to the oil tank 106 which is communicated with the suction side of the compressor via the balance passage 105 and maintained at a low pressure.
It is possible to communicate through the passages 104a and 104b, and therefore, even if high-temperature, high-pressure refrigerant gas on the discharge side leaks into the discharge-side bearing chamber 103b during operation, the bearing chamber 103b is kept at a low pressure as described above. Therefore, only a small amount of refrigerant gas dissolves into the lubricating oil that is forcibly lubricated via the oil pump 107, oil cooler 108, and lubricating oil circuit 109, thereby preventing deterioration of the lubricating oil. This allows the bearing to be used for a long period of time.

第3図は、第2実施例を示す。この実施例で
は、凝縮器Bが第1実施例(第2図)と同様に三
つの仕切室B12,B3,B4に仕切られ、高圧室B4
冷媒液は、減圧弁15,16を経て順次低圧室へ
移され、室B12より連絡管8を通り膨張弁12を
経て、単一室からなる従来の蒸発器Cへ送られる
ように構成されている。
FIG. 3 shows a second embodiment. In this embodiment, the condenser B is divided into three partition chambers B 12 , B 3 , and B 4 as in the first embodiment (FIG. 2), and the refrigerant liquid in the high pressure chamber B 4 is divided into three partition chambers B 12 , B 3 , and B 4 . 16, the liquid is sequentially transferred to the low pressure chambers, and from chamber B 12 , it passes through the connecting pipe 8, passes through the expansion valve 12, and is sent to the conventional evaporator C consisting of a single chamber.

この実施例によれば、凝縮器の高圧室から低圧
室に冷媒液が流れ込むごとに一部の冷媒液がフラ
ツシユし、その発生蒸気で低圧室を通る冷却管が
加熱され加熱能力が増大する。また、凝縮器B内
で冷媒ガスの温度レベル(凝縮温度)と各仕切室
を通過する温水との温度差が少なくなるので、圧
縮機の圧縮仕事が少くて済み、エネルギが節約で
きる。
According to this embodiment, each time the refrigerant liquid flows from the high-pressure chamber to the low-pressure chamber of the condenser, a portion of the refrigerant liquid flashes, and the generated steam heats the cooling pipe passing through the low-pressure chamber, increasing the heating capacity. Furthermore, since the temperature difference between the temperature level (condensation temperature) of the refrigerant gas in the condenser B and the hot water passing through each partition is reduced, the compression work of the compressor is reduced, and energy can be saved.

第4図は、第3実施例を示す。この実施例で
は、凝縮器Bは第1及び第2実施例(第2及び第
3図)と同様に3室B12,B3及びB4に仕切られ、
また蒸発器Cには被冷却管9を具えた蒸発器C2
に接して、エコノマイザCEが附設され、両室は
下部で膨張弁19を介して連絡されている。そし
てこのエコノマイザCEは、内部に被冷却管9を
設けていない点で第1実施例(第2図)における
仕切室C1と相違した構造となつている。
FIG. 4 shows a third embodiment. In this embodiment, the condenser B is divided into three chambers B 12 , B 3 and B 4 as in the first and second embodiments (FIGS. 2 and 3);
In addition, the evaporator C is equipped with a cooled pipe 9 .
An economizer C E is attached adjacent to the chamber, and both chambers are connected via an expansion valve 19 at the bottom. This economizer C E has a structure different from the partition chamber C 1 in the first embodiment (FIG. 2) in that the cooled pipe 9 is not provided inside.

この実施例によれば、第1及び第2実施例にお
けると同様に、凝縮器Bにおいて、各仕切室で温
水に放熱する冷媒ガスの温度レベルとそこを通過
する温水との温度差が少なくなるので、圧縮機の
圧縮仕事が少なくて済む。また凝縮器の高圧室か
ら低圧室に液が減圧弁を通つて入るごとに発生す
るフラツシユ蒸気によつて低圧室の冷却管が加熱
されるので、加熱能力が増大する。また蒸発器C
では、第1実施例(第2図)におけるように、膨
脹弁12を経て導かれた冷媒液がエコノマイザ
CE内で中間圧力まで膨脹し、一部蒸発して冷媒
ガスとなつて第1段と第2段の中間の圧縮機室へ
戻される、いわゆるエコノマイザの作用を行なつ
た後、冷媒液は膨脹弁19によつて更に減圧され
室C2を低温としここでクーラ作用を行なつてい
る。
According to this embodiment, as in the first and second embodiments, in the condenser B, the temperature difference between the temperature level of the refrigerant gas dissipating heat to the hot water in each partition and the hot water passing therethrough is reduced. Therefore, the compression work of the compressor is reduced. Furthermore, since the cooling pipe of the low pressure chamber is heated by the flash steam generated each time liquid enters the low pressure chamber from the high pressure chamber of the condenser through the pressure reducing valve, the heating capacity is increased. Also, evaporator C
In this case, as in the first embodiment (FIG. 2), the refrigerant liquid led through the expansion valve 12 enters the economizer.
The refrigerant liquid expands to an intermediate pressure in C E , partially evaporates, becomes refrigerant gas, and returns to the compressor room between the first and second stages. The pressure is further reduced by the expansion valve 19, and the temperature of the chamber C2 is lowered to perform a cooler function.

なお、上記各実施例においては、圧縮機を、多
段遠心羽根車を具えたターボ圧縮機について説明
したが、スクリユー式或いは往復式の容積型圧縮
機を含むことは勿論である。
In each of the above embodiments, a turbo compressor equipped with a multi-stage centrifugal impeller has been described as a compressor, but it goes without saying that screw type or reciprocating positive displacement compressors are also included.

また、仕切り方については、第2図その他の図
示されたように輪切り式(軸に直角方向に)仕切
る代りに、第5図に示すように、軸方向に仕切る
ことも勿論可能である。
Regarding the partitioning method, it is of course possible to partition in the axial direction as shown in FIG. 5, instead of partitioning in a ring type (perpendicular to the axis) as shown in FIG. 2 and other figures.

以上説明したように、本発明によれば、冷凍装
置における複数の圧縮段を、各段室が互いに連通
された多段圧縮機によつて構成すると共に、上記
凝縮器を、内部が圧力の異なつた複数の室に仕切
られた一個の凝縮器によつて構成し、上記多段圧
縮機の少くとも一つの段室から次段室へ吐出され
る冷媒ガスの一部を分流して圧力の対応する上記
凝縮器のそれぞれの仕切室へ送り込むようにし
て、冷媒回路の一部を圧縮機の各段室で接続させ
全体として一つの冷媒回路で構成したことにより
次のような効果を奏することができる。
As explained above, according to the present invention, a plurality of compression stages in a refrigeration system are configured by a multi-stage compressor in which the stage chambers are communicated with each other, and the condenser is configured by a multi-stage compressor having internal pressures different from each other. Consisting of a single condenser partitioned into a plurality of chambers, a part of the refrigerant gas discharged from at least one stage chamber of the multistage compressor to the next stage chamber is divided to reduce the pressure corresponding to the above. By connecting a part of the refrigerant circuit to each stage chamber of the compressor so that the refrigerant is sent to each partition chamber of the condenser, and configuring the refrigerant circuit as a whole into one refrigerant circuit, the following effects can be achieved.

() 凝縮器各仕切室の要求する凝縮温度を、各
仕切室を通過する温水温度に適当な温度差を付
加する程度に留めることができるので、それだ
け圧縮機各段の圧縮仕事が従来の仕切室のない
ものに比べて少なくて済み、省エネルギとな
る。
() Since the condensation temperature required by each condenser compartment can be kept to a level that adds an appropriate temperature difference to the temperature of the hot water passing through each compartment, the compression work of each stage of the compressor can be reduced compared to conventional partitions. Compared to those without a chamber, it requires less space and saves energy.

() 全体として一つの冷媒回路で構成し冷媒系
を同一にしたことにより、一つの容器として扱
うことが可能となり、そのため耐圧・気密試験
が容易となり、保守が容易となる。
() By having one refrigerant circuit as a whole and using the same refrigerant system, it is possible to treat it as one container, which makes pressure resistance and airtightness tests easier and maintenance easier.

() 複数の圧縮段を各段室が互いに連通された
多段圧縮機によつて構成し、全体として一つの
冷媒回路で構成し冷媒系を同一にしたことによ
り、多段圧縮機の両端を支持する両軸受室の圧
力をバランス通路を介して圧縮機の吸込側の低
圧(蒸発器圧力と同等)に保持することが可能
となり、またこのようにして圧縮機潤滑系を冷
媒回路の吸込圧に保つように構成したとによ
り、運転時吐出側の高温高圧の冷媒ガスが潤滑
油中に溶け込む溶解量を軽減して潤滑油の劣化
を防止し、軸受の長期間使用を可能とすること
ができると共に、高温の温度を得る高性能ヒー
トポンプを得ることが可能となる。
() A multi-stage compressor with multiple compression stages in which the stage chambers are communicated with each other, and the entire refrigerant circuit is configured as a single refrigerant system to support both ends of the multi-stage compressor. It is possible to maintain the pressure in both bearing chambers at a low pressure (equivalent to the evaporator pressure) on the suction side of the compressor via the balance passage, and in this way the compressor lubrication system is maintained at the suction pressure of the refrigerant circuit. With this structure, it is possible to reduce the amount of high-temperature, high-pressure refrigerant gas dissolved in the lubricating oil on the discharge side during operation, prevent deterioration of the lubricating oil, and enable long-term use of the bearing. , it becomes possible to obtain a high-performance heat pump that can obtain high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷凍装置をヒートポンプに用い
た場合の凝縮器及び蒸発器内の冷媒の凝縮温度
a、温水温度b、被冷却流体温度c、冷媒の蒸発
温度dの変化の状態を示す温度線図。第2図ない
し第4図は、本発明の冷凍装置の第1ないし第3
実施例の要部断面図、第5図は凝縮器及び蒸発器
の仕切り方の他の例を示す軸と直角の面で切断し
た断面図、第6図は本発明の冷凍機多段圧縮機の
軸受の強制潤滑回路を示す説明図である。 A……圧縮機、B……凝縮器、C……蒸発器、
A1〜A4……羽根車室、B12〜B4……凝縮器の仕
切室、C1,C……蒸発器の仕切室。
Figure 1 shows the changes in the refrigerant condensation temperature a, hot water temperature b, cooled fluid temperature c, and refrigerant evaporation temperature d in the condenser and evaporator when a conventional refrigeration system is used as a heat pump. Line diagram. 2 to 4 show the first to third parts of the refrigeration system of the present invention.
FIG. 5 is a sectional view of the main part of the embodiment, FIG. 5 is a sectional view taken along a plane perpendicular to the axis showing another example of partitioning the condenser and evaporator, and FIG. 6 is a cross-sectional view of the refrigerator multi-stage compressor of the present invention. FIG. 2 is an explanatory diagram showing a forced lubrication circuit for a bearing. A... Compressor, B... Condenser, C... Evaporator,
A1 to A4 ...impeller chamber, B12 to B4 ...condenser partition, C1 , C...evaporator partition.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発器、複数個の凝縮器、圧縮ガスを送る複
数の圧縮段、複数個の減圧装置及びこれらの機器
を接続する配管等からなる冷凍装置において、上
記複数の圧縮段を、各段室が互いに連通された多
段圧縮機によつて構成すると共に、上記凝縮器
を、内部が圧力の異なつた複数の室に仕切られた
一個の凝縮器によつて構成し、上記多段圧縮機の
少くとも一つの段室から次段室へ吐出される冷媒
ガスの一部を分流して圧力の対応する上記凝縮器
のそれぞれの仕切室へ送り込むようにして、凝縮
器の各仕切室と上記多段圧縮機の対応する圧力段
とを別々に連通させ、これら凝縮器の隣設した各
仕切室を減圧装置を介して連通させると共に、最
終低圧側仕切室と、蒸発器とを減圧装置を介して
接続するようにし、冷媒回路の一部を上記圧縮機
の各段室で接続させることによつて全体として一
つの冷媒回路で構成し、且つ圧縮機の潤滑系を上
記冷媒回路の吸込圧に保つように構成したことを
特徴とする省エネルギ型冷凍装置。
1. In a refrigeration system consisting of an evaporator, multiple condensers, multiple compression stages for sending compressed gas, multiple pressure reducing devices, piping connecting these devices, etc., the multiple compression stages are connected to each stage chamber. The condenser is composed of a single condenser whose interior is partitioned into a plurality of chambers having different pressures, and at least one of the multistage compressors A part of the refrigerant gas discharged from one stage chamber to the next stage chamber is divided and sent to each partition chamber of the condenser corresponding to the pressure, and the refrigerant gas is divided between each partition chamber of the condenser and the multistage compressor. The corresponding pressure stages are communicated separately, the adjacent partitions of these condensers are communicated via a pressure reducing device, and the final low pressure side partition is connected to the evaporator via a pressure reducing device. A part of the refrigerant circuit is connected to each stage chamber of the compressor so that the entire refrigerant circuit is constituted by one refrigerant circuit, and the lubrication system of the compressor is maintained at the suction pressure of the refrigerant circuit. This is an energy-saving refrigeration device that is characterized by:
JP12943083A 1983-07-18 1983-07-18 Energy conserving type refrigerator Granted JPS6023759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12943083A JPS6023759A (en) 1983-07-18 1983-07-18 Energy conserving type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12943083A JPS6023759A (en) 1983-07-18 1983-07-18 Energy conserving type refrigerator

Publications (2)

Publication Number Publication Date
JPS6023759A JPS6023759A (en) 1985-02-06
JPH0418218B2 true JPH0418218B2 (en) 1992-03-27

Family

ID=15009292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12943083A Granted JPS6023759A (en) 1983-07-18 1983-07-18 Energy conserving type refrigerator

Country Status (1)

Country Link
JP (1) JPS6023759A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621722B2 (en) * 1984-10-31 1994-03-23 株式会社東芝 Super heat pump device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134254A (en) * 1979-04-02 1980-10-18 Valmet Oy Method of recovering heat in use of heat pump
JPS5623671A (en) * 1979-08-03 1981-03-06 Hitachi Ltd Refrigerating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134254A (en) * 1979-04-02 1980-10-18 Valmet Oy Method of recovering heat in use of heat pump
JPS5623671A (en) * 1979-08-03 1981-03-06 Hitachi Ltd Refrigerating system

Also Published As

Publication number Publication date
JPS6023759A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
KR100408960B1 (en) Multistage compression refrigerating machine for supplying refrigerant from intercooler to cool rotating machine and lubricating oil
KR100339797B1 (en) Lubrication system for screw compressors using an oil still
EP0998651B1 (en) Method and apparatus for applying dual centrifugal compressors to a refrigeration chiller unit
CN101443615B (en) Refrigerating system with economizing cycle
US3710590A (en) Refrigerant cooled oil system for a rotary screw compressor
US20190017730A1 (en) Refrigerating machine and control method thereof
JP2015190733A (en) Evaporator of turbo refrigerator, and turbo refrigerator including evaporator
KR20170013345A (en) Compression refrigeration machine having a spindle compressor
US20130136626A1 (en) Screw compressor with muffle structure and rotor seat thereof
JPH0418218B2 (en)
CN108072198B (en) Compressor assembly, control method thereof and refrigerating/heating system
WO2002044632A1 (en) Variable capacity refrigerant-sourced heat pump
CN109442778B (en) Air Conditioning System
US10288069B2 (en) Refrigerant compressor lubricant viscosity enhancement
US4688397A (en) Multi-stage heat pump of the compressor-type operating with a solution
RU2152568C1 (en) Heat pump
JPH0421109B2 (en)
CN111894855B (en) Rotary compressor, heat pump system and air conditioning system
US3509731A (en) Oil cooling arrangement in refrigeration system
JPH0236061Y2 (en)
WO2020057452A1 (en) Scroll compressor and air-conditioning system comprising same
KR19990014403A (en) Compressor for air conditioner or freezer
CN116378993A (en) Bearing air supply and motor cooling system of air suspension refrigeration compressor
CN114909826A (en) Compression type steam unit
JP2015155774A (en) Heat source unit and refrigeration cycle device