JPH0418213B2 - - Google Patents

Info

Publication number
JPH0418213B2
JPH0418213B2 JP62148855A JP14885587A JPH0418213B2 JP H0418213 B2 JPH0418213 B2 JP H0418213B2 JP 62148855 A JP62148855 A JP 62148855A JP 14885587 A JP14885587 A JP 14885587A JP H0418213 B2 JPH0418213 B2 JP H0418213B2
Authority
JP
Japan
Prior art keywords
side circulation
valve
evaporator
condenser
circulation waterway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62148855A
Other languages
Japanese (ja)
Other versions
JPS63315848A (en
Inventor
Shoichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP62148855A priority Critical patent/JPS63315848A/en
Publication of JPS63315848A publication Critical patent/JPS63315848A/en
Publication of JPH0418213B2 publication Critical patent/JPH0418213B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば地下水の如き大規模自然水を
高熱源または低熱源として利用した冷暖房装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an air conditioning system that utilizes large-scale natural water, such as groundwater, as a high or low heat source.

〔従来の技術〕[Conventional technology]

季節によつて大きく変動する地上の温度に対し
て、地下水の温度はほぼ一定になつており、季節
の変化に伴い地下水と地上との間に温度差が生じ
る。かかる地下水を、地上のビル等の構築物まで
汲み揚げ、これを熱源として利用することは一般
に行なわれている。
While the temperature on the ground varies greatly depending on the season, the temperature of groundwater remains almost constant, and a temperature difference occurs between the groundwater and the surface as the seasons change. It is common practice to pump such groundwater up to structures such as buildings on the ground and use it as a heat source.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、地下水が豊富にある地域でも、地盤
沈下等の防止から地下水の汲み揚げが規制されて
いる場合がある。このような場合、例えば小口径
の井戸により、地下水を地上に汲み揚げている。
この程度の量の地下水は、熱利用する場合1世帯
を賄う程度の熱量に過ぎず、大規模なビル建築物
や工場の熱源として使用しようとしても不足する
ことになる。
However, even in areas with abundant groundwater, pumping of groundwater may be regulated to prevent ground subsidence. In such cases, groundwater is pumped above ground using, for example, a small-diameter well.
This amount of groundwater only has enough heat to power one household, and even if it were to be used as a heat source for large-scale buildings or factories, it would not be enough.

一方、地上の建築設備等の冷暖房としては、例
えばヒートポンプ式の冷暖房装置あるいは温水暖
房装置が使用されているが、これを大規模なビル
建築設備に利用しようとすれば、大型の容量の大
きい冷暖房装置が必要になり、地下水が豊富にあ
る地域では、地下水の熱源を無駄に捨てることに
なる。つまり、地下水の汲み揚げが制限されてい
る場合、地下水の熱を有効に地上の建築設備等に
大規模に利用することができない。
On the other hand, for example, heat pump-type air-conditioning equipment or hot water heating equipment is used for cooling and heating equipment such as above-ground building equipment. This would require equipment, and in areas where groundwater is abundant, would mean wasting the groundwater heat source. In other words, if pumping of groundwater is restricted, the heat of the groundwater cannot be effectively utilized on a large scale for above-ground building equipment.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の問題を解決するためになされ
たもので、その目的は、例えば地下水の如き大規
模自然水の汲み揚げが制限されている場合でも、
大規模自然水の熱を熱源として大規模に利用し、
小容量の冷暖房装置を提供することである。
The present invention was made in order to solve the above-mentioned problems, and its purpose is to solve the problem described above, and its purpose is to solve the problem even when pumping up natural water on a large scale, such as groundwater, is restricted.
Large-scale use of natural water heat as a heat source,
The purpose of the present invention is to provide a small-capacity heating and cooling system.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、第1発明は、圧縮
機、凝縮器、受液器、膨張弁、蒸発器により冷房
サイクル系を形成し、蒸発器が一部として配され
た蒸発器側循環水路及び凝縮器が一部として配さ
れた凝縮器側循環水路の途中に、共通する空調器
またはフアン・コイル・ユニツトを介装し、蒸発
器側循環水路及び凝縮器側循環水路の途中にそれ
ぞれ設けた冷水用バルブ及び温水用バルブの開閉
により、蒸発器側循環水路の冷水または凝縮器側
循環水路の温水を空調器またはフアン・コイル・
ユニツトに導いて冷暖房を行なう冷暖房装置にお
いて、蒸発器側循環水路に高熱源または低熱源と
しての大規模自然水と熱の授受を行なう採放熱部
を介装したものである。
In order to achieve the above object, the first invention forms a cooling cycle system by a compressor, a condenser, a liquid receiver, an expansion valve, and an evaporator, and the evaporator side circulation waterway in which the evaporator is disposed as a part. A common air conditioner or fan coil unit is installed in the middle of the condenser side circulation waterway in which the condenser is installed as a part, and a common air conditioner or fan coil unit is installed in the middle of the evaporator side circulation waterway and the condenser side circulation waterway. By opening and closing the cold water valve and hot water valve, the cold water in the evaporator side circulation waterway or the hot water in the condenser side circulation waterway is supplied to the air conditioner or fan coil.
In a heating and cooling system that conducts air conditioning and heating by leading to a unit, a heat collecting and discharging section is installed in the circulation waterway on the evaporator side to exchange heat with large-scale natural water as a high heat source or a low heat source.

第2発明は、圧縮機、凝縮器、受液器、膨張
弁、蒸発器により冷房サイクル系を形成し、蒸発
器が一部として配された蒸発器側循環水路及び凝
縮器が一部として配された凝縮器側循環水路の途
中に、共通する空調器またはフアン・コイル・ユ
ニツトを介装し、蒸発器側循環水路及び凝縮器側
循環水路の途中にそれぞれ設けた冷水用バルブ及
び温水用バルブの開閉により、蒸発器側循環水路
の冷水または凝縮器側循環水路の温水を空調器ま
たはフアン・コイル・ユニツトに導いて冷暖房を
行なう冷暖房装置において、蒸発器側循環水路及
び凝縮器側循環水路の途中に、高熱源または低熱
源としての大規模自然水と熱の授受を行なう採放
熱部を、採放熱部接続用切換バルブを介して共通
に介装し、さらに、蒸発器側循環水路及び凝縮器
側循環水路の途中に採放熱部への冷却水または温
水の連通・遮断を行なう切換バルブをそれぞれ設
けたものである。
In the second invention, a cooling cycle system is formed by a compressor, a condenser, a liquid receiver, an expansion valve, and an evaporator, and the evaporator-side circulation waterway in which the evaporator is disposed as a part and the condenser are disposed as a part. A common air conditioner or fan coil unit is installed in the middle of the condenser side circulation waterway, and a cold water valve and a hot water valve are installed in the middle of the evaporator side circulation waterway and the condenser side circulation waterway, respectively. In an air-conditioning system that performs air conditioning by guiding cold water in the evaporator-side circulation channel or hot water in the condenser-side circulation channel to an air conditioner or fan coil unit by opening and closing the evaporator-side circulation channel and condenser-side circulation channel. Along the way, a heat extraction and radiation section that exchanges heat with large-scale natural water as a high heat source or a low heat source is commonly installed via a switching valve for connecting the heat extraction and radiation section, and the evaporator side circulation channel and condensing Switching valves are provided in the middle of the vessel side circulation waterway to communicate and cut off the cooling water or hot water to the heat extraction/dissipation section.

〔発明の作用〕[Action of the invention]

第1発明によれば、冷房時には、冷水用バルブ
は開き、温水用バルブは閉じており、次の2つの
ケースがある。
According to the first invention, during cooling, the cold water valve is open and the hot water valve is closed, and there are the following two cases.

空調器またはフアン・コイル・ユニツトで室
内の空気を冷却することにより熱を貰つて温度
の上昇した蒸発器側循環水路の冷却水は、採放
熱部で大規模自然水(低熱源)により冷却さ
れ、さらに、冷房サイクル系の蒸発器で蒸発熱
を奪われて冷却され、再び、空調器またはフア
ン・コイル・ユニツトに循環する。
The cooling water in the evaporator side circulation waterway, whose temperature has risen due to heat obtained by cooling indoor air with an air conditioner or fan coil unit, is cooled by large-scale natural water (low heat source) in the heat extraction and radiation section. Then, the heat of evaporation is removed from the air in the evaporator of the cooling cycle system, and the air is cooled down, and the air is circulated again to the air conditioner or fan coil unit.

空調器またはフアン・コイル・ユニツトの冷
房負荷が所望の負荷より小さい場合は、蒸発器
を通るだけで、採放熱部で大規模自然水(低熱
源)により冷却される(中間期・冷房時)。
If the cooling load of the air conditioner or fan coil unit is smaller than the desired load, it simply passes through the evaporator and is cooled by large-scale natural water (low heat source) in the heat extraction/dissipation section (mid-season/cooling). .

暖房時には、冷水用バルブは閉じ、温水用バル
ブは開いており、蒸発器側循環水路の冷却水が、
冷房サイクル系の蒸発器で、冷媒の蒸発によつて
熱を奪われて低温度になるが、採放熱部で大規模
自然水(高熱源)で温められる。従つて、蒸発器
での冷媒の蒸発効率が向上する。一方、上記の冷
房サイクル系の蒸発器での冷媒の蒸発に対して凝
縮器で冷媒が凝縮し、凝縮器側循環水路の温水は
熱を与えられて温められ、空調器またはフアン・
コイル・ユニツトに循環する。
During heating, the cold water valve is closed, the hot water valve is open, and the cooling water in the evaporator side circulation channel is
In the evaporator of the cooling cycle system, heat is taken away by the evaporation of the refrigerant and the temperature becomes low, but it is warmed by large-scale natural water (high heat source) in the heat extraction and radiation section. Therefore, the evaporation efficiency of the refrigerant in the evaporator is improved. On the other hand, as the refrigerant evaporates in the evaporator of the above-mentioned cooling cycle system, the refrigerant condenses in the condenser, and the hot water in the circulation waterway on the condenser side is heated and warmed by the air conditioner or fan.
Circulate to coil unit.

第2発明によれば、冷房時には、冷水用バルブ
は開き、温水用バルブは閉じており、次の3つの
ケースがある。
According to the second invention, during cooling, the cold water valve is open and the hot water valve is closed, and there are the following three cases.

蒸発器側循環水路に介装した切換バルブを開
き、凝縮器側循環水路に介装した切換バルブを
閉じ、凝縮器側循環水路に採放熱部が連通・配
置されるように採放熱部接続用切換バルブを切
り換えている場合; 凝縮器側循環水路の水は、冷房サイクル系の
凝縮器により、冷媒の凝縮によつて熱が放出さ
れ高温になるが、採放熱部で大規模自然水(低
熱源)で冷却される。従つて、凝縮器の冷却効
率が良くなる。一方、上記の冷房サイクル系の
凝縮器での熱放出に対して蒸発器で冷媒が蒸発
し、蒸発器側循環水路の冷却水は熱を奪われて
冷却され、空調器またはフアン・コイル・ユニ
ツトに循環する。
Open the switching valve installed in the evaporator side circulation waterway, close the switching valve installed in the condenser side circulation waterway, and connect the heat extraction and radiation part so that the heat extraction and radiation part communicates with and is arranged in the condenser side circulation waterway. When the switching valve is switched; The water in the condenser side circulation channel becomes high temperature as heat is released by condensing the refrigerant in the condenser of the cooling cycle system. heat source). Therefore, the cooling efficiency of the condenser is improved. On the other hand, in response to the heat released in the condenser of the cooling cycle system, the refrigerant evaporates in the evaporator, and the cooling water in the circulation waterway on the evaporator side is cooled by removing heat, and is cooled in the air conditioner or fan coil unit. circulates.

蒸発器側循環水路及び凝縮器側循環水路に介
装した切換バルブを閉じ、蒸発器側循環水路に
採放熱部が連通・配置されるように採放熱部接
続用切換バルブを切り換えている場合; 空調器またはフアン・コイル・ユニツトで室
内の空気を冷却することにより熱を貰つて温度
の上昇した蒸発器側循環水路の冷却水は、採放
熱部で大規模自然水(低熱源)により冷却さ
れ、さらに、冷房サイクル系の蒸発器で蒸発熱
を奪われて冷却され、再び、空調器またはフア
ン・コイル・ユニツトに循環する。
When the switching valves installed in the evaporator side circulation waterway and the condenser side circulation waterway are closed, and the switching valve for connecting the heat extraction and radiation part is switched so that the heat extraction and radiation part is communicated with and arranged in the evaporator side circulation waterway; The cooling water in the evaporator side circulation waterway, whose temperature has risen due to heat obtained by cooling indoor air with an air conditioner or fan coil unit, is cooled by large-scale natural water (low heat source) in the heat extraction and radiation section. Then, the heat of evaporation is removed and cooled in the evaporator of the cooling cycle system, and the air is circulated again to the air conditioner or fan coil unit.

蒸発器側循環水路及び凝縮器側循環水路に介
装した切換バルブを閉じ、蒸発器側循環水路に
採放熱部が連通・配置されるように採放熱部接
続用切換バルブを切り換え、空調器またはフア
ン・コイル・ユニツトの冷房負荷が所望の負荷
より小さい場合(中間期・冷房時); 冷却水は蒸発器を通るだけで、採放熱部で大
規模自然水(低熱源)により冷却される。
Close the switching valves installed in the evaporator side circulation waterway and the condenser side circulation waterway, switch the switching valve for connecting the heat extraction and radiation part so that the heat extraction and radiation part is connected and arranged in the evaporator side circulation waterway, and connect the air conditioner or When the cooling load of the fan coil unit is smaller than the desired load (mid-term/cooling); the cooling water simply passes through the evaporator and is cooled by large-scale natural water (low heat source) in the heat extraction/dissipation section.

暖房時には、冷水用バルブは閉じ、温水用バル
ブは開いており、次の3つのケースがある。
During heating, the cold water valve is closed and the hot water valve is open, and there are three cases:

蒸発器側循環水路に介装した切換バルブを閉
じ、凝縮器側循環水路に介装した切換バルブを
開き、蒸発器側循環水路に採放熱部が連通・配
置されるように採放熱部接続用切換バルブを切
り換えている場合; 蒸発器側循環水路の水は、冷房サイクル系の
蒸発器で、冷媒の蒸発によつて熱を奪われ低温
度になるが、採放熱部で大規模自然水(高熱
源)で温められる。従つて、蒸発器での冷媒の
蒸発効率が向上する。一方、上記の冷房サイク
ル系の蒸発器での冷媒の蒸発に対して凝縮器で
冷媒が凝縮し、凝縮器側循環水路の温水は熱を
与えられて温められ、空調器またはフアン・コ
イル・ユニツトに循環する。
Close the switching valve installed in the evaporator side circulation waterway, open the switching valve installed in the condenser side circulation waterway, and connect the heat extraction and radiation part so that the heat extraction and radiation part communicates with and is arranged in the evaporator side circulation waterway. When the switching valve is switched; Water in the evaporator side circulation channel is in the evaporator of the cooling cycle system, and heat is removed by the evaporation of the refrigerant and the temperature becomes low. (high heat source). Therefore, the evaporation efficiency of the refrigerant in the evaporator is improved. On the other hand, as the refrigerant evaporates in the evaporator of the above-mentioned cooling cycle system, the refrigerant condenses in the condenser, and the hot water in the circulation waterway on the condenser side is given heat and warmed, and the hot water in the air conditioner or fan coil unit is heated. circulates.

蒸発器側循環水路及び凝縮器側循環水路に介
装した切換バルブを閉じ、凝縮器側循環水路に
採放熱部が連通・配置されるように採放熱部接
続用切換バルブを切り換えた場合; 空調器またはフアン・コイル・ユニツトで外
気を暖房することにより熱を奪れ、温度の下降
した凝縮器側循環水路の温水は、採放熱部で大
規模自然水(高熱源)により温められ、さら
に、冷房サイクル系の凝縮器で凝縮熱を与えら
れて温められ、再び、空調器またはフアン・コ
イル・ユニツトに循環する。
When the switching valves installed in the evaporator side circulation waterway and the condenser side circulation waterway are closed, and the switching valve for connecting the heat extraction and radiation part is switched so that the heat extraction and radiation part is communicated with and arranged in the condenser side circulation waterway; Air conditioning Heat is removed by heating the outside air with a fan coil unit or fan coil unit, and the hot water in the condenser side circulation waterway whose temperature has dropped is warmed by large-scale natural water (high heat source) in the heat extraction and radiation section. It is warmed by heat of condensation in the condenser of the cooling cycle system, and then circulated again to the air conditioner or fan coil unit.

蒸発器側循環水路及び凝縮器側循環水路に介
装した切換バルブを閉じ、凝縮器側循環水路に
採放熱部が連通・配置されるように採放熱部接
続用切換バルブを切り換え、空調器またはフア
ン・コイル・ユニツトの冷房負荷が所望の負荷
より小さい場合; 温水は凝縮器を通るだけで、採放熱部で大規
模自然水(高熱源)により熱つせられる。
Close the switching valves installed in the evaporator side circulation waterway and the condenser side circulation waterway, switch the switching valve for connecting the heat extraction and radiation part so that the heat extraction and radiation part is communicated with and arranged in the condenser side circulation waterway, and connect the air conditioner or When the cooling load of the fan coil unit is smaller than the desired load; hot water simply passes through the condenser and is heated by large-scale natural water (high heat source) in the heat extraction and radiation section.

〔発明の実施例〕[Embodiments of the invention]

以下、図面により本発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第3図は第1発明の実施例に係る
大規模自然水利用による冷暖房装置を示す。
FIGS. 1 to 3 show a heating and cooling system using large-scale natural water according to an embodiment of the first invention.

第1図において、1は気体冷媒を圧縮する圧縮
機、2は凝縮器で、圧縮器1により圧縮された気
体冷媒を冷却して液化する。3は受液器、4は膨
張弁、5は蒸発器で、液体冷媒を気体冷媒に変え
る。上記の圧縮機1、凝縮器2、受液器3、膨張
弁4、蒸発器5とが順次冷媒回路6に配置され、
冷房サイクル系を形成している。
In FIG. 1, 1 is a compressor that compresses a gaseous refrigerant, and 2 is a condenser, which cools and liquefies the gaseous refrigerant compressed by the compressor 1. 3 is a liquid receiver, 4 is an expansion valve, and 5 is an evaporator, which converts liquid refrigerant into gas refrigerant. The compressor 1, condenser 2, liquid receiver 3, expansion valve 4, and evaporator 5 are sequentially arranged in the refrigerant circuit 6,
It forms a cooling cycle system.

7は蒸発器側循環水路で、その途中には、採放
熱コイル(採放熱部)8から順番に水ポンプ9、
蒸発器5が介装されている。そして、蒸発器側循
環水路7は、A点で2つの冷水路に分岐してその
一方の冷水路7Aには第1Aバルブ(冷水用バル
ブ)10A、フアン・コイル・ユニツト14A、
第3Aバルブ(冷水用バルブ)12Aが順次介装
され、他方の冷水路7Bには、第1Bバルブ(冷
水用バルブ10B、フアン・コイル・ユニツト1
4B、第3Bバルブ(冷水用バルブ)12Bが順
次介装され、B点で一方の冷水路7Aに合流して
いる。また、他方の冷水路7BからC点でバイパ
スバルブ7Dを有する分岐冷水路7Cが分岐し、
分岐冷水路7CはD点で一方の冷水路7Aに合流
している。
7 is an evaporator side circulation waterway, and along the way there are water pumps 9,
An evaporator 5 is interposed. The evaporator side circulation waterway 7 branches into two cold waterways at point A, and one of the cold waterways 7A has a 1A valve (chilled water valve) 10A, a fan coil unit 14A,
A 3rd A valve (cold water valve) 12A is installed in sequence, and a 1B valve (cold water valve 10B, fan coil unit 1) is installed in the other cold water channel 7B.
4B and 3rd B valves (chilled water valves) 12B are successively installed, and merge into one cold water channel 7A at point B. Further, a branch cold water channel 7C having a bypass valve 7D branches from the other cold water channel 7B at point C,
The branched cold water channel 7C joins one of the cold water channels 7A at point D.

上記の採放熱コイル8は、プレート型構造(第
3図図示)に構成され、第2図に示すスクリーン
8A内に組み込まれて地下水の中に設置され、高
熱源または低熱源としての地下水と熱の授受を行
なう。スクリーン8A、採放熱コイル8の材質と
して、水、土中の性質により銅、アルミニウム、
鉄等が選択される。
The heat extraction/dissipation coil 8 described above has a plate-type structure (shown in Figure 3), is installed in the screen 8A shown in Figure 2 and installed in underground water, and is connected to the ground water as a high heat source or a low heat source. give and receive. The material for the screen 8A and heat extraction/dissipation coil 8 may be copper, aluminum, etc. depending on the nature of water and soil.
Iron etc. are selected.

15は凝縮器側循環水路で、その途中には、温
水ポンプ16、凝縮器2が順次介装されている。
そして、凝縮器側循環水路15は、E点で2つの
温水路に分岐してその一方の温水路15Aには第
2Aバルブ(温水用バルブ)11A、フアン・コ
イル・ユニツト14A、第4Aバルブ(温水用バ
ルブ)13Aが順次介装され、他方の温水路15
Bには、第2Bバルブ(温水用バルブ)11B、
フアン・コイル・ユニツト14B、第4Bバルブ
(温水用バルブ)13Bが順次介装され、F点で
一方の温水路15Aに合流している。上記のフア
ン・コイル・ユニツト14A,14Bは、蒸発器
5を通つた冷却水または、凝縮器2を通つた温水
により室内の空気の冷暖房を行なう。
Reference numeral 15 denotes a condenser side circulation waterway, in which a hot water pump 16 and a condenser 2 are sequentially installed.
The condenser side circulation waterway 15 branches into two hot waterways at point E, and one of the hot waterways 15A has a second A valve (hot water valve) 11A, a fan coil unit 14A, and a fourth A valve ( The hot water valve) 13A is successively installed, and the other hot water water channel 15
B has the 2nd B valve (hot water valve) 11B,
A fan coil unit 14B and a 4th B valve (hot water valve) 13B are installed in sequence, and merge into one of the hot water channels 15A at point F. The fan coil units 14A and 14B cool the indoor air using the cooling water that has passed through the evaporator 5 or the hot water that has passed through the condenser 2.

17は凝縮器2で発生した熱を貯湯槽18に供
給する温水供給循環水路で、給湯ポンプ19によ
り循環される。20は凝縮器2で放出された熱に
より温度が上昇した熱水を冷却塔20Aで冷却す
る冷却水路である。
A hot water supply circulation channel 17 supplies heat generated in the condenser 2 to a hot water storage tank 18, and is circulated by a hot water pump 19. A cooling water channel 20 cools hot water whose temperature has increased due to the heat released by the condenser 2 in a cooling tower 20A.

次に、第1発明の実施例の作用を説明する。 Next, the operation of the embodiment of the first invention will be explained.

第4図は夏期・冷房時の状態を示す。 Figure 4 shows the conditions during summer and cooling.

図において、第1Aバルブ10A、第3Aバルブ
12A、第1Bバルブ10B、第3Bバルブ12B
は開いている。第2Aバルブ11A、第4Aバルブ
13A、第2Bバルブ11B、第4Bバルブ13
B、バイパスバルブ7Dは閉じている。従つて、
フアン・コイル・ユニツト14A,14Bに対し
て蒸発器側循環水路7が連通状態にあり、凝縮器
側循環水路15は遮断状態にある。
In the figure, the 1st A valve 10A, the 3rd A valve 12A, the 1B valve 10B, and the 3rd B valve 12B.
is open. 2nd A valve 11A, 4th A valve 13A, 2nd B valve 11B, 4th B valve 13
B, bypass valve 7D is closed. Therefore,
The evaporator side circulation waterway 7 is in communication with the fan coil units 14A, 14B, and the condenser side circulation waterway 15 is in a blocked state.

この場合、フアン・コイル・ユニツト14A,
14Bで室内の空気を冷却することにより熱を貰
つて温度の上昇した蒸発器側循環水路7の冷却水
(例えば8℃→18℃)は、点線で示すように、採
放熱コイル8で温度一定の地下水(14℃)により
冷却されて、16℃になり、さらに、冷房サイクル
系の蒸発器5で蒸発熱を奪われて冷却され、8℃
になり、再び、フアン・コイル・ユニツト14
A,14Bに戻り、室内の空気を冷却する。この
サイクルが繰り返される。
In this case, fan coil unit 14A,
The cooling water in the evaporator side circulation channel 7, whose temperature has increased due to the heat obtained by cooling the indoor air in 14B (for example, from 8°C to 18°C), is kept at a constant temperature by the heat extraction and radiation coil 8, as shown by the dotted line. It is cooled down to 16°C by underground water (14°C), and further cooled to 8°C by removing the heat of evaporation in the evaporator 5 of the cooling cycle system.
and again, fan coil unit 14
Return to A, 14B and cool the indoor air. This cycle is repeated.

従つて、フアン・コイル・ユニツト14A,1
4Bに供給される蒸発器側循環水路7の冷水を、
冷房サイクル系の蒸発器5のみならず、地下水
(低熱源)で冷却するので、蒸発器5での冷水の
温度下降量が少なくて済む。従つて、蒸発器5で
の冷媒の蒸発量も少なくなり、冷却サイクル系の
装置を小容量にすることができる。
Therefore, the fan coil unit 14A,1
The cold water of the evaporator side circulation waterway 7 supplied to 4B,
Since cooling is performed not only by the evaporator 5 of the cooling cycle system but also by underground water (a low heat source), the amount of temperature drop of the cold water in the evaporator 5 can be small. Therefore, the amount of evaporation of the refrigerant in the evaporator 5 is also reduced, and the capacity of the cooling cycle system can be reduced.

第5図は中間期・冷房時の状態を示す。 Figure 5 shows the state during the intermediate period/cooling period.

図において、第1Aバルブ10A、第3Aバルブ
12A、第1Bバルブ10B、第3Bバルブ12B
は開いている。第2Aバルブ11A、第4Aバルブ
13A、第2Bバルブ11B、第4Bバルブ13
B、バイパスバルブ7Dは閉じている。従つて、
フアン・コイル・ユニツト14A,14Bに対し
て、蒸発器側循環水路7が連通状態にあり、凝縮
器側循環水路15は遮断状態にある。
In the figure, the 1st A valve 10A, the 3rd A valve 12A, the 1B valve 10B, and the 3rd B valve 12B.
is open. 2nd A valve 11A, 4th A valve 13A, 2nd B valve 11B, 4th B valve 13
B, bypass valve 7D is closed. Therefore,
The evaporator side circulation waterway 7 is in communication with the fan coil units 14A, 14B, and the condenser side circulation waterway 15 is in a blocked state.

この場合、フアン・コイル・ユニツト14A,
14Bの冷房負荷が所望の負荷より小さい場合に
有効で、冷却水を冷房サイクル系を稼働させずに
蒸発器5を通すだけで、地下水(低熱源)に配置
した採放熱コイル8により冷却することができ
る。
In this case, fan coil unit 14A,
Effective when the cooling load of 14B is smaller than the desired load, the cooling water can be cooled by the heat extraction and radiation coil 8 placed in underground water (low heat source) by simply passing it through the evaporator 5 without operating the cooling cycle system. I can do it.

第6図は冬期・暖房時の状態を示す。 Figure 6 shows the conditions during winter and heating.

図において、第1Aバルブ10A、第3Aバルブ
12A、第1Bバルブ10B、第3Bバルブ12B
は閉じている。第2Aバルブ11A、第4Aバルブ
13A、第2Bバルブ11B、第4Bバルブ13
B、バイパスバルブ7Dは開いている。従つて、
フアン・コイル・ユニツト14A,14Bに対し
て、凝縮器側循環水路15が連通状態にあり、蒸
発器側循環水路7は遮断状態にある。かかる状態
では、蒸発器側循環水路7の途中に採放熱コイル
8が介装されるこことなる。
In the figure, the 1st A valve 10A, the 3rd A valve 12A, the 1B valve 10B, and the 3rd B valve 12B.
is closed. 2nd A valve 11A, 4th A valve 13A, 2nd B valve 11B, 4th B valve 13
B, bypass valve 7D is open. Therefore,
The condenser side circulation waterway 15 is in communication with the fan coil units 14A, 14B, and the evaporator side circulation waterway 7 is in a blocked state. In this state, the heat extraction and radiation coil 8 is interposed in the middle of the evaporator side circulation waterway 7.

この場合、凝縮器側循環水路15の温水は、冷
房サイクル系の凝縮器2で冷媒の凝縮熱を受けて
高温になり、その熱を持つた温水がフアン・コイ
ル・ユニツト14A,14Bに供給され、サイク
ルが繰り返される(リバースリターン方式)。一
方、上記の冷房サイクル系の凝縮器2での熱放出
に対して蒸発器5で冷媒が蒸発し、蒸発器側循環
水路7の冷却水は、熱を奪われ、冷却されるが、
地下水(高熱源)の中に設置された採放熱コイル
8により熱つせられる。
In this case, the hot water in the condenser side circulation waterway 15 receives the condensation heat of the refrigerant in the condenser 2 of the cooling cycle system and becomes high temperature, and the hot water with that heat is supplied to the fan coil units 14A and 14B. , the cycle is repeated (reverse return method). On the other hand, in response to the heat released in the condenser 2 of the cooling cycle system, the refrigerant evaporates in the evaporator 5, and the cooling water in the evaporator side circulation channel 7 is deprived of heat and cooled.
It is heated by a heat extraction and radiation coil 8 installed in groundwater (high heat source).

従つて、冬期・暖房時には、地下水(高熱源)
によつて熱を受けた蒸発器側循環水路7の冷却水
の温度が地上の温度に対して相対的に高くなり、
蒸発器5での冷媒の蒸発熱の熱伝達が大きくな
り、蒸発効率が向上する。従つて、冷却サイクル
系における熱移動の効率が上昇し、凝縮器2にお
ける放熱量が大きくなる。このため、凝縮器側循
環水路15の温水の温度上昇が大きくなり、フア
ン・コイル・ユニツト14A,14Bの暖房効率
を向上させることができる。また、この事は同一
の暖房効果を得る場合には、冷却サイクル系の装
置の容量が小さくて良いことになる。
Therefore, in winter and during heating, underground water (high heat source)
The temperature of the cooling water in the evaporator side circulation waterway 7 that has received heat from the ground becomes higher than the ground temperature,
The heat transfer of the heat of evaporation of the refrigerant in the evaporator 5 increases, and the evaporation efficiency improves. Therefore, the efficiency of heat transfer in the cooling cycle system increases, and the amount of heat dissipated in the condenser 2 increases. Therefore, the temperature of the hot water in the condenser side circulation waterway 15 increases, and the heating efficiency of the fan coil units 14A and 14B can be improved. Furthermore, this means that the capacity of the cooling cycle system can be smaller in order to obtain the same heating effect.

以上の如き構成によれば、夏期・冷房時には、
フアン・コイル・ユニツト14A,14Bで室内
の空気を冷却することにより熱を貰つて温度の上
昇した蒸発器側循環水路7の冷却水は、採放熱コ
イル8で地下水により冷却され、フアン・コイ
ル・ユニツト14A,14Bを冷房することがで
きる。従つて、冷却サイクル系の装置の容量を小
さくでき、また、地下水を、地上のビル等の構築
物まで汲み揚げなくても、その熱のみを低熱源と
して利用できる。
According to the above configuration, during summer and air conditioning,
The cooling water in the evaporator side circulation waterway 7, whose temperature has increased due to the heat obtained by cooling the indoor air with the fan coil units 14A and 14B, is cooled by underground water in the heat extraction and radiation coil 8, and is then transferred to the fan coil unit 14A and 14B. Units 14A and 14B can be cooled. Therefore, the capacity of the cooling cycle system can be reduced, and only the heat from underground water can be used as a low-temperature heat source without having to pump the underground water up to structures such as buildings above ground.

また、冬期・暖房時には、地下水(高熱源)に
よつて蒸発器側循環水路7の冷却水の温度が地上
の温度に対して相対的に高くなる。従つて、上述
したように、凝縮器2における放熱量が大きくな
り、凝縮器側循環水路15の温度上昇が大きくな
り、フアン・コイル・ユニツト14A,14Bを
暖房することができる。従つて、地下水を、地上
のビル等の構築物まで汲み揚げなくても、その熱
のみを高熱源として利用できる。
Furthermore, during winter and during heating, the temperature of the cooling water in the evaporator side circulation channel 7 becomes relatively high compared to the temperature on the ground due to underground water (high heat source). Therefore, as described above, the amount of heat dissipated in the condenser 2 increases, the temperature rise in the condenser side circulation waterway 15 increases, and the fan coil units 14A, 14B can be heated. Therefore, the heat alone can be used as a high heat source without pumping groundwater up to structures such as buildings above ground.

要するに、地上の変動温度に対して高低温の状
態となる地下水の熱を採放熱コイル8で拾い、蒸
発器側循環水路7あるいは凝縮器側循環水路15
に循環させ、さらに、直接にあるいは間接にフア
ン・コイル・ユニツト14A,14Bに運んで冷
暖房する。かかる地下水は、地上のビル等の構築
物まで汲み揚げる必要がなく、その熱のみを低熱
源あるいは高熱源として利用できる。この結果、
例えば地下水の如き大規模自然水の汲み揚げが制
限されている場合でも、地下水の熱を熱源として
大規模に利用することができ、ひいては、冷却サ
イクル系の装置の容量を小さくすることができ
る。
In short, the heat of the groundwater, which is in a high and low temperature state with respect to the fluctuating temperature on the ground, is picked up by the heat extraction and radiation coil 8, and is collected by the evaporator side circulation channel 7 or the condenser side circulation channel 15.
It is then directly or indirectly conveyed to the fan coil units 14A and 14B for heating and cooling. Such groundwater does not need to be pumped up to structures such as buildings on the ground, and only its heat can be used as a low- or high-heat source. As a result,
For example, even when pumping up large-scale natural water such as groundwater is restricted, the heat of groundwater can be used on a large scale as a heat source, and as a result, the capacity of cooling cycle equipment can be reduced.

第2図、第3図、第7図は第2発明の実施例を
示す。
FIG. 2, FIG. 3, and FIG. 7 show an embodiment of the second invention.

図において、1′は気体冷媒を圧縮する圧縮機、
2′は凝縮器で、圧縮器1′により圧縮された気体
冷媒を冷却して液化する。3′は受液器、4′は膨
張弁、5′は蒸発器で、液体冷媒を気体冷媒に変
える。上記の圧縮機1′、凝縮器2′、受液器3′、
膨張弁4′、蒸発器5′とが順次冷媒回路6′に配
置され、冷房サイクル系を形成している。
In the figure, 1' is a compressor that compresses gaseous refrigerant;
A condenser 2' cools and liquefies the gaseous refrigerant compressed by the compressor 1'. 3' is a liquid receiver, 4' is an expansion valve, and 5' is an evaporator, which converts liquid refrigerant into gas refrigerant. The above compressor 1', condenser 2', liquid receiver 3',
An expansion valve 4' and an evaporator 5' are sequentially arranged in a refrigerant circuit 6' to form a cooling cycle system.

27は蒸発器側循環水路で、その途中には、採
放熱コイル(採放熱部)28から順番に第2採放
熱部接続用切換バルブ22、冷水ポンプ29、蒸
発器5′が介装されている。そして、蒸発器側循
環水路27は、A′点で2つの冷水路に分岐して
その一方の冷水器27Aには第1Aバルブ(冷水
用バルブ)30A、フアン・コイル・ユニツト3
4A、第3Aバルブ(冷水用バルブ)32Aが順
次介装され、他方の冷水路27Bには、第1Bバ
ルブ(冷水用バルブ)30B、フアン・コイル・
ユニツト34B、第3バルブ(冷水用バルブ)3
2Bが順次介装され、B′点で一方の冷水路27
Aに合流している。また、他方の冷水路27Bか
らC′点でバイパスバルブ27Dを有する分岐冷水
路27Cが分岐し、分岐冷水路27CはD′点で
一方の冷水路27Aに合流している。そして、
D′点の下流の蒸発器側循環水路27は、第1採
放熱部接続用切換バルブ21を経て採放熱コイル
28に戻る。23は蒸発器側循環水路27に介装
した第3切換バルブで、蒸発器側循環水路27の
第2採放熱部接続用切換バルブ22の下流部分と
蒸発器側循環水路27のD′点下流部分を連通・
遮断する。
Reference numeral 27 denotes an evaporator side circulation waterway, in which a switching valve 22 for connecting a second heat extraction and radiation part, a cold water pump 29, and an evaporator 5' are interposed in order from a heat extraction and radiation coil (heat extraction and radiation part) 28. There is. The evaporator side circulation waterway 27 branches into two cold waterways at point A', and one of the water coolers 27A has a 1A valve (chilled water valve) 30A and a fan coil unit 3.
4A and 3A valve (chilled water valve) 32A are installed in sequence, and the other cold water channel 27B is equipped with a 1B valve (cold water valve) 30B, a fan coil,
Unit 34B, third valve (chilled water valve) 3
2B are interposed one after another, and one cold water channel 27 is inserted at point B'.
It joins A. Further, a branch cold water channel 27C having a bypass valve 27D branches from the other cold water channel 27B at point C', and the branch cold water channel 27C joins one cold water channel 27A at point D'. and,
The evaporator side circulation waterway 27 downstream of point D' returns to the heat extraction and radiation coil 28 via the first heat extraction and radiation section connection switching valve 21. Reference numeral 23 denotes a third switching valve installed in the evaporator side circulation waterway 27, which connects the downstream part of the second heat extraction/radiation section connection switching valve 22 of the evaporator side circulation waterway 27 and the point D' downstream of the evaporator side circulation waterway 27. Connect parts/
Cut off.

35は凝縮器側循環水路で、その途中には、採
放熱コイル28から順番に第2採放熱部接続用切
換バルブ22、温水ポンプ36、凝縮器2′が順
次介装されている。そして、凝縮器側循環水路3
5は、E′点で2つの温水路に分岐してその一方の
温水路35Aには第2Aバルブ(温水用バルブ)
31A、フアン・コイル・ユニツト34A、第
4Aバルブ(温水用バルブ)33Aが順次介装さ
れ、他方の温水路35Bには、第2Bバルブ(温
水用バルブ)31B、フアン・コイル・ユニツト
34B、第4Bバルブ(温水用バルブ)33Bが
順次介装され、F′点で一方の温水路35Aに合流
している。上記のフアン・コイル・ユニツト34
A,34Bは、蒸発器5′を通つた冷却水または、
凝縮器2′を通つた温水により室内の空気の冷暖
房を行なう。そして、F′点の下流の凝縮器側循環
水路35は、第1採放熱部接続用切換バルブ21
を経て採放熱コイル28に戻る。
Reference numeral 35 denotes a condenser side circulation waterway, in which a switching valve 22 for connecting the second heat extraction and radiation section, a hot water pump 36, and a condenser 2' are interposed in order from the heat extraction and radiation coil 28. And the condenser side circulation waterway 3
5 branches into two hot water channels at point E', and one of the hot water channels 35A is equipped with a 2A valve (hot water valve).
31A, fan coil unit 34A, No.
A 4A valve (hot water valve) 33A is installed in sequence, and a 2B valve (hot water valve) 31B, a fan coil unit 34B, and a 4B valve (hot water valve) 33B are installed in the other hot water channel 35B in order. It is interposed and joins one hot water channel 35A at point F'. Fan coil unit 34 above
A and 34B are cooling water that has passed through the evaporator 5' or
The indoor air is heated and cooled by hot water passing through the condenser 2'. The condenser side circulation waterway 35 downstream of point F' is connected to the first heat extraction/radiation section connection switching valve 21.
After that, it returns to the heat extraction and radiation coil 28.

また、他方の温水路35BからG点で第4切換
バルブ24を有する分岐温水路35Cが分岐し、
分岐冷水路35CはH点で一方の温水路35Aに
合流している。25は凝縮器側循環水路35に介
装した第5切換バルブで、凝縮器側循環水路35
の第2採放熱部接続用切換バルブ22の下流部分
とH点下流部分とを連通・遮断する。
Further, a branch hot water channel 35C having a fourth switching valve 24 branches from the other hot water channel 35B at point G,
The branched cold water channel 35C joins one of the warm water channels 35A at point H. 25 is a fifth switching valve installed in the condenser side circulation waterway 35;
The downstream part of the switching valve 22 for connecting the second heat extraction/dissipation part and the downstream part of point H are communicated and cut off.

上記の採放熱コイル28は、プレート型構造
(第3図図示)に構成され、第2図に示すスクリ
ーン28A内に組み込まれて地下水の中に設置さ
れ、高熱源または低熱源としての地下水と熱の授
受を行なう。
The heat extraction/dissipation coil 28 has a plate-type structure (as shown in FIG. 3), is installed in the screen 28A shown in FIG. give and receive.

次に、第2発明の実施例の作用を説明する。 Next, the operation of the embodiment of the second invention will be explained.

第8図は夏期・冷房時の状態を示す。 Figure 8 shows the conditions during summer and cooling.

図において、第1Aバルブ30A、第3Aバルブ
32A、第1Bバルブ30B、第3Bバルブ32B
は開いている。第2Aバルブ31A、第4Aバルブ
33A、第2Bバルブ31B、第4Bバルブ33
B、バイパスバルブ27Dは閉じている。従つ
て、フアン・コイル・ユニツト34A,34Bに
対して、蒸発器側循環水路27が連通状態にあ
り、凝縮器側循環水路35は遮断状態にある。ま
た、第3切換バルブ23、第4切換バルブ24は
開状態にあり、第5切換バルブ25は、閉状態に
ある。第1採放熱部接続用切換バルブ21、第2
採放熱部接続用切換バルブ22は、凝縮器側循環
水路35の太い実線で示す経路に連通している。
In the figure, the 1st A valve 30A, the 3rd A valve 32A, the 1B valve 30B, and the 3rd B valve 32B.
is open. 2nd A valve 31A, 4th A valve 33A, 2nd B valve 31B, 4th B valve 33
B, bypass valve 27D is closed. Therefore, the evaporator side circulation waterway 27 is in communication with the fan coil units 34A, 34B, and the condenser side circulation waterway 35 is in a blocked state. Further, the third switching valve 23 and the fourth switching valve 24 are in an open state, and the fifth switching valve 25 is in a closed state. The switching valve 21 for connecting the first heat extraction and radiation part, the second
The heat extraction/dissipation unit connection switching valve 22 communicates with the path shown by the thick solid line of the condenser side circulation waterway 35.

この場合、凝縮器側循環水路の温水は、実線矢
印で示すように、凝縮器2′→第4切換バルブ2
4→第1採放熱部接続用切換バルブ21→放熱コ
イル28→第2採放熱部接続用切換バルブ22→
温水ポンプ36→凝縮器2′のサイクルで循環す
る。
In this case, the hot water in the condenser side circulation channel flows from the condenser 2' to the fourth switching valve 2, as shown by the solid arrow.
4→Switching valve 21 for connecting the first heat extracting and discharging section→Radiating coil 28→Switching valve 22 for connecting the second heat extracting and discharging section→
It circulates in a cycle of hot water pump 36 → condenser 2'.

一方、蒸発器側循環水路27の冷水は、点線矢
印で示すように、蒸発器5′→第1Aバルブ30A
→フアン・コイル・ユニツト34A→第3Aバル
ブ32A→第3切換バルブ23→冷水ポンプ29
→蒸発器5′のサイクルで循環する。そして、蒸
発器側循環水路27の冷水の一部は、A′点で分
岐し、他方の冷水路27Bを通つて第1Bバルブ
30B→フアン・コイル・ユニツト34B→第
3Bバルブ32Bの順序で流れ、B′点で一方の冷
水路27Aに合流している。
On the other hand, the cold water in the evaporator side circulation waterway 27 flows from the evaporator 5' to the 1st A valve 30A as shown by the dotted arrow.
→ Fan coil unit 34A → 3rd A valve 32A → 3rd switching valve 23 → Cold water pump 29
→It circulates in the evaporator 5' cycle. A part of the cold water in the evaporator side circulation waterway 27 branches at point A' and passes through the other cold waterway 27B to the 1st B valve 30B → the fan coil unit 34B → the 1st valve.
3B flows in the order of valve 32B, and merges with one cold water channel 27A at point B'.

従つて、凝縮器側循環水路35の温水は、冷房
サイクル系の凝縮器2′で、冷媒の凝縮によつて
熱が放出され高温になるが、地下水(低熱源)の
中に設置された採放熱コイル28により冷却され
る。従つて、凝縮器2′での冷却効率が向上する。
従つて、冷凍能力が向上し、フアン・コイル・ユ
ニツト34A,34Bの冷房効率を向上させるこ
とができる。この事は同一の暖房効果を得る場合
には、冷却サイクル系の装置の容量が小さくて良
いことになる。一方、上記の冷房サイクル系の凝
縮器2′での熱放出に対して蒸発器5′で冷媒が蒸
発し、蒸発器側循環水路27の冷却水は熱を奪わ
れ、冷却されてフアン・コイル・ユニツト34
A,34Bに戻り、このサイクルを繰り返す。
Therefore, the hot water in the condenser side circulation waterway 35 reaches a high temperature as heat is released by condensation of the refrigerant in the condenser 2' of the cooling cycle system, but the hot water in the condenser side circulation waterway 35 reaches a high temperature due to heat being released by condensation of the refrigerant. It is cooled by the heat radiation coil 28. Therefore, the cooling efficiency in the condenser 2' is improved.
Therefore, the refrigerating capacity is improved, and the cooling efficiency of the fan coil units 34A, 34B can be improved. This means that in order to obtain the same heating effect, the capacity of the cooling cycle system can be smaller. On the other hand, in response to the heat released in the condenser 2' of the cooling cycle system, the refrigerant evaporates in the evaporator 5', and the cooling water in the evaporator side circulation channel 27 is deprived of heat and cooled to the fan coil.・Unit 34
Return to A, 34B and repeat this cycle.

第9図は中間期、冷房時の状態を示し、フア
ン・コイル・ユニツト34A,34Bの冷房負荷
が所望の負荷より小さく、冷房サイクルは使用さ
れず、地下水のみが低熱源として使用される。
FIG. 9 shows the state during cooling during the intermediate period, where the cooling load on the fan coil units 34A and 34B is smaller than the desired load, the cooling cycle is not used, and only ground water is used as a low heat source.

図において、第1Aバルブ30A、第3Aバルブ
32A、第1Bバルブ30B、第3Bバルブ32
B、バイパスバルブ27Dは開いている。第2A
バルブ31A、第4Aバルブ33A、第2Bバルブ
31B、第4Bバルブ33Bは閉じている。従つ
て、フアン・コイル・ユニツト34A,34Bに
対して、蒸発器側循環水路27が連通状態にあ
り、凝縮器側循環水路35は遮断状態にある。ま
た、第3切換バルブ23、第4切換バルブ24、
第5切換バルブ25は、閉状態にある。第1採放
熱部接続用切換バルブ21、第2採放熱部接続用
切換バルブ22は、蒸発器側循環水路27の太い
実線で示す経路に連通している。
In the figure, the 1st A valve 30A, the 3rd A valve 32A, the 1B valve 30B, and the 3rd B valve 32
B, bypass valve 27D is open. 2nd A
The valve 31A, the fourth A valve 33A, the second B valve 31B, and the fourth B valve 33B are closed. Therefore, the evaporator side circulation waterway 27 is in communication with the fan coil units 34A, 34B, and the condenser side circulation waterway 35 is in a blocked state. In addition, a third switching valve 23, a fourth switching valve 24,
The fifth switching valve 25 is in a closed state. The first heat extraction and radiation unit connection switching valve 21 and the second heat extraction and radiation unit connection switching valve 22 communicate with the path of the evaporator side circulation waterway 27 shown by the thick solid line.

この場合、フアン・コイル・ユニツト34A,
34Bで室内の空気を冷却することにより熱を貰
つて温度の上昇した蒸発器側循環水路27の冷却
水は、点線矢印で示すように、採放熱コイル28
で温度一定の地下水(低熱源)により冷却され
て、冷房サイクル系の蒸発器5′を通り(冷却サ
イクルは稼働せず)、再び、フアン・コイル・ユ
ニツト34A,34Bに戻り、室内の空気を冷却
する。従つて、地下水を、地上のビル等の構築物
まで汲み揚げなくても、その熱のみを低熱源とし
て利用できる。
In this case, the fan coil unit 34A,
The cooling water in the evaporator side circulation waterway 27, whose temperature has increased by receiving heat by cooling the indoor air at 34B, is transferred to the heat extraction and radiation coil 28 as shown by the dotted line arrow.
It is cooled by groundwater (low heat source) at a constant temperature, passes through the evaporator 5' of the cooling cycle system (the cooling cycle does not operate), returns to the fan coil units 34A and 34B, and returns to the indoor air. Cooling. Therefore, the heat alone can be used as a low-temperature heat source without pumping groundwater up to structures such as buildings on the ground.

そして、第9図に示す中間期、冷房時の状態に
冷房サイクルを作動させれば、第1発明の実施例
の夏期・冷房時のとき(第4図)と同様に、フア
ン・コイル・ユニツト34A,34Bに供給され
る蒸発器側循環水路27の冷水を、冷房サイクル
系の蒸発器5′のみならず、地下水(低熱源)で
冷却するので、蒸発器5′での冷水の温度下降量
が少なくて済む。従つて、蒸発器5′での冷媒の
蒸発量も少なくなり、冷却サイクル系の装置を小
容量にすることができる。
Then, if the cooling cycle is operated in the mid-season cooling state shown in FIG. Since the cold water in the evaporator side circulation waterway 27 supplied to 34A and 34B is cooled not only by the evaporator 5' of the cooling cycle system but also by ground water (low heat source), the amount of temperature drop of the cold water in the evaporator 5' is reduced. less. Therefore, the amount of refrigerant evaporated in the evaporator 5' is also reduced, and the capacity of the cooling cycle system can be reduced.

第10図は冬期・暖房時の状態を示す。 Figure 10 shows the state during winter/heating.

図において、第1Aバルブ30A、第3Aバルブ
32A、第1Bバルブ30B、第3Bバルブ32B
は閉じている。第2Aバルブ31A、第4Aバルブ
33A、第2Bバルブ31B、第4Bバルブ33
B、バイパスバルブ27Dは開いている。従つ
て、フアン・コイル・ユニツト34A,34Bに
対して、凝縮器側循環水路35が連通状態にあ
り、蒸発器側循環水路27は遮断状態にある。ま
た、第3切換バルブ23、第4切換バルブ24
は、閉状態にあり、第5切換バルブ25は、開状
態にある。第1採放熱部接続用切換バルブ21、
第2採放熱部接続用切換バルブ22は、蒸発器側
循環水路27の太い実線で示す経路に連通してい
る。
In the figure, the 1st A valve 30A, the 3rd A valve 32A, the 1B valve 30B, and the 3rd B valve 32B.
is closed. 2nd A valve 31A, 4th A valve 33A, 2nd B valve 31B, 4th B valve 33
B, bypass valve 27D is open. Therefore, the condenser side circulation waterway 35 is in communication with the fan coil units 34A, 34B, and the evaporator side circulation waterway 27 is in a blocked state. In addition, the third switching valve 23 and the fourth switching valve 24
is in a closed state, and the fifth switching valve 25 is in an open state. First heat extraction/radiation unit connection switching valve 21;
The second heat extraction/radiation section connection switching valve 22 communicates with the path shown by the thick solid line of the evaporator side circulation waterway 27.

この場合、蒸発器側循環水路27の冷水は、点
線矢印で示すように、蒸発器5′→バイパスバル
ブ27D→第1採放熱部接続用切換バルブ21→
放熱コイル28→第2採放熱部接続用切換バルブ
22→冷水ポンプ29→蒸発器5′のサイクルで
循環する。
In this case, the cold water in the evaporator side circulation waterway 27 flows from the evaporator 5' to the bypass valve 27D to the first heat extraction and radiation section connection switching valve 21 as shown by the dotted arrow.
It circulates in a cycle of heat radiation coil 28 → second heat extraction/radiation section connection switching valve 22 → cold water pump 29 → evaporator 5'.

一方、凝縮器側循環水路35の温水は、実線矢
印で示すように、凝縮器2′→E′点→第2Aバルブ
31A→フアン・コイル・ユニツト34A→第
4Aバルブ33A→第5切換バルブ25→温水ポ
ンプ36→凝縮器2′のサイクルで循環する。そ
して、凝縮器側循環水路35の温水の一部は、
E′点で分岐し、他方の温水路35Bを通つて、第
2Bバルブ31B→フアン・コイル・ユニツト3
4B→第4Bバルブ33Bの順序で流れ、F′点で
一方の温水路35Aに合流している。
On the other hand, the hot water in the condenser side circulation waterway 35 flows from the condenser 2' to the E' point to the 2nd A valve 31A to the fan coil unit 34A to the 2nd valve as shown by the solid arrow.
It circulates in a cycle of 4A valve 33A → fifth switching valve 25 → hot water pump 36 → condenser 2'. A part of the hot water in the condenser side circulation waterway 35 is
It branches at point E' and passes through the other hot water channel 35B.
2B valve 31B → fan coil unit 3
It flows in the order of 4B→4th B valve 33B, and merges with one hot water channel 35A at point F'.

従つて、蒸発器側循環水路27の冷却水は、冷
房サイクル系の蒸発器5′で、冷媒の蒸発によつ
て熱が奪われ低温になるが、地下水(高熱源)の
中に設置された採放熱コイル28により温められ
る。従つて、蒸発器5での蒸発効率が向上する。
従つて、冷凍能力が向上し、フアン・コイル・ユ
ニツト34A,34Bの暖房効率を向上させるこ
とができる。この事は同一の冷房効果を得る場合
には、冷却サイクル系の装置の容量が小さくて良
いことになる。一方、上記の冷房サイクル系の蒸
発器5′での冷媒の蒸発に対して凝縮器2′で冷媒
が凝縮し、凝縮器側循環水路35の温水は熱を与
えられ、温められ、フアン・コイル・ユニツト3
4A,34Bに戻り、このサイクルを繰り返す。
Therefore, the cooling water in the evaporator side circulation waterway 27 loses heat through evaporation of the refrigerant in the evaporator 5' of the cooling cycle system and becomes low temperature. It is heated by the heat extraction and radiation coil 28. Therefore, the evaporation efficiency in the evaporator 5 is improved.
Therefore, the refrigerating capacity is improved, and the heating efficiency of the fan coil units 34A, 34B can be improved. This means that in order to obtain the same cooling effect, the capacity of the cooling cycle system can be smaller. On the other hand, in response to the evaporation of the refrigerant in the evaporator 5' of the cooling cycle system, the refrigerant is condensed in the condenser 2', and the hot water in the condenser side circulation waterway 35 is given heat and heated, and the fan coil・Unit 3
Return to 4A and 34B and repeat this cycle.

第11図は暖房時の別の使用方法を示す。 FIG. 11 shows another method of use during heating.

図において、第1Aバルブ30A、第3Aバルブ
32A、第1Bバルブ30B、第3Bバルブ32
B、バイパスバルブ27Dは閉じている。第2A
バルブ31A、第4Aバルブ33A、第2Bバルブ
31B、第4Bバルブ33Bは開いている。従つ
て、フアン・コイル・ユニツト34A,34Bに
対して、凝縮器側循環水路35が連通状態にあ
り、蒸発器側循環水路27は遮断状態にある。ま
た、第3切換バルブ23、第4切換バルブ24、
第5切換バルブ25は閉状態にある。第1採放熱
部接続用切換バルブ21、第2採放熱部接続用切
換バルブ22は、凝縮器側循環水路35の太い実
線で示す経路に連通している。
In the figure, the 1st A valve 30A, the 3rd A valve 32A, the 1B valve 30B, and the 3rd B valve 32
B, bypass valve 27D is closed. 2nd A
The valve 31A, the fourth A valve 33A, the second B valve 31B, and the fourth B valve 33B are open. Therefore, the condenser side circulation waterway 35 is in communication with the fan coil units 34A, 34B, and the evaporator side circulation waterway 27 is in a blocked state. In addition, a third switching valve 23, a fourth switching valve 24,
The fifth switching valve 25 is in a closed state. The first heat extraction and radiation unit connection switching valve 21 and the second heat extraction and radiation unit connection switching valve 22 communicate with a path of the condenser side circulation waterway 35 shown by a thick solid line.

かかる構成によれば、凝縮器側循環水路35の
温水は、凝縮器2′→フアン・コイル・ユニツト
34A,34B→採放熱コイル28→凝縮器2′
のサイクルで循環する。
According to this configuration, the hot water in the condenser side circulation waterway 35 is transferred from the condenser 2' to the fan coil units 34A and 34B to the heat extraction and radiation coil 28 to the condenser 2'.
It circulates in cycles.

従つて、フアン・コイル・ユニツト34A,3
4Bで室内の空気を暖房することにより熱を奪
れ、温度の下降した凝縮器側循環水路35の温水
を、採放熱コイル28で地下水(高熱源)により
温め、さらに、冷房サイクル系の凝縮器2′で凝
縮熱を与えて温め、再び、フアン・コイル・ユニ
ツト34A,34Bに循環させることができる。
この場合において、フアン・コイル・ユニツト3
4A,34Bの暖房負荷が所望の負荷より小さい
場合は、凝縮器側循環水路35の温水を、凝縮器
2′を通すだけ(冷却サイクルは稼働せず)で、
採放熱コイル28のみにより地下水(高熱源)で
熱つすることもできる。
Therefore, the fan coil unit 34A,3
4B removes heat by heating the indoor air, and the hot water in the condenser side circulation waterway 35 whose temperature has dropped is heated by underground water (high heat source) in the heat extraction and radiation coil 28, and then heated in the condenser of the cooling cycle system. Heat of condensation is applied at 2' to warm the air, and the air can be circulated again to the fan coil units 34A and 34B.
In this case, fan coil unit 3
If the heating load of 4A, 34B is smaller than the desired load, simply pass the hot water from the condenser side circulation waterway 35 through the condenser 2' (the cooling cycle does not operate).
It is also possible to heat the room using underground water (a high heat source) using only the heat extraction and radiation coil 28.

以上の如き構成によれば、第1採放熱部接続用
切換バルブ21、第2採放熱部接続用切換バルブ
22、第3切換バルブ23、第4切換バルブ2
4、第5切換バルブ25を切り換えることにより
蒸発器側循環水路27あるいは凝縮器側循環水路
35を採放熱コイル28に接続することができ
る。従つて、第1発明の実施例の効果に加えて、
夏期・冷房時、低温の状態の地下水の熱を採放熱
コイル28で拾うことにより、凝縮器側循環水路
35に冷水を流して、凝縮器2′の冷却効率を向
上させて、フアン・コイル・ユニツト34A,3
4Bを冷房し、また、冬期・暖房時、採放熱コイ
ル28を暖房のための高熱源として利用すること
ができる。
According to the above configuration, the first heat extraction and radiation section connection switching valve 21, the second heat extraction and radiation section connection switching valve 22, the third switching valve 23, and the fourth switching valve 2
4. By switching the fifth switching valve 25, the evaporator side circulation waterway 27 or the condenser side circulation waterway 35 can be connected to the heat extraction and radiation coil 28. Therefore, in addition to the effects of the embodiment of the first invention,
During summer and air conditioning, the heat of the groundwater in a low-temperature state is picked up by the heat extraction and radiation coil 28, and cold water is flowed into the condenser side circulation channel 35, improving the cooling efficiency of the condenser 2', and the fan coil Unit 34A, 3
4B, and the heat extraction/dissipation coil 28 can be used as a high heat source for heating in winter or during heating.

第2発明の実施例の効果を総合すれば、第1発
明の実施例と同様に、地上の変動温度に対して高
低温の状態となる地下水の熱を採放熱コイル28
で拾い、蒸発器側循環水路27あるいは凝縮器側
循環水路35に循環させ、さらに、直接にあるい
は間接にフアン・コイル・ユニツト34A,34
Bに運んで冷暖房する。かかる地下水は、地上の
ビル等の構築物まで汲み揚げる必要がなく、その
熱のみを低熱源あるいは高熱源として利用でき
る。この結果、例えば地下水の如き大規模自然水
の汲み揚げが制限されている場合でも、地下水の
熱を熱源として大規模に利用することができ、ひ
いては、冷却サイクル系の装置の容量を小さくす
ることができる。
To summarize the effects of the embodiment of the second invention, as in the embodiment of the first invention, heat from the underground water, which is in a state of high and low temperature with respect to fluctuations in temperature on the ground, can be collected by the heat extraction and radiation coil 28.
, and circulate it to the evaporator side circulation waterway 27 or the condenser side circulation waterway 35, and then directly or indirectly to the fan coil units 34A, 34.
Take it to B and heat it up. Such groundwater does not need to be pumped up to structures such as buildings on the ground, and only its heat can be used as a low- or high-heat source. As a result, even when pumping up large-scale natural water such as groundwater is restricted, the heat of groundwater can be used on a large scale as a heat source, and the capacity of cooling cycle equipment can be reduced. I can do it.

なお、上記の実施例においては、採放熱コイル
8,28は、プレート型構造(第3図図示)に構
成されているが、これに限定されることなく、例
えばフインチユーブ型構造あるいはチユーブ型構
造に構成することもできる。
In the above embodiment, the heat extraction/dissipation coils 8 and 28 have a plate-type structure (as shown in FIG. 3), but are not limited to this, and may have a finch-tube structure or a tube-type structure, for example. It can also be configured.

また、上記の実施例においては、採放熱コイル
8,28は地下水の中に設置されているが、これ
に限定されることなく、河川、湖水、海の如き大
規模自然水の中に設置することもできる。
Further, in the above embodiment, the heat extraction and radiation coils 8 and 28 are installed in underground water, but the present invention is not limited to this, and they may be installed in large-scale natural water such as rivers, lakes, and the sea. You can also do that.

さらに、上記の実施例においては、冷却水また
は温水を通してフアン・コイル・ユニツト14
A,14B,34A,34Bにより室内の冷暖房
を行なつていたが、これに代えて空調器を使用す
ることもできる。
Furthermore, in the embodiments described above, cooling or hot water is passed through the fan coil unit 14.
A, 14B, 34A, and 34B were used to cool and heat the room, but an air conditioner may be used instead.

〔発明の効果〕 以上述べたように、第1発明に係る冷暖房装置
によれば、夏期・冷房時には、温度の上昇した蒸
発器側循環水路の冷却水は、採放熱コイルで地下
水により冷却され、空調器またはフアン・コイ
ル・ユニツトを冷房することができる。従つて、
冷却サイクル系の装置の容量を小さくでき、ま
た、地下水を、地上のビル等の構築物まで汲み揚
げなくても、その熱のみを低熱源として利用でき
る。
[Effects of the Invention] As described above, according to the air conditioning system according to the first invention, during summer and cooling, the cooling water in the evaporator side circulation waterway whose temperature has increased is cooled by underground water in the heat extraction and radiation coil. An air conditioner or fan coil unit can be used to cool the air. Therefore,
The capacity of cooling cycle equipment can be reduced, and the heat from underground water can be used as a low-temperature heat source without having to pump it up to structures such as buildings above ground.

冬期・暖房時には、蒸発器の蒸発効率を向上さ
せることにより、凝縮器における放熱量を大きく
し、空調器またはフアン・コイル・ユニツトを暖
房することができる。従つて、地下水を、地上の
ビル等の構築物まで汲み揚げなくても、その熱の
みを高熱源として利用できる。
In the winter or during heating, by improving the evaporation efficiency of the evaporator, the amount of heat released by the condenser can be increased and the air conditioner or fan coil unit can be heated. Therefore, the heat alone can be used as a high heat source without pumping groundwater up to structures such as buildings above ground.

第2発明に係る冷暖房装置によれば、第1発明
に係る冷暖房装置により生じた効果に加えて、夏
期・冷房時、凝縮器側循環水路に温水を流して、
凝縮器の冷却効率を向上させて、空調器またはフ
アン・コイル・ユニツトを冷房することができ、
また、冬期・暖房時、採放熱コイルを空調器また
はフアン・コイル・ユニツトの暖房のための直接
の高熱源として利用することができる。
According to the air-conditioning device according to the second invention, in addition to the effects produced by the air-conditioning device according to the first invention, hot water is allowed to flow through the condenser-side circulation channel during summer/cooling.
It can improve the cooling efficiency of the condenser and cool the air conditioner or fan coil unit.
Furthermore, during winter and heating, the heat extraction and radiation coil can be used as a direct high heat source for heating an air conditioner or fan coil unit.

以上述べたことを総合すると、第1発明に係る
冷暖房装置及び第2発明に係る冷暖房装置によれ
ば、例えば地下水の如き大規模自然水を地上のビ
ル等の構築物まで導くことが制限されている場合
でも、かかる地下水を、地上のビル等の構築物ま
で導かず、その熱のみを低熱源あるいは高熱源と
して利用でき、この結果、大規模自然水の熱を熱
源として大規模に利用することができ、ひいて
は、冷却サイクル系の装置の容量を小さくするこ
とができる効果を奏する。
To summarize the above, according to the air-conditioning device according to the first invention and the air-conditioning device according to the second invention, it is restricted that large-scale natural water such as groundwater can be guided to structures such as buildings on the ground. Even in the case of underground water, it is possible to use only its heat as a low or high heat source without guiding it to structures such as buildings on the ground, and as a result, the heat of large-scale natural water can be used on a large scale as a heat source. As a result, the capacity of the cooling cycle system can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1発明の実施例に係る地下水利用に
よる冷暖房装置の系統図、第2図はスクリーンの
斜視図、第3図は採放熱コイルの斜視図、第4図
は同冷暖房装置の夏期・冷房時における使用状態
説明図、第5図は同冷暖房装置の中間期・冷房時
における使用状態説明図、第6図は同冷暖房装置
の冬期・暖房時における使用状態説明図、第7図
は第2発明の実施例に係る地下水利用による冷暖
房装置の系統図、第8図は同冷暖房装置の夏期・
冷房時における使用状態説明図、第9図は同冷暖
房装置の中間期・冷房時における使用状態説明
図、第10図は同冷暖房装置の冬期・暖房時にお
ける使用状態説明図、第11図は暖房時の別の使
用方法を示す使用状態説明図である。 1,1′……圧縮機、2,2′……凝縮器、5,
5′……蒸発器、6,6′……冷媒回路、7,27
……蒸発器側循環水路、8,28……採放熱コイ
ル、10A,30A……第1Aバルブ、10B,
30B……第1Bバルブ、11A,31A……第
2Aバルブ、11B,31B……第2Bバルブ、1
2A,32A……第3Aバルブ、12B,32B
……第3Bバルブ、13A,33A……第4Aバル
ブ、13B,33B……第4Bバルブ、14A,
14B,34A,34B……フアン・コイル・ユ
ニツト、15,35……凝縮器側循環水路、2
1,22……採放熱部接続用切換バルブ、23…
…第3切換バルブ、25……第5切換バルブ。
Fig. 1 is a system diagram of a heating and cooling system using groundwater according to an embodiment of the first invention, Fig. 2 is a perspective view of a screen, Fig. 3 is a perspective view of a heat extraction/dissipation coil, and Fig. 4 is a diagram of the heating and cooling system during summer.・Figure 5 is an illustration of the usage status of the heating and cooling equipment during cooling. Figure 6 is an illustration of the usage status of the heating and cooling equipment during winter and heating. FIG. 8 is a system diagram of a heating and cooling system using groundwater according to an embodiment of the second invention.
Fig. 9 is an explanatory diagram of the usage state of the air-conditioning device during the cooling period, Fig. 10 is an explanatory diagram of the usage state of the air-conditioning equipment during the winter season and heating time, and Fig. 11 is an illustration of the usage state of the air-conditioning device during the heating period. It is a usage state explanatory diagram showing another usage method at the time. 1, 1'... Compressor, 2, 2'... Condenser, 5,
5'...Evaporator, 6,6'...Refrigerant circuit, 7,27
... Evaporator side circulation waterway, 8, 28 ... Heat extraction and radiation coil, 10A, 30A ... 1st A valve, 10B,
30B... 1st B valve, 11A, 31A... 1st
2A valve, 11B, 31B...2nd B valve, 1
2A, 32A...3rd A valve, 12B, 32B
... 3rd B valve, 13A, 33A... 4th A valve, 13B, 33B... 4th B valve, 14A,
14B, 34A, 34B...Fan coil unit, 15, 35...Condenser side circulation waterway, 2
1, 22...Switching valve for connecting the heat extraction/dissipation part, 23...
...Third switching valve, 25...Fifth switching valve.

Claims (1)

【特許請求の範囲】 1 圧縮機、凝縮機、受液器、膨張弁、蒸発器に
より冷房サイクル系を形成し、蒸発器が一部とし
て配された蒸発器側循環水路及び凝縮器が一部と
して配された凝縮器側循環水路の途中に、共通す
る空調器またはフアン・コイル・ユニツトを介装
し、蒸発器側循環水路及び凝縮器側循環水路の途
中にそれぞれ設けた冷水用バルブ及び温水用バル
ブの開閉により、蒸発器側循環水路の冷水または
凝縮器側循環水路の温水を空調器またはフアン・
コイル・ユニツトに導いて冷暖房を行なう冷暖房
装置において、蒸発器側循環水路に高熱源または
低熱源としての大規模自然水と熱の授受を行なう
採放熱部を介装したことを特徴とする大規模自然
水利用による冷暖房装置。 2 圧縮機、凝縮器、受液器、膨張弁、蒸発器に
より冷房サイクル系を形成し、蒸発器が一部とし
て配された蒸気器側循環水路及び凝縮器が一部と
して配された凝縮器側循環水路の途中に、共通す
る空調器またはフアン・コイル・ユニツトを介装
し、蒸発器側循環水路及び凝縮器側循環水路の途
中にそれぞれ設けた冷水用バルブ及び温水用バル
ブの開閉により、蒸発器側循環水路の冷水または
凝縮器側循環水路の温水を空調器またはフアン・
コイル・ユニツトに導いて冷暖房を行なう冷暖房
装置において、蒸発器側循環水路及び凝縮器側循
環水路の途中に、高熱源または低熱源としての大
規模自然水と熱の授受を行なう採放熱部を、採放
熱部接続用切換バルブを介して共通に介装し、さ
らに、蒸発器側循環水路及び凝縮器側循環水路の
途中に採放熱部への冷却水または温水の連通・遮
断を行なう切換バルブをそれぞれ設けたことを特
徴とする大規模自然水利用による冷暖房装置。
[Scope of Claims] 1. A cooling cycle system is formed by a compressor, a condenser, a liquid receiver, an expansion valve, and an evaporator, and the evaporator side circulation waterway and the condenser are part of the evaporator. A common air conditioner or fan coil unit is installed in the middle of the condenser side circulation waterway, and cold water valves and hot water valves are installed in the middle of the evaporator side circulation waterway and the condenser side circulation waterway. By opening and closing the valve, cold water in the evaporator side circulation channel or hot water in the condenser side circulation channel is supplied to the air conditioner or fan.
A large-scale air-conditioning system that performs air-conditioning and heating by leading to a coil unit, characterized in that a heat extraction and radiation section that exchanges heat with large-scale natural water as a high heat source or low heat source is interposed in the evaporator side circulation waterway. A heating and cooling system that uses natural water. 2 A cooling cycle system is formed by a compressor, a condenser, a liquid receiver, an expansion valve, and an evaporator, and a steamer-side circulation waterway in which the evaporator is part and a condenser in which the condenser is part. By installing a common air conditioner or fan coil unit in the middle of the side circulation waterway, and opening and closing the cold water valve and hot water valve installed in the middle of the evaporator side circulation waterway and the condenser side circulation waterway, respectively, The cold water in the evaporator side circulation waterway or the hot water in the condenser side circulation waterway is routed to an air conditioner or fan.
In a heating and cooling system that performs air conditioning and heating by leading to a coil unit, a heat collecting and discharging section that exchanges heat with large-scale natural water as a high heat source or a low heat source is installed in the middle of the evaporator side circulation waterway and the condenser side circulation waterway. A switching valve for connecting the heat extraction/dissipation section is installed in common, and a switching valve is also installed in the middle of the evaporator side circulation channel and the condenser side circulation channel to connect/cut off the cooling water or hot water to the heat extraction/dissipation section. A heating and cooling system that utilizes large-scale natural water is characterized by the installation of each.
JP62148855A 1987-06-15 1987-06-15 Space cooling and heating apparatus using massive natural water Granted JPS63315848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62148855A JPS63315848A (en) 1987-06-15 1987-06-15 Space cooling and heating apparatus using massive natural water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62148855A JPS63315848A (en) 1987-06-15 1987-06-15 Space cooling and heating apparatus using massive natural water

Publications (2)

Publication Number Publication Date
JPS63315848A JPS63315848A (en) 1988-12-23
JPH0418213B2 true JPH0418213B2 (en) 1992-03-27

Family

ID=15462247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62148855A Granted JPS63315848A (en) 1987-06-15 1987-06-15 Space cooling and heating apparatus using massive natural water

Country Status (1)

Country Link
JP (1) JPS63315848A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2681439B2 (en) * 1993-04-06 1997-11-26 昭己 洲澤 Building heating / cooling device
JP5645905B2 (en) * 2012-11-19 2014-12-24 株式会社ウェルシィ Chemical liquid storage and supply apparatus, and groundwater purification treatment apparatus and method

Also Published As

Publication number Publication date
JPS63315848A (en) 1988-12-23

Similar Documents

Publication Publication Date Title
EP0134015B1 (en) Space cooling and heating and hot water supplying apparatus
JP5868498B2 (en) Heat pump equipment
US6615602B2 (en) Heat pump with supplemental heat source
US6018954A (en) Heat pump system and method for air-conditioning
WO2013046720A1 (en) Hot-water-supplying, air-conditioning system
JPS63210577A (en) Integrated heat pump and hot-water supply device
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
CN110226068B (en) Waste heat recovery type hybrid heat pump system
KR200411589Y1 (en) Heat pump system for cooling and heating
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP2684814B2 (en) Air conditioner
JPH0418213B2 (en)
KR100389269B1 (en) Heat pump system
JP2727754B2 (en) Ice making equipment
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
JPH04257661A (en) Two stage compression refrigerating cycle device
JP2007147133A (en) Air conditioner
KR19990075021A (en) Heat pump device
JP2924460B2 (en) Air conditioner
JPH04292749A (en) Two-stage compression refrigeration cycle device
JPH09257379A (en) Air-conditioner facility and method for operating the same
JPS6018895B2 (en) Solar heat pump air conditioner
JPH0412383B2 (en)
JPH06101934A (en) Air-conditioning apparatus
JPS6029559A (en) Heat pump type refrigerator