JPH0418187B2 - - Google Patents

Info

Publication number
JPH0418187B2
JPH0418187B2 JP60142629A JP14262985A JPH0418187B2 JP H0418187 B2 JPH0418187 B2 JP H0418187B2 JP 60142629 A JP60142629 A JP 60142629A JP 14262985 A JP14262985 A JP 14262985A JP H0418187 B2 JPH0418187 B2 JP H0418187B2
Authority
JP
Japan
Prior art keywords
connecting pipe
heat exchange
refrigerant
ultra
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60142629A
Other languages
Japanese (ja)
Other versions
JPS625000A (en
Inventor
Hiroyuki Yamakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP14262985A priority Critical patent/JPS625000A/en
Publication of JPS625000A publication Critical patent/JPS625000A/en
Publication of JPH0418187B2 publication Critical patent/JPH0418187B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液体ヘリウムのような超低温冷媒を
貯蔵するための超低温冷媒容器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cryogenic refrigerant container for storing a cryogenic refrigerant such as liquid helium.

[従来の技術] 一般に知られているように、例えば液体ヘリウ
ムを作るためには大量のエネルギが必要とされ
る。そのため通常その貯蔵は超低温冷媒容器に入
れて行なわれている。この種の超低温冷媒容器と
しては従来添附図面の第5図に示す多層シールド
容器や第6図に示す容器が提案されており、第5
図に示す多層シールド容器はスーパーインシユレ
イシヨン(Super Insulation)法と呼ばれる断熱
法を用いたもので、内筒Aと外筒Bとの間に熱伝
導性の悪い膜を巻いたシールド板Cが設けられて
いる。第6図に示す容器は液体窒素の顕熱を利用
したガスシールド容器である。このようなスーパ
ーインシユレイシヨンやガスシールドによる断熱
法によつて超低温冷媒容器への熱の侵入を相当小
さく抑えることができるようになつてきた。この
ような従来技術の一例として実開昭52−6476号公
報に記載のものを挙げることができる。
[Prior Art] As is generally known, a large amount of energy is required to produce, for example, liquid helium. Therefore, it is usually stored in cryogenic refrigerant containers. As this type of ultra-low temperature refrigerant container, a multilayer shield container shown in FIG. 5 of the attached drawings and a container shown in FIG.
The multilayer shield container shown in the figure uses a heat insulation method called the super insulation method, in which a shield plate C is wrapped with a film with poor thermal conductivity between the inner cylinder A and the outer cylinder B. is provided. The container shown in FIG. 6 is a gas shield container that utilizes the sensible heat of liquid nitrogen. It has become possible to considerably suppress the intrusion of heat into the ultra-low temperature refrigerant container by such heat insulation methods such as super insulation and gas shielding. An example of such a conventional technique is the one described in Japanese Utility Model Application Publication No. 52-6476.

[発明が解決しようとする課題] ところで、このような従来提案されてきた超低
温冷媒容器では、内筒と外筒との接続パイプを通
つて熱の侵入が最も大きくなる。そこでこの接続
パイプを通つての熱の侵入を小さくするために普
通ヘリウムの顕熱が利用されている。すなわち、
蒸発した冷たいヘリウムが接続パイプをゆつくり
と上昇していく間にパイプ壁と熱交換して、侵入
してきた熱を外部へ捨てることにより熱の侵入量
を少なく抑えることができる。しかしながら、こ
の接続パイプ内のヘリウムはほとんど静止してい
るので、パイプ壁との熱交換は効率よく行なわれ
ない。
[Problems to be Solved by the Invention] Incidentally, in such conventionally proposed cryogenic refrigerant containers, the largest amount of heat enters through the connecting pipe between the inner cylinder and the outer cylinder. Therefore, the sensible heat of helium is normally used to reduce the amount of heat entering through this connecting pipe. That is,
As the evaporated cold helium slowly rises up the connecting pipe, it exchanges heat with the pipe wall and dissipates the incoming heat to the outside, thereby minimizing the amount of heat intruding. However, since the helium in this connecting pipe is almost stationary, heat exchange with the pipe wall is not efficient.

この熱交換の効率をよくするために、第6図に
示すように接続パイプDの上部に蓋Eをし、接続
パイプDに細いパイプFを巻き付け、この細いパ
イプFに内筒A内から蒸発してきた冷たいガスを
流す。これにより細いパイプFを上昇してくるに
従つて冷たいガスは熱交換して温度上昇してゆ
き、外部に放出される。
In order to improve the efficiency of this heat exchange, as shown in Figure 6, the top of the connecting pipe D is covered with a lid E, and a thin pipe F is wrapped around the connecting pipe D. Let the cold gas flow out. As a result, as the cold gas ascends through the narrow pipe F, the temperature of the cold gas increases through heat exchange, and is then discharged to the outside.

しかしながら、このような手段を用いても接続
パイプにおける熱交換は十分ではなく、温度の低
い蒸発ガスが外部に捨られている。そのため折角
の冷熱が熱の侵入防止に効率よく利用されていな
い。
However, even if such means are used, heat exchange in the connecting pipe is not sufficient, and low-temperature evaporated gas is thrown away to the outside. As a result, much needed cold energy is not efficiently used to prevent heat from entering.

そこで、本発明の目的は、上記のような従来の
超低温冷媒容器のもつ欠点を解決するため、いわ
ゆるイオン風を利用して内筒内からの蒸発ガスを
内筒と外筒との間にのびる接続パイプ壁に積極的
に接触させて接続パイプ壁における熱交換を効率
よく行なうようにした超低温冷媒容器を提供する
ことにある。
Therefore, an object of the present invention is to solve the above-mentioned drawbacks of the conventional ultra-low temperature refrigerant container by using a so-called ion wind to spread evaporated gas from inside the inner cylinder between the inner cylinder and the outer cylinder. It is an object of the present invention to provide a cryogenic refrigerant container which is brought into positive contact with the wall of a connecting pipe and efficiently exchanges heat on the wall of the connecting pipe.

ところで、イオン風は、第7図に示すように針
状または細線状のプラス電極と対向する面に高電
圧を印加すると、この電極と上記面との間に存在
する気体がイオン化され、このイオンは電場によ
つてマイナス極側に加速され、そしてイオンと中
性の気体分子との衝突により気体全体もマイナス
極側に流れる現象である。
By the way, in ion wind, when a high voltage is applied to the surface facing a needle-shaped or thin wire-shaped positive electrode, the gas existing between this electrode and the above-mentioned surface is ionized, and these ions is accelerated toward the negative pole by an electric field, and the collision between ions and neutral gas molecules causes the entire gas to flow toward the negative pole.

このイオン風によつてマイナス極側への気体の
熱伝達が促進されることは知られており、例えば
N22ガスの場合の熱伝達特性を第8図に示す(A.
Yabe etal:Proc.6th Int.Heat Transfer
Couf.、3(1978)171参照)。第8図において縦軸
は熱伝達率を表わし、横軸は放電電流を表わし、
イオン風の速さ、大きさに比例する量である。す
なわち、放電電流が大きくなるにつれて熱伝達率
が大きくなる。
It is known that this ionic wind promotes the heat transfer of the gas to the negative electrode side, for example.
The heat transfer characteristics in the case of N22 gas are shown in Figure 8 (A.
Yabe etal:Proc.6th Int.Heat Transfer
Couf., 3 (1978) 171). In Figure 8, the vertical axis represents the heat transfer coefficient, the horizontal axis represents the discharge current,
This amount is proportional to the speed and size of the ion wind. That is, as the discharge current increases, the heat transfer coefficient increases.

[課題を解決するための手段] 上記の目的を達成するために、本発明によれ
ば、内筒と外筒との間に断熱材を挿置し、上記内
筒と外筒とを連接した接続パイプを通つて冷媒の
出し入れを行なうようにした超低温冷媒容器にお
いて、接続パイプの全長に渡つて複数の熱交換促
進室が設けられ、各熱交換促進室には接続パイプ
の壁面に近接させて電極が設けられ、各隣接した
熱交換促進室はそれの外周部において狭い通路を
介して互いに連通し、そして接続パイプは高圧電
源の負端子にまた各熱交換促進室に設けた電極は
高圧電源の正端子にそれぞれ接続され、内筒内の
冷媒から発生した冷媒ガスを上記接続パイプの壁
面に向つて流れさせるイオン風を各熱交換促進室
内に発生させるように構成される。
[Means for Solving the Problems] In order to achieve the above object, according to the present invention, a heat insulating material is inserted between the inner cylinder and the outer cylinder, and the inner cylinder and the outer cylinder are connected. In an ultra-low temperature refrigerant container in which refrigerant is taken in and out through a connecting pipe, a plurality of heat exchange promoting chambers are provided along the entire length of the connecting pipe, and each heat exchange promoting chamber is placed close to the wall surface of the connecting pipe. An electrode is provided, each adjacent heat exchange promoting chamber communicates with each other through a narrow passage at its outer periphery, and the connecting pipe is connected to the negative terminal of the high voltage power source, and the electrode provided in each heat exchange promoting chamber is connected to the high voltage power source. are connected to the positive terminals of the connecting pipes, respectively, and are configured to generate ionic wind in each heat exchange promotion chamber that causes refrigerant gas generated from the refrigerant in the inner cylinder to flow toward the wall surface of the connecting pipe.

各熱交換促進室は接続パイプの外周囲に設けら
れたドーナツ状容器で構成されか、または代わり
に接続パイプの内部に間隔をおいて配置された絶
縁体板で画定され得る。
Each heat exchange promoting chamber may be constituted by a donut-shaped container provided around the outer periphery of the connecting pipe, or alternatively may be defined by insulator plates spaced within the connecting pipe.

[作用] このように構成した本発明による超低温冷媒容
器においては、各熱交換促進室に設けた電極を正
極とし接続パイプを負極として高電圧を印加する
ことにより、電極と接続パイプの壁面との間に存
在する気体はイオン化され、生成されたイオンは
負極側の接続パイプの壁面に向つて加速され、接
続パイプの壁面に向うイオン風が各熱交換促進室
内に発生される。こうして発生されたイオン風は
接続パイプ中または別個に設けた細いパイプ中の
冷媒ガスを接続パイプ壁へ向つて流ささせ、これ
により冷媒ガスと接続パイプ壁との間で効率よく
熱交換が行なわれている。なおイオン風を発生さ
せるために各電極と接続パイプとに供給されるこ
とになる電流は放電を起さずにイオン風を発生す
るように選定される。
[Function] In the ultra-low temperature refrigerant container according to the present invention configured as described above, the electrode provided in each heat exchange promotion chamber is used as a positive electrode, the connecting pipe is used as a negative electrode, and a high voltage is applied, thereby creating a connection between the electrode and the wall surface of the connecting pipe. The gas existing between them is ionized, the generated ions are accelerated toward the wall of the connection pipe on the negative electrode side, and an ion wind directed toward the wall of the connection pipe is generated in each heat exchange promotion chamber. The ion wind generated in this way causes the refrigerant gas in the connecting pipe or a thin pipe provided separately to flow toward the connecting pipe wall, thereby efficiently exchanging heat between the refrigerant gas and the connecting pipe wall. ing. Note that the current to be supplied to each electrode and the connecting pipe to generate the ion wind is selected so as to generate the ion wind without causing an electric discharge.

[実施例] 以下添附図面を参照して本発明の実施例につい
て説明する。
[Examples] Examples of the present invention will be described below with reference to the accompanying drawings.

第1図及び第2図には本発明の一実施例を示
し、この実施例では熱交換促進室は接続パイプの
全長にわたつてその外周囲に五段に設けられてい
る。第1図及び第2図において、1は容器の内筒
の一部を、2は外筒の一部を表わし、内筒1と外
筒2との間に詰められる断熱材は図面では省略さ
れている。3は内筒1と外筒2との間にのびる接
続パイプで、内筒1内の冷媒を出し入れするため
のものであり、この中にトランスフアチユーブ等
(図示してない)が差し込まれる。接続パイプ3
の上端には蓋4が取付けられている。5は熱交換
促進部で、接続パイプ3の外周壁に装着され、熱
交換促進室を構成しているドーナツ状容器6及び
各ドーナツ状容器6を通つて内筒1から外筒2の
外部へのび内筒1内の冷媒から蒸発した冷媒ガス
を通す細いパイプ7を有し、各ドーナツ状容器6
内には第2図に示すように、高圧電流導入端子線
8を支持体としてリング状の細線9が接続パイプ
3の外周囲に近接して配置されている。各細いパ
イプ7の径は内部を通る冷媒ガスの逆流を防止す
るためできるだけ細いのが好ましいが、適当な冷
媒ガス流を確保できるように選ばれ得る。また各
細いパイプ7は同じ理由で第2図に示すようにド
ーナツ状容器6の冷媒ガス流の弱い部位すなわち
外方部位に連結されている。各高圧電流導入端子
線8の端子10と接続パイプ3に接続された端子
11とには図示した極性で高電圧が印加される。
これにより、各ドーナツ状容器6内において第2
図に矢印で示すように接続パイプ3の外周壁に向
つてイオン風が発生され、冷媒ガスによる熱交換
が促進される。この場合イオン風を接続パイプ3
の外周壁に集中させるためには、リング状の細線
9を接続パイプ3の外周壁に近づけて配置すれば
よいが、異常放電の生じない程度離す必要があ
る。
1 and 2 show an embodiment of the present invention, in which heat exchange promoting chambers are provided in five stages around the outer circumference of the connecting pipe over the entire length thereof. In Figures 1 and 2, 1 represents a part of the inner cylinder of the container, 2 represents a part of the outer cylinder, and the heat insulating material packed between the inner cylinder 1 and the outer cylinder 2 is omitted in the drawings. ing. Reference numeral 3 denotes a connecting pipe extending between the inner cylinder 1 and the outer cylinder 2, which is used to take in and take out the refrigerant in the inner cylinder 1, into which a transfer tube or the like (not shown) is inserted. Connection pipe 3
A lid 4 is attached to the upper end of the holder. Reference numeral 5 denotes a heat exchange promoting section, which is attached to the outer circumferential wall of the connecting pipe 3 and passes through the donut-shaped container 6 and each donut-shaped container 6 constituting the heat exchange promoting chamber from the inner tube 1 to the outside of the outer tube 2. Each donut-shaped container 6 has a thin pipe 7 through which refrigerant gas evaporated from the refrigerant in the inner tube 1 passes.
Inside, as shown in FIG. 2, a ring-shaped thin wire 9 is arranged close to the outer periphery of the connecting pipe 3 using the high-voltage current introduction terminal wire 8 as a support. The diameter of each narrow pipe 7 is preferably as small as possible to prevent backflow of refrigerant gas therethrough, but may be selected to ensure adequate refrigerant gas flow. For the same reason, each thin pipe 7 is connected to a portion of the donut-shaped container 6 where the refrigerant gas flow is weak, that is, an outer portion, as shown in FIG. A high voltage is applied to the terminal 10 of each high voltage current introducing terminal line 8 and the terminal 11 connected to the connecting pipe 3 with the polarity shown.
As a result, in each donut-shaped container 6, the second
As shown by arrows in the figure, ion wind is generated toward the outer peripheral wall of the connecting pipe 3, promoting heat exchange by the refrigerant gas. In this case, connect the ionic wind pipe 3
In order to concentrate on the outer circumferential wall of the connecting pipe 3, the ring-shaped thin wire 9 may be placed close to the outer circumferential wall of the connecting pipe 3, but it is necessary to separate it to an extent that does not cause abnormal discharge.

第3図及び第4図には別の実施例を示し、第1
図及び第2図の実施例の容器に対応する部分は同
じ符号で示す。この実施例では、熱交換促進部1
2は接続パイプ3内に設けられ、すなわち、接続
パイプ3の中心にリード線13が設けられ、この
リード線13にリング状の細線14とテフロンや
セラミツク等の絶縁体板15とが図示したように
間隔を置いて交互に装着されている。各絶縁体板
15は接続パイプ3とリード線13との電気的接
触を防止すると共に、接続パイプ3の内壁と共に
熱交換促進室を構成し上下での熱交換部における
冷媒ガスの混入を防止して熱交換効率の低下を防
ぐ働きをする。従つて、各絶縁体板15と接続パ
イプ3とのすき間は冷媒ガスの流れを妨げない程
度にできるだけ狭くされる。また各リング状の細
線14は第1図及び第2図の実施例の場合と同様
にイオン風を接続パイプ3の内壁に集中させるた
めできるだけ近接させて位置決めされる。リード
線13および接続パイプ3はそれぞれ第4図に示
すように正端子16及び負端子17に接続され、
これらの端子には高電圧が印加される。これによ
つて、接続パイプ3内においてその内壁に向うイ
オン風が発生され、接続パイプ3内を上昇してい
く冷媒ガスと接続パイプ3の内壁との間の熱交換
を促進させる。
FIGS. 3 and 4 show another embodiment, and the first
Parts corresponding to the containers of the embodiment of FIG. 2 and FIG. 2 are designated by the same reference numerals. In this embodiment, the heat exchange promoting section 1
2 is provided inside the connecting pipe 3, that is, a lead wire 13 is provided at the center of the connecting pipe 3, and a ring-shaped thin wire 14 and an insulating plate 15 made of Teflon, ceramic, etc. are attached to this lead wire 13 as shown in the figure. They are installed alternately at intervals. Each insulator plate 15 prevents electrical contact between the connecting pipe 3 and the lead wire 13, and together with the inner wall of the connecting pipe 3 constitutes a heat exchange promotion chamber to prevent refrigerant gas from entering the upper and lower heat exchange sections. It works to prevent a decrease in heat exchange efficiency. Therefore, the gap between each insulator plate 15 and the connecting pipe 3 is made as narrow as possible without interfering with the flow of refrigerant gas. Further, the ring-shaped thin wires 14 are positioned as close as possible to each other in order to concentrate the ion wind on the inner wall of the connecting pipe 3, as in the embodiments of FIGS. 1 and 2. The lead wire 13 and the connecting pipe 3 are connected to a positive terminal 16 and a negative terminal 17, respectively, as shown in FIG.
A high voltage is applied to these terminals. As a result, an ionic wind is generated within the connecting pipe 3 toward the inner wall thereof, and heat exchange between the refrigerant gas rising within the connecting pipe 3 and the inner wall of the connecting pipe 3 is promoted.

なお、図示実施例では正の電極としてリング状
の細線を用いているが、放射状にのびた針状電極
を用いてもよい。また第3図及び第4図の実施例
において、各絶縁体板15を接続パイプ3の内壁
に接触するように構成し、各絶縁体板15に冷媒
ガスを通す穴を設けてもよい。さらに、必要なら
ば、第1図及び第2図の実施例と第3図及び第4
図の実施例とを組合せて接続パイプ3の外壁と内
壁の両方から熱交換を促進させるようにすること
もできる。
In the illustrated embodiment, a ring-shaped thin wire is used as the positive electrode, but a radially extending needle-like electrode may also be used. In the embodiments shown in FIGS. 3 and 4, each insulator plate 15 may be configured to contact the inner wall of the connecting pipe 3, and each insulator plate 15 may be provided with holes through which the refrigerant gas passes. Furthermore, if necessary, the embodiments of FIGS. 1 and 2 and the embodiments of FIGS.
It is also possible to combine the embodiments shown in the figures to promote heat exchange from both the outer and inner walls of the connecting pipe 3.

[発明の効果] 以上説明してきたように、本発明の超低温冷媒
容器においては、接続パイプの壁面に向つて上記
内筒内の冷媒から発生した冷媒ガスを流れさせる
イオン風を発生し、冷媒ガスによる接続パイプの
壁面の熱交換を促進させるように構成しているの
で、内筒内の冷媒から蒸発した冷媒ガスよる接続
パイプの壁面の熱交換が効果的に行なわれ、それ
により接続パイプを介しての熱の侵入量を低減さ
せることができる。その結果、内部の冷媒の蒸発
損失を小さく抑えることができる。また、イオン
風は非常に小さな電流エネルギで発生させること
ができるので、多量のエネルギを消費して製造さ
れる液体ヘリウムのような冷媒の蒸発損失を小さ
くできることは省エネルギの観点からも極めて重
要なことである。
[Effects of the Invention] As explained above, in the ultra-low temperature refrigerant container of the present invention, an ionic wind is generated that causes the refrigerant gas generated from the refrigerant in the inner cylinder to flow toward the wall surface of the connecting pipe, and the refrigerant gas Since the structure is configured to promote heat exchange on the wall surface of the connecting pipe by the refrigerant gas in the inner cylinder, heat exchange on the wall surface of the connecting pipe by the refrigerant gas evaporated from the refrigerant in the inner cylinder is effectively carried out, and thereby It is possible to reduce the amount of heat that enters. As a result, the evaporation loss of the internal refrigerant can be kept small. In addition, since ion wind can be generated with very small current energy, it is extremely important from an energy saving perspective to be able to reduce the evaporation loss of refrigerants such as liquid helium, which require a large amount of energy to produce. That's true.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略図、第2
図は第1図の装置の要部の拡大部分断面図、第3
図は本発明の別の実施例を示す概略図、第4図は
第2図の装置の要部の拡大部分断面図、第5,6
図はそれぞれ従来の異なつた超低温冷媒容器を示
す概略図、第7図はイオン風の発生原理を示す概
略図、第8図はイオン風によるN22ガスでの熱伝
達特性を示すグラフである。 図中、1:内筒、2:外筒、3:接続パイプ、
6:熱交換促進室、7:細いパイプ、9:リング
状の細線、14:リング状の細線、15:絶縁体
板。
FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG.
The figure is an enlarged partial sectional view of the main part of the device in Figure 1,
The figure is a schematic diagram showing another embodiment of the present invention, FIG. 4 is an enlarged partial sectional view of the main part of the device in FIG.
The figures are schematic diagrams showing different conventional ultra-low temperature refrigerant containers, Figure 7 is a schematic diagram showing the principle of generation of ion wind, and Figure 8 is a graph showing heat transfer characteristics in N22 gas by ion wind. In the figure, 1: inner cylinder, 2: outer cylinder, 3: connection pipe,
6: heat exchange promotion chamber, 7: thin pipe, 9: ring-shaped thin wire, 14: ring-shaped thin wire, 15: insulator plate.

Claims (1)

【特許請求の範囲】 1 内筒と外筒との間に断熱材料を挿置し、上記
内筒と外筒とを連接した接続パイプを通つて冷媒
の出し入れを行なうようにした超低温冷媒容器に
おいて、上記接続パイプの全長にわたつて複数の
熱交換促進室を設け、各熱交換促進室には上記接
続パイプの壁面に近接させて電極を設け、各隣接
した熱交換促進室がそれの外周部において狭い通
路を介して互いに連通し、上記接続パイプを高圧
電源の負端子にまた各熱交換促進室に設けた電極
を高圧電源の正端子にそれぞれ接続し、上記内筒
内の冷媒から発生した冷媒ガスを上記接続パイプ
の壁面に向つて流れさせるイオン風を各熱交換促
進室内に発生させるように構成したことを特徴と
する超低温冷媒容器。 2 各熱交換促進室が接続パイプの外周囲に設け
られたドーナツ状容器で構成され、上記接続パイ
プの外壁面に向つて冷媒ガスを流れさせるように
した特許請求の範囲第1項に記載の超低温冷媒容
器。 3 各熱交換促進室が接続パイプの内部に間隔を
おいて配置された絶縁体板で画定され、上記接続
パイプの内壁面に向つて冷媒を流れさせるように
した特許請求の範囲第1項に記載の超低温冷媒容
器。
[Claims] 1. An ultra-low temperature refrigerant container in which a heat insulating material is inserted between an inner cylinder and an outer cylinder, and refrigerant is taken in and out through a connecting pipe connecting the inner cylinder and the outer cylinder. , a plurality of heat exchange promotion chambers are provided along the entire length of the connection pipe, each heat exchange promotion chamber is provided with an electrode close to the wall surface of the connection pipe, and each adjacent heat exchange promotion chamber is connected to its outer periphery. The connecting pipes are connected to the negative terminal of the high-voltage power source, and the electrodes provided in each heat exchange promotion chamber are connected to the positive terminal of the high-voltage power source. An ultra-low temperature refrigerant container characterized in that it is configured to generate ionic wind in each heat exchange promotion chamber that causes refrigerant gas to flow toward the wall surface of the connecting pipe. 2. According to claim 1, each heat exchange promoting chamber is constituted by a donut-shaped container provided around the outer periphery of the connecting pipe, and the refrigerant gas is made to flow toward the outer wall surface of the connecting pipe. Ultra-low temperature refrigerant container. 3. According to claim 1, each heat exchange promoting chamber is defined by an insulating plate disposed at intervals inside the connecting pipe, and the refrigerant is caused to flow toward the inner wall surface of the connecting pipe. Ultra-low temperature refrigerant container as described.
JP14262985A 1985-07-01 1985-07-01 Vessel for super low temperature refrigerant Granted JPS625000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14262985A JPS625000A (en) 1985-07-01 1985-07-01 Vessel for super low temperature refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14262985A JPS625000A (en) 1985-07-01 1985-07-01 Vessel for super low temperature refrigerant

Publications (2)

Publication Number Publication Date
JPS625000A JPS625000A (en) 1987-01-10
JPH0418187B2 true JPH0418187B2 (en) 1992-03-27

Family

ID=15319783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14262985A Granted JPS625000A (en) 1985-07-01 1985-07-01 Vessel for super low temperature refrigerant

Country Status (1)

Country Link
JP (1) JPS625000A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526476B2 (en) * 1972-12-13 1977-02-22
JPS59229188A (en) * 1983-06-09 1984-12-22 Akutoronikusu Kk Hollow metal pipe type heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565318Y2 (en) * 1975-06-30 1981-02-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526476B2 (en) * 1972-12-13 1977-02-22
JPS59229188A (en) * 1983-06-09 1984-12-22 Akutoronikusu Kk Hollow metal pipe type heat exchanger

Also Published As

Publication number Publication date
JPS625000A (en) 1987-01-10

Similar Documents

Publication Publication Date Title
JPH0418187B2 (en)
US3428241A (en) High vacuum pump
JPH11257867A (en) Power supply system for vacuum furnace
JP3178119B2 (en) Gas-cooled current leads for superconducting coils
JP3000080B1 (en) Water-cooled electrode
JP2000072410A (en) Ozone generation device
JP2842459B2 (en) Cooled high-performance explosive generator
JP2576590B2 (en) Ozone reactor
JPS6324686A (en) Gas laser
JPS58201231A (en) Ion source device
JPS6167972A (en) Current conductor
JPS62135272A (en) Cooling device for heating element
JPH07142268A (en) High frequency induction heating transformer
JPH041483B2 (en)
KR19990018079A (en) Plasma arc torch
JPS607834Y2 (en) water treatment device
JPH0610714Y2 (en) Metal vapor laser oscillator
CN114314519A (en) Discharge body, electric field device and ozone generator
JPS58184775A (en) Heat insulating container for superconductive magnet
JPH05335144A (en) Superconductor system and current lead conductor
JPH07262948A (en) Bucket type ion source apparatus
JPS61118937A (en) Ion source
JPS57194436A (en) Electrode construction of discharge tube
JPH0374033A (en) Rotary anode x-ray tube
JPH05243623A (en) Superconducting device