JPH04181534A - Magnetooptical recording medium and method - Google Patents

Magnetooptical recording medium and method

Info

Publication number
JPH04181534A
JPH04181534A JP31332390A JP31332390A JPH04181534A JP H04181534 A JPH04181534 A JP H04181534A JP 31332390 A JP31332390 A JP 31332390A JP 31332390 A JP31332390 A JP 31332390A JP H04181534 A JPH04181534 A JP H04181534A
Authority
JP
Japan
Prior art keywords
film
layer
ferromagnetic
temperature
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31332390A
Other languages
Japanese (ja)
Other versions
JP3000385B2 (en
Inventor
Motoharu Tanaka
元治 田中
Atsuyuki Watada
篤行 和多田
Toshiaki Tokita
才明 鴇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of JPH04181534A publication Critical patent/JPH04181534A/en
Application granted granted Critical
Publication of JP3000385B2 publication Critical patent/JP3000385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To achieve higher reliability by arranging a recording layer comprising a double-layer film which is laminated with a memory layer comprising a ferromagnetic film exhibiting vertical magnetic anisotropy and an auxiliary layer that exhibits an anti-ferromagnetic phase at a room temperature and a ferromagnetic phase at a higher temperature than the room temperature to present a specified relationship between Curie temperatures of the two layers. CONSTITUTION:A recording medium is provided with a protective film 2 on a transparent support 1 and a ferromagnetic film 3 exhibiting vertical magnetic anisotropy thereon. An anti-ferromagnetic film 4 is provided on the film as exhibiting an anti-ferromagnetic phase at a room temperature and a ferromagnetic phase at a higher temperature than the room temperature with the generation of a magnetic phase transision and a protective film 5 is provided thereon. When Curie temperature of the ferromagnetic film 3 is represented by TC2, it is necessary to satisfy a relation of TC1<TC2. With such an arrangement, a magnetiooptical recording medium can be provided which allows overwriting with easy designing of a medium along with excellent preservation stability and higher reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオーバーライト可能な光磁気記録媒体及び光磁
気記録方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an overwritable magneto-optical recording medium and a magneto-optical recording method.

〔従来の技術及び発明が解決しようとする課題〕近年、
書き換え可能な光記録媒体として、磁気光学効果を利用
した光磁気記録媒体が精力的に研究開発され、一部では
実用化されるに至っている。
[Problems to be solved by conventional techniques and inventions] In recent years,
As rewritable optical recording media, magneto-optical recording media that utilize the magneto-optical effect have been actively researched and developed, and some have even been put into practical use.

この光磁気記録媒体は大容量高密度記録、非接触記録再
生、アクセスの容易さ等の利点に加え、オーバーライト
(重ね書き)が可能という点で文書情報ファイル、ビデ
オ・静止画ファイル、コンピュータ用メモリ等への利用
が期待されている。光磁気記録媒体を磁気ディスクと同
等もしくはそれ以上の性能を持った記録媒体とするため
には5いくつかの技術的課題があり、その中の主要なも
のの1つに、オーバーライト技術がある。現在提案され
ているオーバーライト技術は、記録の方法により磁界変
調方式と光変調方式(マルチビーム方式、2層膜方式等
)に大別される。
This magneto-optical recording medium has the advantages of large-capacity, high-density recording, non-contact recording and playback, and ease of access, as well as the ability to overwrite, making it suitable for document information files, video/still image files, and computers. It is expected to be used for memory, etc. In order to make a magneto-optical recording medium a recording medium with performance equal to or better than that of a magnetic disk, there are several technical issues, and one of the major ones is overwriting technology. Currently proposed overwriting techniques are broadly classified into magnetic field modulation methods and optical modulation methods (multi-beam method, two-layer film method, etc.) depending on the recording method.

磁界変調方式は記録情報に応じて印加磁界の極性を反転
させて記録を行う方式である。この方式では、磁界の反
転を高速で行わなくてはならないため、浮上タイプの磁
気ヘッドを用いる必要があり、媒体交換が困難である。
The magnetic field modulation method is a method in which recording is performed by reversing the polarity of the applied magnetic field depending on the recorded information. In this method, since the magnetic field must be reversed at high speed, it is necessary to use a floating type magnetic head, making it difficult to exchange the medium.

一方、光変調方式は記録情報に応じて照射レーザビーム
をオン・オフあるいは強度変調させて記録させて記録を
行う方式である。この方式のうちマルチビーム方式は、
2〜3個のレーザビームを用い、磁界の方向を1回転毎
に反転させてトランク毎に記録/消去を行う擬似オーバ
ーライト方式であるが、装置構成が複雑化し、コストア
ップを招くなどの欠点を有している。また、2層膜方式
は光磁気記録媒体の記録層を2層膜とし、オーバーライ
トを達成しようとするもので2例えば特開昭62−17
5948号公報等に開示されている。同公報に記載され
ている方式は、例えばTbFeからなるメモリ層とTb
FeCoからなる補助層との2層膜の記録層を備えた光
磁気記録媒体を用い、初期化を行った後、外部磁界の印
加とパワーの異なるレーザビームの照射によりオーバー
ライトを実現しようとするものである。すなわち、この
方式では、記録に先立ち予め初期化用磁界により補助層
の磁化を一方向に揃え、高出力レーザビームを照射して
媒体温度Tを” >TC2(T1.2は補助層のキュリ
ー温度)なる温度迄昇温させ、記録用磁界(初期化用磁
界と反対方向)を印加して補助層の磁化を反転させ、媒
体が冷却される際にその磁化をメモリ層に転写させるこ
とにより記録を行い、また、低出力レーザビームを照射
して媒体温度をTC,<T<TC2(TClはメモリ層
のキュリー温度)なる温度迄昇温させ、補助層の磁化方
向をメモリ層に転写させることにより消去を行う。その
ため、この方式では、媒体設計が難しい、媒体の保管時
等の外部からの磁界の影響を受けやすい等の問題があっ
た。
On the other hand, the optical modulation method is a method in which recording is performed by turning on/off or modulating the intensity of the irradiated laser beam depending on the recording information. Among these methods, the multi-beam method is
This is a pseudo-overwrite method that uses two to three laser beams and reverses the direction of the magnetic field every rotation to record/erase on each trunk, but it has drawbacks such as complicating the device configuration and increasing costs. have. In addition, the two-layer film method uses a two-layer film as the recording layer of a magneto-optical recording medium to achieve overwriting.
It is disclosed in Japanese Patent No. 5948 and the like. The system described in the publication includes, for example, a memory layer made of TbFe and a TbFe layer.
Using a magneto-optical recording medium with a two-layer recording layer and an auxiliary layer made of FeCo, after initialization, overwriting is attempted by applying an external magnetic field and irradiating with a laser beam of different power. It is something. That is, in this method, prior to recording, the magnetization of the auxiliary layer is aligned in one direction using an initializing magnetic field, and a high-power laser beam is irradiated to adjust the medium temperature T (T1.2 is the Curie temperature of the auxiliary layer). ), apply a recording magnetic field (in the opposite direction to the initialization magnetic field) to reverse the magnetization of the auxiliary layer, and as the medium cools, the magnetization is transferred to the memory layer. and irradiate with a low-power laser beam to raise the medium temperature to TC, < T < TC2 (TCl is the Curie temperature of the memory layer), and transfer the magnetization direction of the auxiliary layer to the memory layer. Therefore, with this method, there are problems such as difficulty in medium design and susceptibility to the influence of external magnetic fields when the medium is stored.

本発明は以上のような従来技術の欠点を解消し、信頼性
が高く、媒体構成が簡単な単一レーザビームでオーバー
ライトできる光磁気記録媒体及び光磁気記録方法を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art and provide a magneto-optical recording medium and a magneto-optical recording method that are highly reliable, have a simple medium configuration, and can be overwritten with a single laser beam. .

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明によれば、垂直磁気異
方性を示す強磁性膜からなるメモリ層と、室温で反強磁
性膜を示し室温より高い温度で磁気相転移を生じて強磁
性相を示す反強磁性膜からなる補助層とを積層した2層
膜からなり、かつ、メモリ層のキュリー温度をTCl、
補助層のキュリー温度をTC2としたときにTC1〈T
C2なる関係を満足する記録層を有することを特徴とす
る光磁気記録媒体が提供される。
In order to achieve the above object, the present invention provides a memory layer made of a ferromagnetic film exhibiting perpendicular magnetic anisotropy, and a memory layer that is an antiferromagnetic film at room temperature and undergoes a magnetic phase transition at a temperature higher than room temperature to become ferromagnetic. It consists of a two-layer film laminated with an auxiliary layer made of an antiferromagnetic film showing a phase, and the Curie temperature of the memory layer is TCl,
When the Curie temperature of the auxiliary layer is TC2, TC1<T
A magneto-optical recording medium is provided which is characterized by having a recording layer that satisfies the relationship C2.

また、本発明によれば、垂直磁気異方性を示す強磁性膜
からなるメモリ層と、室温で反強磁性膜を示し室温より
高い温度で磁気相転移を生じて強磁性相を示す反強磁性
膜からなる補助層と、メモリ層と補助層との間の交換結
合力を調整するために両層間に介在する中間層とからな
り、かつ、メモリ層のキュリー温度をTC1.補助層の
キュリー温度をTC2としたときにTC、<T。2なる
関係を満足する記録層を有することを特徴とする光磁気
記録媒体が提供される。
Further, according to the present invention, there is provided a memory layer made of a ferromagnetic film exhibiting perpendicular magnetic anisotropy, and an antiferromagnetic film that is an antiferromagnetic film at room temperature and exhibits a ferromagnetic phase by causing a magnetic phase transition at a temperature higher than room temperature. It consists of an auxiliary layer made of a magnetic film and an intermediate layer interposed between the memory layer and the auxiliary layer to adjust the exchange coupling force between the two layers, and the Curie temperature of the memory layer is set to TC1. When the Curie temperature of the auxiliary layer is TC2, TC<T. A magneto-optical recording medium is provided which is characterized by having a recording layer that satisfies the following two relationships.

さらに、本発明によれば、上記の光磁気記録媒体を用い
、記録時には媒体温度が補助層のキュリー温度TC2付
近迄昇温するような高いパワーのレーザビームを照射す
るとともに外部磁界Herを印加し、消去時には媒体温
度がメモリ層のキュリー温度TCl付近迄昇温するよう
な低いパワーのレーザビームを照射するとともに記録時
と同じ外部磁界Herを印加し、かつ、補助層の磁化を
一方向に揃える初期化を、記録あるいは消去後の媒体温
度降下時に初期化用磁界Hin iを用いて行うことを
特徴とするオーバーライト可能な光磁気記録方法が提供
される。
Furthermore, according to the present invention, the magneto-optical recording medium described above is used, and during recording, a high-power laser beam is irradiated to raise the medium temperature to around the Curie temperature TC2 of the auxiliary layer, and an external magnetic field Her is applied. During erasing, a low power laser beam is irradiated to raise the medium temperature to around the Curie temperature TCl of the memory layer, and the same external magnetic field Her as during recording is applied, and the magnetization of the auxiliary layer is aligned in one direction. An overwritable magneto-optical recording method is provided, which is characterized in that initialization is performed using an initialization magnetic field H i when the medium temperature drops after recording or erasing.

以下本発明を図面に基づき詳述する。The present invention will be explained in detail below based on the drawings.

本発明の光磁気記録媒体(請求項1の記録媒体)は記録
層が垂直磁気異方性を示す強磁性膜からなるメモリ層と
、室温で反強磁性膜を示し室温より高い温度で磁気相転
移を生じて強磁性相を示す反強磁性膜とを積層してなる
。第1図にこのような光磁気記録媒体の一構成例を示す
。この記録媒体は、ガラス、プラスチック、セラミック
スなどからなる透明支持体l上にSi3N4、Sin、
 SiO□などからなる保護膜2(膜厚100A〜50
0OA)を設け、その上に垂直磁気異方性を示す強磁性
膜3(膜厚100A〜5000A)を設け、その上に室
温で反強磁性膜を示し室温より温度を高くすると磁気相
転移を生じて強磁性相を示す反強磁性膜4(膜厚100
A−1000OA)を設け、さらにその上にSi3N4
、Sin、 5i02などからなる保護膜5(膜厚10
0A−500OA)を設けて構成される。各膜はスパッ
タ法、蒸着法、イオンブレーティング法等により形成す
ることができる。強磁性膜3は例えばTb−Fe、Gd
−Fe、Dy−Fe、Gd−Tb−Fe、Tb−Fe−
Co 、 Gd−Fe−Co 、 Dy−F e−Co
 、 Tb−Dy−Fe−Co 、 Gd−Tb−Fe
−Goなどの希土類−遷移金属系アモルファス膜、ある
いはMn−B i 、 Mn−Cu−B i 、 Co
スピネルフェライトBaフェライトなどの多結晶膜によ
り構成することができる。反強磁性膜4は例えばMn2
Sb、Mn□−,5bYx(Y=Cr、Ti、V等)を
用いて構成することができる。
The magneto-optical recording medium of the present invention (the recording medium of claim 1) has a recording layer comprising a memory layer made of a ferromagnetic film exhibiting perpendicular magnetic anisotropy, and a memory layer consisting of a ferromagnetic film exhibiting perpendicular magnetic anisotropy, and an antiferromagnetic film exhibiting an antiferromagnetic film at room temperature and a magnetic phase at a temperature higher than room temperature. It is formed by laminating an antiferromagnetic film that undergoes a transition and exhibits a ferromagnetic phase. FIG. 1 shows an example of the structure of such a magneto-optical recording medium. This recording medium is made of Si3N4, Sin, etc. on a transparent support made of glass, plastic, ceramics, etc.
Protective film 2 made of SiO
0OA), a ferromagnetic film 3 (film thickness 100A to 5000A) exhibiting perpendicular magnetic anisotropy is provided thereon, and an antiferromagnetic film 3 (film thickness 100A to 5000A) exhibiting perpendicular magnetic anisotropy is provided thereon, and an antiferromagnetic film is formed on top of it at room temperature, and a magnetic phase transition occurs when the temperature is raised above room temperature. Antiferromagnetic film 4 (thickness: 100 mm) exhibiting a ferromagnetic phase
A-1000OA), and furthermore, Si3N4
, Sin, 5i02, etc. (film thickness 10
0A-500OA). Each film can be formed by a sputtering method, a vapor deposition method, an ion blating method, or the like. The ferromagnetic film 3 is made of, for example, Tb-Fe, Gd
-Fe, Dy-Fe, Gd-Tb-Fe, Tb-Fe-
Co, Gd-Fe-Co, Dy-Fe-Co
, Tb-Dy-Fe-Co, Gd-Tb-Fe
- Rare earth-transition metal-based amorphous films such as Go, or Mn-B i , Mn-Cu-B i , Co
It can be constructed from a polycrystalline film such as spinel ferrite Ba ferrite. The antiferromagnetic film 4 is made of, for example, Mn2.
It can be constructed using Sb, Mn□-, 5bYx (Y=Cr, Ti, V, etc.).

これら強磁性膜3及び反強磁性膜4は第2図に示す如き
熱磁気特性を有している必要がある。また、強磁性膜3
のキュリー温度をTCl、反強磁性膜4のキュリー温度
をTC2とするとTCr<TC2という関係を満足する
必要がある。
These ferromagnetic film 3 and antiferromagnetic film 4 must have thermomagnetic properties as shown in FIG. In addition, the ferromagnetic film 3
If the Curie temperature of the antiferromagnetic film 4 is TCl, and the Curie temperature of the antiferromagnetic film 4 is TC2, it is necessary to satisfy the relationship TCr<TC2.

次に、上記光磁気記録媒体を用いた光磁気記録方法につ
いて説明する。
Next, a magneto-optical recording method using the above magneto-optical recording medium will be explained.

記録は、高いパワーのレーザビームを記録すべき部分に
照射して媒体温度を反強磁性膜4のキュリー温度TC2
付近迄上げるとともに、外部磁界Hewを印加して行う
。当該記録すべき部分の磁化は通常の媒体駆動状態にお
いて強磁性膜3が上向き(または下向き)で反強磁性膜
4が見かけ上ゼロであったものが、高いパワーのレーザ
ビーム照射によりTCZ付近迄昇温するため強磁性膜3
では磁化が消失し、反強磁性膜4では上向きの大きさが
小さい磁化となる。そしてこの時、外部磁界Hexが下
向きに印加されていることからその磁化は反転され、下
向きとなり、この下向きの磁化は、冷却の過程でTCI
付近になったとき強磁性膜3の方へ転写され、そのまま
保持される。このとき反強磁性膜4の磁化は室温に戻る
と反強磁性膜になるため見かけ上の磁化はゼロとなるが
、アンチフェロ的な結合が存在しているため、外部から
大きな磁界が加わっても反転することはなく安定であり
、また室温においては反強磁性膜4の磁化が強磁性膜3
の磁化に影響を与えることがないので、信頼性が向上す
る。
For recording, a high-power laser beam is irradiated onto the area to be recorded to adjust the medium temperature to the Curie temperature TC2 of the antiferromagnetic film 4.
At the same time, the external magnetic field Hew is applied. The magnetization of the area to be recorded is such that the ferromagnetic film 3 is facing upward (or downward) and the antiferromagnetic film 4 is apparently zero under normal medium driving conditions, but it is changed to near the TCZ by irradiation with a high power laser beam. Ferromagnetic film 3 to increase temperature
Then, the magnetization disappears, and the antiferromagnetic film 4 becomes magnetized with a small upward magnitude. At this time, since the external magnetic field Hex is applied downward, its magnetization is reversed and becomes downward, and this downward magnetization is transferred to the TCI during the cooling process.
When it reaches the vicinity, it is transferred to the ferromagnetic film 3 and held as it is. At this time, the magnetization of the antiferromagnetic film 4 becomes an antiferromagnetic film when the temperature returns to room temperature, so the apparent magnetization becomes zero, but since antiferromagnetic coupling exists, a large magnetic field is applied from the outside. is stable without being reversed, and at room temperature the magnetization of the antiferromagnetic film 4 is the same as that of the ferromagnetic film 3.
Since it does not affect the magnetization of the magnet, reliability is improved.

なお、第3図(りには記録後の降温時における磁化状態
が示しである。
Note that FIG. 3 shows the magnetization state when the temperature is lowered after recording.

消去は、低いパワーのレーザビームを消去すべき部分に
照射して媒体温度を強磁性膜3のキュリー温度TCl付
近進上げるとともに、外部磁界Hexを印加して行う(
第3図(b))。媒体温度がTC、付近になるとあらか
じめ初期化されて上向きになっている反強磁性膜4の磁
化の大きさは下向きになっている強磁性膜3の磁化の大
きさより大きくなる(反強磁性膜4の保磁力HCZの大
きさは外部磁界Hexの大きさより大)ため、反強磁性
膜4の磁化が強磁性膜4に転写され、強磁性膜3の磁化
が上向きとなり、消去がなされる。
Erasing is performed by irradiating the area to be erased with a low power laser beam to raise the medium temperature near the Curie temperature TCl of the ferromagnetic film 3, and applying an external magnetic field Hex (
Figure 3(b)). When the medium temperature approaches TC, the magnitude of magnetization of the antiferromagnetic film 4, which has been initialized in advance and faces upward, becomes larger than the magnitude of magnetization of the ferromagnetic film 3, which faces downward (antiferromagnetic film Since the magnitude of the coercive force HCZ of 4 is larger than the magnitude of the external magnetic field Hex, the magnetization of the antiferromagnetic film 4 is transferred to the ferromagnetic film 4, the magnetization of the ferromagnetic film 3 is directed upward, and erasing is performed.

反強磁性膜4の磁化の初期化は、記録/消去後の媒体温
度降下時に、すなわち媒体温度がTC1以下(相転移温
度よりは上)の時に、第3図(a)に示すように、初期
化用磁界Hini(印加方向は外部磁界Newとは反対
の方向)を用いて反強磁性膜4の磁化を上向きに揃える
ことにより行う。
The magnetization of the antiferromagnetic film 4 is initialized as shown in FIG. 3(a) when the medium temperature drops after recording/erasing, that is, when the medium temperature is below TC1 (above the phase transition temperature). This is done by aligning the magnetization of the antiferromagnetic film 4 upward using the initialization magnetic field Hini (the direction of application is opposite to the external magnetic field New).

また、再生は媒体温度がTCl以下となるパワーレベル
のレーザビームを照射することにより行われる。
Further, reproduction is performed by irradiating a laser beam with a power level that makes the medium temperature lower than TCl.

次に本発明による別のタイプ光磁気記録媒体(請求項2
の記録媒体)について説明する。この光磁気記録媒体は
、記録層が垂直磁気異方性を示す強磁性膜からなるメモ
リ層と、室温で反強磁性膜を示し室温より高い温度で磁
気相転移を生じて強磁性相を示す反強磁性膜と、その間
に両層の交換結合力を調整する中間層を設けてなる。第
4図にこのような光磁気記録媒体の一構成例を示す。こ
の記録媒体は、第1図と同様の透明支持体l上に保護膜
2を設け、その上に垂直磁気異方性を示す強磁性膜3を
設け、その上に強磁性膜3と反強磁性膜4との間の交換
結合力を調整するための中間層6を設け、その上に室温
で反強磁性膜を示し室温より温度を高くすると磁気相転
移を生じて強磁性相を示す反強磁性膜4を設け、さらに
その上に保護膜5を設けて構成される。中間層6以外の
各膜は第1図のものと同様に構成することができる。中
間層6は強磁性膜3及び反強磁性膜4との間の交換結合
力を調整するために設けられるもので、その材料として
は、これら磁性膜3,4を劣化させないもので、非磁性
材料か面内磁気異方性をもつ磁性材料が好ましい。具体
的には、このような材料としては、Si、An、^g、
^u、Cu、Fe、Co、Ni、Cr、5i−N、AQ
−N、 Fe−N等を挙げることができる。中間層6の
膜厚は、薄すぎると両磁性層3,4間に作用する交換結
合力が大きくなって大きな初期化用磁界HIn+が必要
となるので好ましくなく、厚すぎると両磁性層3.4間
の交換結合力が小さくなりすぎ記録、消去に支障をきた
すので、数A−100A程度が適当である。
Next, another type of magneto-optical recording medium according to the present invention (claim 2
(recording medium) will be explained. This magneto-optical recording medium has a memory layer in which the recording layer is made of a ferromagnetic film exhibiting perpendicular magnetic anisotropy, and an antiferromagnetic film at room temperature, which undergoes a magnetic phase transition and exhibits a ferromagnetic phase at temperatures higher than room temperature. It consists of an antiferromagnetic film and an intermediate layer therebetween that adjusts the exchange coupling force between both layers. FIG. 4 shows an example of the structure of such a magneto-optical recording medium. In this recording medium, a protective film 2 is provided on a transparent support l similar to that shown in FIG. An intermediate layer 6 is provided to adjust the exchange coupling force with the magnetic film 4, and an antiferromagnetic film is provided on the intermediate layer 6 to adjust the exchange coupling force with the magnetic film 4, and an antiferromagnetic film is formed thereon at room temperature, and when the temperature is raised above room temperature, a magnetic phase transition occurs and the antiferromagnetic film exhibits a ferromagnetic phase. It is constructed by providing a ferromagnetic film 4 and further providing a protective film 5 thereon. Each film other than the intermediate layer 6 can be constructed in the same manner as that shown in FIG. The intermediate layer 6 is provided to adjust the exchange coupling force between the ferromagnetic film 3 and the antiferromagnetic film 4, and is made of a non-magnetic material that does not deteriorate the magnetic films 3 and 4. Preferably, the material is a magnetic material having in-plane magnetic anisotropy. Specifically, such materials include Si, An, ^g,
^u, Cu, Fe, Co, Ni, Cr, 5i-N, AQ
-N, Fe-N, etc. can be mentioned. If the thickness of the intermediate layer 6 is too thin, the exchange coupling force acting between the two magnetic layers 3 and 4 will become large and a large initializing magnetic field HIn+ will be required, which is undesirable. Since the exchange coupling force between 4 and 4 becomes too small and causes problems in recording and erasing, a value of about several A-100 A is appropriate.

この光磁気記録媒体の記録、消去、再生及び初期化の各
動作は第1図の記録媒体と同様にして行われる(第5図
に第3図に相当する動作説明図を示す)e なお、この光磁気記録媒体では初期化温度Tin1で初
期化するときには、強磁性膜(メモリ層)3と反強磁性
膜(補助層)4の磁気特性が次のような条件を満たして
いる必要があり、その条件を満足するように中間層6の
膜厚を制御する。
Each operation of recording, erasing, reproducing, and initializing this magneto-optical recording medium is performed in the same manner as the recording medium of FIG. 1 (FIG. 5 shows an explanatory diagram of the operation corresponding to FIG. 3). When initializing this magneto-optical recording medium at the initialization temperature Tin1, the magnetic properties of the ferromagnetic film (memory layer) 3 and antiferromagnetic film (auxiliary layer) 4 must satisfy the following conditions. , the thickness of the intermediate layer 6 is controlled so as to satisfy the conditions.

δW )(cl > HO2> − Ms−h ここで、HCIは強磁性膜3の保磁力、 HClは反強
磁性膜4の保磁力、δWは両膜3.4間の磁壁エネルギ
ー、Msは反強磁性膜4の飽和磁化を示し、これらはい
ずれもTi旧での値であり、bは反強磁性膜4の膜厚で
ある。
δW ) (cl >HO2> − Ms-h where HCI is the coercive force of the ferromagnetic film 3, HCl is the coercive force of the antiferromagnetic film 4, δW is the domain wall energy between both films 3.4, and Ms is the antiferromagnetic film 3. The saturation magnetization of the ferromagnetic film 4 is shown, and all of these values are for old Ti, and b is the film thickness of the antiferromagnetic film 4.

また、再生は媒体温度がTCl以下となるパワーレベル
のレーザビームを照射することにより行われる。
Further, reproduction is performed by irradiating a laser beam with a power level that makes the medium temperature lower than TCl.

以上、本発明の光磁気記録媒体の構成例を説明してきた
が、本発明はこれらのみに限定されるものではなく種々
の変形、変更が可能であり1例えば保護膜5の上に反射
膜を設けても良いし、保護膜2.5を適当に除いても良
い。
Although the configuration examples of the magneto-optical recording medium of the present invention have been described above, the present invention is not limited to these, and various modifications and changes are possible.1 For example, a reflective film may be provided on the protective film 5. The protective film 2.5 may be provided, or the protective film 2.5 may be appropriately removed.

〔実施例〕〔Example〕

次に本発明を実施例により更に詳細に説明するが2本発
明は二こに例示の実施例に限定されるものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these two examples.

(実施例1) グループ付きポリカーボネート基板(直径130mm)
の上に百2元マグネトロンスパッタ法により下記の膜を
真空中で順次積層し、第1図の構成の記録媒体を得た。
(Example 1) Polycarbonate substrate with group (diameter 130 mm)
The following films were sequentially laminated thereon in vacuum by a 102-element magnetron sputtering method to obtain a recording medium having the structure shown in FIG.

1 保護膜:Si3N4膜(100OA) 強磁性膜:Tbo−z+(Feo、*zCoo、os)
o、ys膜(800A)反強磁性膜:Mn1.6SbC
ro、4膜(100OA)保護膜:3 i 3N4膜(
100OA)強磁性膜のキュリー温度TCl及び反強磁
性膜のキュリー温度TC2は次の通りであった。
1 Protective film: Si3N4 film (100OA) Ferromagnetic film: Tbo-z+ (Feo, *zCoo, os)
o, ys film (800A) antiferromagnetic film: Mn1.6SbC
ro, 4 films (100OA) protective film: 3 i 3N4 film (
100OA) The Curie temperature TCl of the ferromagnetic film and the Curie temperature TC2 of the antiferromagnetic film were as follows.

TC1=]60℃ TC2=240℃ また1反強磁性膜の反強磁性膜から強磁性相へ磁気相転
移する温度は50℃であった。
TC1 =] 60°C TC2 = 240°C The temperature at which the magnetic phase transition from the antiferromagnetic film to the ferromagnetic phase in one antiferromagnetic film was 50°C.

以上のようにして得た記録媒体を線速10m/秒で駆動
させ、初期化用磁界Hi n i =2KOe、外部磁
界Her=4000e(記録時と消去時ともに同一方向
)を印加するとともに、記録時、消去時及び再生時で以
下のように照射レーザパワーを変化させてIMHzの信
号を記録再生し、記録/再生特性の評価を行った。
The recording medium obtained as described above was driven at a linear speed of 10 m/sec, and an initializing magnetic field H i = 2 KOe and an external magnetic field Her = 4000 e (in the same direction during recording and erasing) were applied. IMHz signals were recorded and reproduced by changing the irradiation laser power as follows during erasing, erasing, and reproducing, and the recording/reproducing characteristics were evaluated.

記録時のレーザパワー+ 7 、5taW消去時のレー
ザパワー:5.5mW 再生時のレーザバクー: 2rnW その結果、 C/N比は47dBであった。さらに、該
記録媒体上に同一条件で2MHzの記録周波数でオーバ
ーライトを実施したところ、C/N比46dBで良好な
値を示した。
Laser power during recording +7, 5 taW Laser power during erasure: 5.5 mW Laser backlash during reproduction: 2rnW As a result, the C/N ratio was 47 dB. Furthermore, when overwriting was performed on the recording medium at a recording frequency of 2 MHz under the same conditions, a good C/N ratio of 46 dB was obtained.

(実施例2) グループ付きポリカーボネート基板(直径130++o
n)の上に百2元マグネトロンスパッタ法により下記の
膜を真空中で順次積層し、第4図の構成の記録媒体を得
た。
(Example 2) Polycarbonate substrate with group (diameter 130++o
The following films were sequentially laminated on top of (n) in a vacuum by a 102-element magnetron sputtering method to obtain a recording medium having the structure shown in FIG.

保護膜:Si3N4膜(1000人) 強磁性膜’Tb0−21(Fl!0−92C00−01
1)O−79膜(600A)中間膜:5i3N4(IO
A) 反強磁性M:Mn1.6SbCro、4膜(150OA
)保護膜+5i3N4膜(100OA) 強磁性膜のキュリー温度TCl、反強磁性膜のキュリー
温11:、TC2及び反強磁性膜の磁気相転移温度Tp
eは次の通りであった。
Protective film: Si3N4 film (1000 people) Ferromagnetic film 'Tb0-21 (Fl!0-92C00-01
1) O-79 film (600A) intermediate film: 5i3N4 (IO
A) Antiferromagnetic M: Mn1.6SbCro, 4 films (150OA
) Protective film + 5i3N4 film (100OA) Curie temperature of ferromagnetic film TCl, Curie temperature of antiferromagnetic film 11:, TC2 and magnetic phase transition temperature Tp of antiferromagnetic film
e was as follows.

TC+=16(1℃ TC2=240℃ Tpc−50℃ 以上のようにして得た記録媒体を線速10m1秒で駆動
させ、初期化用磁界Hini−2KOe、外部磁界He
x=4000e(記録時と消去時ともに同一方向)を印
加するとともに、記録時、消去時及び再生時で以下のよ
うに照射レーザパワーを変化させて1Mtbの信号を記
録再生し、記録/再生特性の評価を行った1゜記録時の
レーザパワー8cW 消去時のレーザパワー: 5mW 再生時のレーザパワー:ImW その結果、C/N比は47dBであった。さらに、該記
録媒体上に同一条件で2M)Itの記録周波数でオーバ
ーライトを実施したところ、C/N比46dBで良好な
値を示した。
TC+=16 (1°C TC2=240°C Tpc-50°C The recording medium obtained as above was driven at a linear velocity of 10 ml/sec, and the initializing magnetic field Hini-2KOe and the external magnetic field He
x = 4000e (in the same direction during recording and erasing), and changing the irradiation laser power as shown below during recording, erasing, and reproducing to record and reproduce a 1 Mtb signal, and record/reproduce characteristics. Laser power during 1° recording: 8 cW Laser power during erasing: 5 mW Laser power during reproducing: ImW As a result, the C/N ratio was 47 dB. Furthermore, when overwriting was performed on the recording medium at a recording frequency of 2M)It under the same conditions, a good C/N ratio of 46 dB was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、前記構成としたことにより、保存安定
性に優れ、信頼性が高く、媒体設計の容易なオーバーラ
イトのできる光磁気記録媒体及び光磁気記録方法を提供
できる。
According to the present invention, by having the above structure, it is possible to provide a magneto-optical recording medium and a magneto-optical recording method that have excellent storage stability, are highly reliable, and can be overwritten with easy medium design.

また、メモリ層と補助層との間に中間層を設けると、メ
モリ層と補助層との間に作用する交換結合力が適当に調
整されるため初期化用磁界Hiniを小さくすることが
でき、媒体設計をより容易に行えるようになる。
Furthermore, if an intermediate layer is provided between the memory layer and the auxiliary layer, the exchange coupling force acting between the memory layer and the auxiliary layer can be adjusted appropriately, so that the initialization magnetic field Hini can be reduced. Media design becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光磁気記録媒体の層構成を示す断
面図、第2図は本発明の光磁気記録媒体の強磁性膜及び
反強磁性膜の飽和磁化Myの温度特性を示す図、第3図
は第1図の記録媒体の初期化時、記録時及び消去時にお
ける磁化状態を示す図、第4図は本発明により別のタイ
プの光磁気記録媒体の層構成を示す断面図、第5図は第
4図の記録媒体の初期化時、記録時及び消去時における
磁化状態を示す図である。 l・・・支持体 2.5・・・保護膜 3・・・強磁性膜(メモリ層) 4・・・反強磁性膜(補助層) 6・・・中間層
FIG. 1 is a cross-sectional view showing the layer structure of the magneto-optical recording medium according to the present invention, and FIG. 2 is a diagram showing the temperature characteristics of the saturation magnetization My of the ferromagnetic film and antiferromagnetic film of the magneto-optical recording medium of the present invention. , FIG. 3 is a diagram showing the magnetization state of the recording medium of FIG. 1 during initialization, recording, and erasing, and FIG. 4 is a cross-sectional view showing the layer structure of another type of magneto-optical recording medium according to the present invention. , FIG. 5 is a diagram showing the magnetization state of the recording medium of FIG. 4 at the time of initialization, recording, and erasing. l...Support 2.5...Protective film 3...Ferromagnetic film (memory layer) 4...Antiferromagnetic film (auxiliary layer) 6...Intermediate layer

Claims (3)

【特許請求の範囲】[Claims] (1)垂直磁気異方性を示す強磁性膜からなるメモリ層
と、室温で反強磁性相を示し室温より高い温度で磁気相
転移を生じて強磁性相を示す反強磁性膜からなる補助層
とを積層した2層膜からなり、かつ、メモリ層のキュリ
ー温度をT_C_1、補助層のキュリー温度をT_C_
2としたときにT_C_1<T_C_2なる関係を満足
する記録層を有することを特徴とする光磁気記録媒体。
(1) A memory layer consisting of a ferromagnetic film that exhibits perpendicular magnetic anisotropy, and an auxiliary layer consisting of an antiferromagnetic film that exhibits an antiferromagnetic phase at room temperature and undergoes a magnetic phase transition and exhibits a ferromagnetic phase at temperatures higher than room temperature. The Curie temperature of the memory layer is T_C_1, and the Curie temperature of the auxiliary layer is T_C_
1. A magneto-optical recording medium characterized by having a recording layer that satisfies the relationship T_C_1<T_C_2 when T_C_1<T_C_2.
(2)垂直磁気異方性を示す強磁性膜からなるメモリ層
と、室温で反強磁性相を示し室温より高い温度で磁気相
転移を生じて強磁性相を示す反強磁性膜からなる補助層
と、メモリ層と補助層との間の交換結合力を調整するた
めに両層間に介在する中間層とからなり、かつ、メモリ
層のキュリー温度をT_C_1、補助層のキュリー温度
をT_C_2としたときにT_C_1<T_C_2なる
関係を満足する記録層を有することを特徴とする光磁気
記録媒体。
(2) A memory layer consisting of a ferromagnetic film that exhibits perpendicular magnetic anisotropy, and an auxiliary layer consisting of an antiferromagnetic film that exhibits an antiferromagnetic phase at room temperature and undergoes a magnetic phase transition and exhibits a ferromagnetic phase at temperatures higher than room temperature. and an intermediate layer interposed between the two layers to adjust the exchange coupling force between the memory layer and the auxiliary layer, and the Curie temperature of the memory layer is T_C_1 and the Curie temperature of the auxiliary layer is T_C_2. A magneto-optical recording medium characterized by having a recording layer that sometimes satisfies the relationship T_C_1<T_C_2.
(3)請求項1又は2に記載の光磁気記録媒体を用い、
記録時には媒体温度が補助層のキュリー温度T_C_2
付近迄昇温するような高いパワーのレーザビームを照射
するとともに外部磁界Hexを印加し、消去時には媒体
温度がメモリ層のキュリー温度T_C_1付近迄昇温す
るような低いパワーのレーザビームを照射するとともに
記録時と同じ外部磁界Hexを印加し、 かつ、補助層の磁化を一方向に揃える初期化を、記録あ
るいは消去後の媒体温度降下時に初期化用磁界Hini
を用いて行うことを特徴とするオーバーライト可能な光
磁気記録方法。
(3) using the magneto-optical recording medium according to claim 1 or 2,
During recording, the medium temperature is the Curie temperature of the auxiliary layer T_C_2
A high-power laser beam that raises the temperature of the memory layer to around T_C_1 is irradiated, and an external magnetic field Hex is applied, and during erasing, a low-power laser beam that raises the medium temperature to around the Curie temperature T_C_1 of the memory layer is applied. Initialization is performed by applying the same external magnetic field Hex as during recording, and aligning the magnetization of the auxiliary layer in one direction.
An overwritable magneto-optical recording method characterized in that it is carried out using an overwritable magneto-optical recording method.
JP2-313323A 1990-03-24 1990-11-19 Magneto-optical recording method Expired - Lifetime JP3000385B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP5938390 1990-03-09
JP2-59383 1990-03-09
JP2-74085 1990-03-24
JP7408590 1990-03-24

Publications (2)

Publication Number Publication Date
JPH04181534A true JPH04181534A (en) 1992-06-29
JP3000385B2 JP3000385B2 (en) 2000-01-17

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0698881A1 (en) * 1994-08-24 1996-02-28 Canon Kabushiki Kaisha Magnetooptical recording medium and method for reproducing information from the medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0698881A1 (en) * 1994-08-24 1996-02-28 Canon Kabushiki Kaisha Magnetooptical recording medium and method for reproducing information from the medium

Similar Documents

Publication Publication Date Title
US5663935A (en) Magneto-optical recording medium having two magnetic layers of exchange-coupled at ferromagnetic phase
JPS63239637A (en) Magneto-optical recording medium and recording method thereof
US5736265A (en) Magneto-optical recording medium and recording method using the same
JPH0896430A (en) Magneto-optical recording medium and reproducing method
JPH04219642A (en) Magneto-optical recording medium and method thereof
JPH04181534A (en) Magnetooptical recording medium and method
JP3184272B2 (en) Magneto-optical recording method
JP2959646B2 (en) Magneto-optical recording medium and magneto-optical recording method
JP3000385B2 (en) Magneto-optical recording method
JP3071246B2 (en) Magneto-optical recording method
JP2796602B2 (en) Magneto-optical recording method
JP3184273B2 (en) Magneto-optical recording method
JPH03152743A (en) Magneto-optical recording medium
JPH03276441A (en) Magneto-optical recording medium and method for magneto-optical recording
JPH03276448A (en) Magneto-optical recording method
JP3218735B2 (en) Magneto-optical recording medium
JP2805787B2 (en) Magneto-optical recording method
JP2883939B2 (en) Magneto-optical recording method
JP3395189B2 (en) Magneto-optical recording method
JP2624114B2 (en) Magneto-optical recording media
JPH01217744A (en) Magneto-optical recording medium
JPH03260933A (en) Magneto-optical recording medium
JPH0536147A (en) Magneto-optical recording method
JPH03119540A (en) Magneto-optical recording medium
JPH0528564A (en) Magneto-optical recording medium and magneto-optical recording method