JPH04180584A - Manufacture of oxide superconductor - Google Patents

Manufacture of oxide superconductor

Info

Publication number
JPH04180584A
JPH04180584A JP2307563A JP30756390A JPH04180584A JP H04180584 A JPH04180584 A JP H04180584A JP 2307563 A JP2307563 A JP 2307563A JP 30756390 A JP30756390 A JP 30756390A JP H04180584 A JPH04180584 A JP H04180584A
Authority
JP
Japan
Prior art keywords
elements
superconductor
precursor
oxide
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2307563A
Other languages
Japanese (ja)
Inventor
Kazutomi Kakimoto
一臣 柿本
Tsukasa Kono
河野 宰
Nobuyuki Sadakata
伸行 定方
Shinya Aoki
青木 伸哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2307563A priority Critical patent/JPH04180584A/en
Publication of JPH04180584A publication Critical patent/JPH04180584A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an oxide superconductor having excellent characteristics by subjecting a precursor precipitated on the cathode by the electrolysis of a soln. obtd. by dissolving organic complexes of II a group elements and III a group elements in a periodic table as well as Cu in an organic solvent to heat treatment in an oxidizing atmosphere. CONSTITUTION:At the time of manufacturing an oxide superconductor expressed by a general formula: A-B-Cu-O (wherein A denotes one or more kinds among IIIa group elements in a periodic table such as Y, Sc, La, Yb, Er, Eu, Ho and Dy and B denotes one or more kinds among IIa group elements such as Mg, Ca, Sr and Ba), the anode and the cathode are immersed in an electrolytic bath obtd. by dissolving each organic complex of the A elements, B elements and Cu in an organic solvent such as methyl alcohol, and a direct current is conducted to reduce each complex of the A elements, B elements and Cu on the cathode, by which the precursor of a superconductor constituted of a composite metallic film of the A elements, B elements and Cu is precipitated. This precursor is heated, e.g. to 600 to 900 deg.C in an oxidizing atmosphere to obtain a dense oxide superconductor free from the generation of cracks in the grain boundaries and having excellent superconducting characteristics such as critical current density.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はジョセフソン素子や超電導記憶素子等の超電
導デバイスあるいは超電導マグネット用コイルなどとし
て応用開発か進められている酸化物系超電導体の製造方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for manufacturing oxide-based superconductors, which are being developed for application as superconducting devices such as Josephson elements and superconducting memory elements, or coils for superconducting magnets. It is related to.

[従来の技術] 最近に至り、常電導状態から超電導状態へ遷移する臨界
温度(T c)が液体窒素温度を越える値を示す酸化物
系の超電導材料が種々発見されている。
[Prior Art] Recently, various oxide-based superconducting materials have been discovered whose critical temperature (T c ) for transitioning from a normal conductive state to a superconducting state exceeds the liquid nitrogen temperature.

この種の酸化物系超電導体は、一般式A−B−Cu−0
(ただしAはY、Sc、La、Yb、Er、Eu、Ho
This type of oxide-based superconductor has the general formula AB-Cu-0
(However, A is Y, Sc, La, Yb, Er, Eu, Ho
.

Dy等の周期率表nIaIIIa族元素種以上を示し、
BはMg、Ca、Sr、Ba等の周期率表IIIa族元
素の1種以上を示す。)で示されるものである。
Indicates more than nIaIIIa group element species of the periodic table such as Dy,
B represents one or more elements of group IIIa of the periodic table, such as Mg, Ca, Sr, and Ba. ).

従来、このような酸化物系超電導体の製造方法の一例と
して、以下に説明する方法が知られている。
Conventionally, the method described below is known as an example of a method for producing such an oxide-based superconductor.

A−B−Cu−0で示される酸化物系超電導体を構成す
る各元素を含む複数の原料粉末を混合して混合粉末を作
成し、ついでこの混合粉末を仮焼して不要成分を除去し
、この仮焼粉末を熱処理して超電導粉末とした後に、こ
の超電導粉末を金属鞘材中に充填し、これを圧縮加工等
により所定形状に成形し、熱処理を施して酸化物系超電
導体とする方法である。
A mixed powder is created by mixing multiple raw material powders containing each element constituting the oxide superconductor represented by A-B-Cu-0, and then this mixed powder is calcined to remove unnecessary components. After heat-treating this calcined powder to make a superconducting powder, this superconducting powder is filled into a metal sheath material, which is then molded into a predetermined shape by compression processing, etc., and heat-treated to make an oxide-based superconductor. It's a method.

[発明が解決しようとする課題] しかしながら上記のような製造方法では、原料粉末を完
全に均一に混合することが困難なことから、熱処理を施
しても金属鞘材中の酸化物系超電導体全体が完全に均一
な結晶構造とならず、緻密性と配向性とに欠けるととも
に、粒界によるクラックの発生が多く、優れた特性を有
する超電導体を得ることができないという不都合があっ
た。
[Problems to be Solved by the Invention] However, in the above manufacturing method, it is difficult to mix the raw material powders completely uniformly, so even if heat treatment is performed, the entire oxide superconductor in the metal sheath material However, this method does not have a completely uniform crystal structure, lacks density and orientation, and often cracks occur due to grain boundaries, making it impossible to obtain a superconductor with excellent properties.

また原料粉末は焼結により体積が縮小するのに対し、金
属鞘材は熱膨張を起こすので、金属鞘材とその内部に収
められた酸化物系超電導体との間に割れ欠陥が生じ、こ
れにより良好な超電導特性を実現できない問題もあった
In addition, while the raw material powder shrinks in volume through sintering, the metal sheath material undergoes thermal expansion, which causes cracking defects between the metal sheath material and the oxide superconductor housed inside. There was also the problem that good superconducting properties could not be achieved due to this.

この発明は上記課題を解決するためになされたものであ
って、緻密な構造であって粒界によるクラックの発生が
なく、かつ臨界電流密度などの超電導特性に優れた高特
性の酸化物超電導体を効率よく製造する方法を提供する
ことを目的としている。
This invention was made to solve the above problems, and provides a high-performance oxide superconductor that has a dense structure, does not cause cracks due to grain boundaries, and has excellent superconducting properties such as critical current density. The purpose is to provide a method for efficiently manufacturing.

7課題を解決するf二めの手段二 この発明の酸化物系超電導体の製造方法は、一般式A−
B−Cu−0(た1こしAはY、Sc、La。
7 Second Means for Solving the Problems 2 The method for producing an oxide superconductor of the present invention is based on the general formula A-
B-Cu-0 (Top A is Y, Sc, La.

Y b、E r、E u、Ho、D y等の周期率表l
l1a族元素の1種以上を示し、BはMg、 Ca、 
S r、B a等の周期率表IIa族元素の1種以上を
示す。)で示される組成の酸化物系超電導体の製造方法
であって、上記A元素有機錯体とB元素有機錯体とCu
有機錯体とを共に有機溶媒中に溶解してなる電解浴中て
電気分解を行い、A元素とB元素とCuとを陰極上に析
出させて超電導前駆体とした後、この超電導前駆体を酸
素雰囲気中で熱処理することを解決手段とした。
Periodic table l of Y b, E r, E u, Ho, D y, etc.
Represents one or more of the l1a group elements, B is Mg, Ca,
Indicates one or more elements of group IIa of the periodic table, such as S r and B a. ) A method for producing an oxide-based superconductor having the composition shown in
The organic complex is electrolyzed in an electrolytic bath prepared by dissolving both elements in an organic solvent, and elements A, B, and Cu are precipitated on the cathode to form a superconducting precursor. The solution was to perform heat treatment in an atmosphere.

[作用 ] 酸化物系超電導体の構成元素であるA元素、B元素、C
uを共に溶解した電解浴中て電気分解を行うと、これら
構成元素が陰極上に、緻密な構造の金属膜の超電導体前
駆体として積層される。
[Function] Element A, element B, and C, which are constituent elements of oxide-based superconductor
When electrolysis is performed in an electrolytic bath in which u is dissolved, these constituent elements are deposited on the cathode as a superconductor precursor of a metal film with a dense structure.

よってこの超電導体前駆体に酸素雰囲気中で熱処理を施
すことにより、酸化することができるので、緻密な構造
の超電導体とすることができる。
Therefore, by subjecting this superconductor precursor to heat treatment in an oxygen atmosphere, it can be oxidized, so that a superconductor with a dense structure can be obtained.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

巳の発明の製造方法は、酸化物系超電導体の構成元素で
あるA元素、B元素、Cuを溶解してなる電解浴中で電
気分解を行い、陰極上にこれらA元素、B元素、Cuの
複合金属からなる超電導体前駆体を析出させ、この超電
導体前駆体に熱処理を施すものである。
The manufacturing method of Mi's invention involves electrolysis in an electrolytic bath in which elements A, B, and Cu, which are constituent elements of an oxide superconductor, are dissolved, and these elements A, B, and Cu are deposited on the cathode. A superconductor precursor made of a composite metal is precipitated, and this superconductor precursor is subjected to heat treatment.

この電解浴はA元素、B元素、Cuを電解物質として有
機溶媒中に所定濃度で溶解してなるものである。
This electrolytic bath is made by dissolving element A, element B, and Cu as electrolytes in an organic solvent at a predetermined concentration.

上記電界物質としては、酸化物系超電導体の構成元素で
あるA元素、B元素およびCuの有機錯体を用いること
ができる。この有機錯体の配位子は、この有機錯体が通
電可能な有機溶媒に可溶なものであれば特に限定される
ものではなく、たとえばジピバロイルメチル(C、、H
、、O、)、ヘキサフロロアセチルアセトナト(C5H
F so 、)などを好適に用いることができる。また
各構成元素に配位させる有機錯体の配位子は同一ても異
なっていてもよい。なお配位子の構成元素としてフッ素
を含有すると、錯体の有機溶媒への溶解性を向上させる
ことができて好適であるが、得られる超電導体の緻密性
を向上させるには、配位子の構成元素としてフッ素を含
有しないほうか好ましい。
As the electric field substance, an organic complex of elements A, B, and Cu, which are constituent elements of the oxide superconductor, can be used. The ligand of this organic complex is not particularly limited as long as this organic complex is soluble in an organic solvent that can conduct electricity; for example, dipivaloylmethyl (C, H
,,O,), hexafluoroacetylacetonato (C5H
F so , ), etc. can be suitably used. Further, the ligands of the organic complex coordinated to each constituent element may be the same or different. It is preferable to contain fluorine as a constituent element of the ligand because it can improve the solubility of the complex in organic solvents. However, in order to improve the density of the obtained superconductor, it is necessary to It is preferable that it does not contain fluorine as a constituent element.

これら有機錯体を溶解する有機溶媒としては、上記有機
錯体を溶解可能であり、かつ通電可能な有機溶媒であれ
ば特に限定されるものではなくメチルアルコール、エチ
ルアルコール等のアルコール類、アセトン、アセチルア
セトン等のケトン類等を好適に用いることができる。
The organic solvent for dissolving these organic complexes is not particularly limited as long as it is an organic solvent that can dissolve the above-mentioned organic complexes and can conduct electricity, such as alcohols such as methyl alcohol and ethyl alcohol, acetone, acetylacetone, etc. Ketones and the like can be suitably used.

有機錯体の有機溶媒中への溶解濃度は、製造する酸化物
超電導体の種類、有機錯体種類、印加電圧の大きさ等に
よって種々選択されるが、それぞれA元素有機錯体0.
001〜(1,01mol/L B元素有機錯体0.0
01〜0.01 mot/L Cu有機錯体0.001
〜O’、01 mol/12が好ましい。また電解浴の
温度は、通電条件等によって種々選択されるが、通常は
一50〜20℃が好適である。
The concentration of the organic complex dissolved in the organic solvent is variously selected depending on the type of oxide superconductor to be manufactured, the type of organic complex, the magnitude of the applied voltage, etc.
001~(1,01mol/L B element organic complex 0.0
01-0.01 mot/L Cu organic complex 0.001
~O', 01 mol/12 is preferred. Further, the temperature of the electrolytic bath is variously selected depending on the energization conditions, etc., but usually -50 to 20°C is suitable.

このようにして調整されに電解浴の通電条件は、電解浴
の種類および有機錯体の溶解濃度等によって適宜選択さ
れるが、通常は0.2〜1.2Aの直流電流でlO〜t
oovの電圧をlO〜60分程度印加することが好まし
い。
The energization conditions of the electrolytic bath adjusted in this way are appropriately selected depending on the type of electrolytic bath, the dissolved concentration of the organic complex, etc., but usually a DC current of 0.2 to 1.2 A is used for lO to t.
It is preferable to apply a voltage of 10 to 60 minutes.

また電極は特に限定されるものではないが、白金、グラ
ファイト等の通常の電気分解に用いられる材料を用いる
ことかできる。
Further, the electrode is not particularly limited, but materials used in ordinary electrolysis, such as platinum and graphite, can be used.

第1図はこの電気分解の工程を示したものである。第1
図中、符号lは電解浴である。この電解浴lは有機溶媒
り中に有機錯体としてA元素、B元素およびCuを共に
溶解してなるものである。
FIG. 1 shows this electrolysis process. 1st
In the figure, the symbol l is an electrolytic bath. This electrolytic bath 1 is formed by dissolving elements A, B, and Cu together as an organic complex in an organic solvent.

この電解浴lには、一対の電極28%  2 bが浸漬
されている。このような電解浴lで電気分解を行うこと
により有機錯体の中心元素であるA元素、B元素、Cu
がそれぞれ還元されてA元素、B元素およびCuの複合
金属膜からなる超電導体前駆体3として陰極上に析出す
る。この超電導体前駆体3は電気分解によって析出され
たものであるので、緻密な構造を有する。
A pair of electrodes 28% 2 b is immersed in this electrolytic bath l. By performing electrolysis in such an electrolytic bath, the central elements of the organic complex, such as A element, B element, and Cu
are reduced and deposited on the cathode as a superconductor precursor 3 consisting of a composite metal film of element A, element B, and Cu. Since this superconductor precursor 3 is deposited by electrolysis, it has a dense structure.

そして一定時間の通電の後に陰極2aを取、り出し、洗
浄し1ニ後に、上記超電導体前駆体3に熱処理を施す。
After energization for a certain period of time, the cathode 2a is taken out and cleaned, and after one step, the superconductor precursor 3 is subjected to heat treatment.

この熱処理は超電導体前駆体3を酸化するとともに、結
晶の配向性を良好にして緻密な構造の酸化物系超電導体
とする几めのものである。熱処理条件は、酸化物系超電
導体を製造する際に用いられる通常の熱処理条件と同様
であって、たとえば酸素雰囲気中で600〜900℃、
10時間以上などである。
This heat treatment oxidizes the superconductor precursor 3 and improves the crystal orientation to produce an oxide-based superconductor with a dense structure. The heat treatment conditions are similar to the usual heat treatment conditions used in manufacturing oxide superconductors, such as 600 to 900°C in an oxygen atmosphere;
For example, 10 hours or more.

このようにして製造されf二酸化物系超電導体は、電気
分解によて成膜されfコ超電導体前(体に熱処理を施し
たものであるので、緻密で配向性の良好な結晶構造を有
するものとなり、高い臨界電流密度を示すものとなる。
The f-dioxide-based superconductor manufactured in this way is formed into a film by electrolysis and has a dense and well-oriented crystal structure because the f-superconductor body is heat-treated. This results in a high critical current density.

またこの発明の製造方法は、均一な超電導体前駆体に熱
処理を施すものであるので、得られた酸化物系超電導体
は完全に均一な組成となるとともに、各構成元素の粒界
にクラック等が発生することがないので、高特性の超電
導体を得ることができる。
In addition, since the manufacturing method of the present invention heat-treats a uniform superconductor precursor, the obtained oxide-based superconductor has a completely uniform composition, and there are no cracks or the like in the grain boundaries of each constituent element. Since this does not occur, a superconductor with high characteristics can be obtained.

またこの発明の製造方法によれば、所望の膜厚の酸化物
系超電導体を容易に製造することかできる。
Further, according to the manufacturing method of the present invention, an oxide-based superconductor having a desired thickness can be easily manufactured.

[実施例] (実施例1) 4.3g、0.01molのCu(CzH1902)2
と5.0g、O,OlmolのB、a(CzH+s02
)2と、6.4g、0.01molのY (CzH+s
O2)3とを30am3のアセトン中に溶解して電解浴
とした。
[Example] (Example 1) 4.3 g, 0.01 mol Cu(CzH1902)2
and 5.0g, O, Olmol B, a(CzH+s02
)2, 6.4 g, 0.01 mol of Y (CzH+s
O2)3 was dissolved in 30 am3 of acetone to prepare an electrolytic bath.

これに電極系としてPt1i極を用意し、このpt電極
を0℃に保った上記電解浴中に浸漬し、印加電圧100
V、通電電流0.2Aにて1時間電気分解して、陰極上
にCu、Ba、Yの複合金属膜からなる超電導体前駆体
を膜厚1.5mmにて析出させた。
A Pt1i electrode was prepared as an electrode system for this, and this pt electrode was immersed in the above electrolytic bath kept at 0°C, and an applied voltage of 100
The superconductor precursor made of a composite metal film of Cu, Ba, and Y was deposited on the cathode to a thickness of 1.5 mm by electrolysis at V and a current of 0.2 A for 1 hour.

この超電導体前駆体を洗浄した後、酸素雰囲気中で90
0℃、24時間の熱処理を施して酸化物系超電導体とし
た。
After cleaning this superconductor precursor, it was washed for 90 minutes in an oxygen atmosphere.
A heat treatment was performed at 0° C. for 24 hours to obtain an oxide superconductor.

得られた酸化物系超電導体の臨界温度(T c)および
臨界電流密度(Jc)を測定した結果、Tc−90、に
、Jc=2.2X 10′″A/Cm!と優れた超電導
特性を示した。まfコこの酸化物系超電導体の断面をX
線回折分析した結果、Y +B atc u、o 7−
nなる組成のペロブスカイト型の結晶の生成か確認され
た。
As a result of measuring the critical temperature (Tc) and critical current density (Jc) of the obtained oxide-based superconductor, it was found that Tc-90, Jc = 2.2X 10'''A/Cm!, indicating excellent superconducting properties. The cross section of this oxide superconductor is shown as
As a result of line diffraction analysis, Y + B atcu, o 7-
It was confirmed that perovskite crystals with a composition n were formed.

(実施例2) 電解浴として30 cm3のアセトン中に、9.5g。(Example 2) 9.5 g in 30 cm3 of acetone as electrolytic bath.

0.02molのCu(C5HF 602)2と、l 
 I g、0.02mo1のB a(CsHF to 
2)2と、7.1g、  0.01molのY (Cs
HF so 2)3とを、それぞれ溶解したものを用い
た以外は実施例1と全く同様にして酸化物系超電導体を
製造した。
0.02 mol of Cu(C5HF 602)2 and l
Ig, 0.02mol of Ba(CsHF to
2) 2, 7.1 g, 0.01 mol of Y (Cs
An oxide-based superconductor was produced in exactly the same manner as in Example 1, except that HF so 2) and 3 were respectively dissolved.

得られた酸化物系超電導体の臨界温度(Tc)および臨
界電流密度(Jc)を測定した結果、Tc=92KSJ
c=4.3 X 10’A/cm’と実施例1と同様に
優れた超電導特性を示した。またこの酸化物系超電導体
の断面をX線回折分析した結果、Y +B azc u
so 7−nなる組成のペロブスカイト型の結晶の生成
が確認された。
As a result of measuring the critical temperature (Tc) and critical current density (Jc) of the obtained oxide-based superconductor, Tc = 92KSJ
c=4.3 x 10'A/cm', showing excellent superconducting properties similar to Example 1. Furthermore, as a result of X-ray diffraction analysis of the cross section of this oxide-based superconductor, Y + B azc u
The formation of perovskite crystals having a composition of so 7-n was confirmed.

[発明の効果] 以上説明したように、この発明の酸化物系超電導体の製
造方法は、酸化物系超電導体の構成元素の有機錯体を有
機溶媒に溶解し1こ電解浴中で電気分解を行い、各構成
元素を陰極上に析出させて超電導前駆体とした後、この
超電導前駆体を酸素雰囲気中で熱処理するものであるの
で、完全に拘−な組成で、かっ配向性の高い緻密な構造
の酸化物系超電導体を得ることができる。よって従来の
製造方法では実現不可能であってような高性能の酸化物
系超電導体を容易に製造することができる。
[Effects of the Invention] As explained above, the method for producing an oxide superconductor of the present invention involves dissolving an organic complex of constituent elements of an oxide superconductor in an organic solvent and then electrolyzing it in an electrolytic bath. After the constituent elements are precipitated on the cathode to form a superconducting precursor, this superconducting precursor is heat-treated in an oxygen atmosphere. It is possible to obtain an oxide-based superconductor with the same structure. Therefore, it is possible to easily produce a high-performance oxide-based superconductor that would not be possible using conventional production methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の酸化物系超電導体の製造方法の一工
程の電気分解の様子を示した概略説明図である。 l・・・電解浴、 2 a、 2 b・・・電極、3・
・・超電導体前駆体、 L・・・有機溶媒。
FIG. 1 is a schematic explanatory diagram showing the state of electrolysis in one step of the method for producing an oxide-based superconductor of the present invention. l...electrolytic bath, 2a, 2b...electrode, 3.
...Superconductor precursor, L...Organic solvent.

Claims (1)

【特許請求の範囲】 一般式A−B−Cu−O(ただしAはY、Sc、La、
Yb、Er、Eu、Ho、Dy等の周期率表IIIa族元
素の1種以上を示し、BはMg、Ca、Sr、Ba等の
周期率表IIa族元素の1種以上を示す。)で示される組
成の酸化物系超電導体の製造方法であって、 上記A元素有機錯体とB元素有機錯体とCu有機錯体と
を共に有機溶媒中に溶解してなる電解浴中で電気分解を
行い、A元素とB元素とCuとを陰極上に析出させて超
電導前駆体とした後、この超電導前駆体を酸素雰囲気中
で熱処理することを特徴とする酸化物系超電導体の製造
方法
[Claims] General formula AB-Cu-O (where A is Y, Sc, La,
B represents one or more elements of group IIIa of the periodic table such as Yb, Er, Eu, Ho, and Dy, and B represents one or more of elements of group IIa of the periodic table such as Mg, Ca, Sr, and Ba. ) A method for producing an oxide superconductor having a composition shown in A method for producing an oxide-based superconductor, the method comprising: precipitating element A, element B, and Cu on a cathode to form a superconducting precursor, and then heat-treating the superconducting precursor in an oxygen atmosphere.
JP2307563A 1990-11-14 1990-11-14 Manufacture of oxide superconductor Pending JPH04180584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2307563A JPH04180584A (en) 1990-11-14 1990-11-14 Manufacture of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2307563A JPH04180584A (en) 1990-11-14 1990-11-14 Manufacture of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH04180584A true JPH04180584A (en) 1992-06-26

Family

ID=17970588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2307563A Pending JPH04180584A (en) 1990-11-14 1990-11-14 Manufacture of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH04180584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144006A1 (en) * 2009-12-15 2011-06-16 Igelosa Life Science Ab Protein composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144006A1 (en) * 2009-12-15 2011-06-16 Igelosa Life Science Ab Protein composition

Similar Documents

Publication Publication Date Title
EP0414819B1 (en) Method of forming crystallite-oriented superconducting ceramics by electrodeposition and thin film superconducting ceramic made thereby
JPH03504713A (en) Fabrication of superconducting thin films
JP4694965B2 (en) Method for producing metal substrate for oxide superconducting wire and method for producing oxide superconducting wire
US6332967B1 (en) Electro-deposition of superconductor oxide films
JPH04180584A (en) Manufacture of oxide superconductor
JPH02133368A (en) Manufacture of high-temperature superconducting substance
US5550104A (en) Electrodeposition process for forming superconducting ceramics
JP2595274B2 (en) Method of forming oxide-based superconductor layer
DE19964478B4 (en) Process for metallically coating high temperature superconductors comprises galvanically applying copper and a metallic copper sample as anode, and partially covering between the anode and the high temperature superconductor
JP2007179827A (en) Method of manufacturing metal base material for oxide superconductive conductoor and method of manufacturing oxide superconductive conductor
JPH04180585A (en) Manufacture of oxide superconductor
KR920005095B1 (en) Preparing method of super conductive material
JPS63304678A (en) Manufacture of oxide superconducting circuit
JP2901243B2 (en) Method for producing oxide-based superconducting wire
JP2551624B2 (en) Manufacturing method of oxide superconducting material
JP2517870B2 (en) Method for producing complex oxide superconducting thin film
JP2583577B2 (en) Method for producing Bi-based oxide superconducting material
JPH01157408A (en) Formation of film superconductor by cohesion of organic metal compound
JPH05163005A (en) Production of oxide superconductor current-limiting device
JPH0578124A (en) Production of material coated with superconducting film
JPH012221A (en) Method for forming thin films of ceramic superconducting materials
KR940003439B1 (en) Manufacturing method of superconductor meterial
JPH03219095A (en) Plating method for rare earth-barium-copper alloy
JPH03219096A (en) Method for plating y-ba-cu alloy
CN117855592A (en) Solid electrolyte and preparation method thereof