JPH04180438A - Data transmission system - Google Patents

Data transmission system

Info

Publication number
JPH04180438A
JPH04180438A JP31070590A JP31070590A JPH04180438A JP H04180438 A JPH04180438 A JP H04180438A JP 31070590 A JP31070590 A JP 31070590A JP 31070590 A JP31070590 A JP 31070590A JP H04180438 A JPH04180438 A JP H04180438A
Authority
JP
Japan
Prior art keywords
data
signal
frequency
fsk
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31070590A
Other languages
Japanese (ja)
Inventor
Kuniaki Kimiga
邦明 公賀
Ryuji Ishida
隆二 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP31070590A priority Critical patent/JPH04180438A/en
Publication of JPH04180438A publication Critical patent/JPH04180438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To simplify the constitution of the entire transmitter by using a data subject to a Manchester coding processing for a data frequency-modulated by an FSK modulator. CONSTITUTION:In the case of sending a digital data of a Manchester code used for a data source, an FSK modulator modulates the data at a frequency f1 when the data is at a high level and modulates the data at a frequency f2 when the data is at a low level (f1>f2) respectively. After the frequency- modulated FSK signal is converted into an optical signal by a light emitting section 6, the optical signal is sent to a transmission line 5. Then the FSK signal converted into an electric signal by a light receiving section 6 is subject to envelope detection by an envelope detector 7a of an AGC circuit 7. The envelope detection output is not smooth, but the output integrated by an integration device 7b is smoothed completely and constant. That is, a gain control signal outputted to an amplifier 7c to be controlled is proportional to only the attenuation of a transmission line 5. Thus, the control signal is used for the gain control of the AGC circuit 7 on the receiver side.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、デジタルデータを周波数変調して光ファイバ
等の伝送路を介して伝送するデータ伝送方式に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a data transmission system in which digital data is frequency modulated and transmitted via a transmission path such as an optical fiber.

〈従来の技術〉 一般に、デジタルデータを伝送する場合、直流のデータ
信号をそのまま伝送路に送出してデータ伝送する、いわ
ゆるベースバンド伝送方式は、伝送装置の構成が簡単で
あるものの、直流を使用している関係上、減衰やノイズ
の影響を受は易く、そのため、長距離伝送にはあまり適
していない。
<Conventional technology> Generally, when transmitting digital data, the so-called baseband transmission method, in which data is transmitted by directly sending a DC data signal to a transmission line, has a simple configuration of the transmission equipment, but it uses DC. Because of this, it is susceptible to attenuation and noise, making it not very suitable for long-distance transmission.

これに対して、デジタルデータを一旦交流信号に変調し
て送出し、受信側でこの交流信号を復調してデジタルデ
ータとして取り出す帯域伝送方式は、ベースバンド伝送
方式に比べて長距離伝送に適している。デジタルデータ
を交流信号に変調する方式には、振幅変調、周波数変調
、位相変調等の種々のものがあるが、特に、周波数変調
(FSK)方式のものは、ノイズやレベル変動の影響を
受は難く、変調、復調回路の構成も比較的簡単なために
広く使用されている。
On the other hand, band transmission methods, in which digital data is first modulated into an AC signal and then sent out, and then demodulated on the receiving side and extracted as digital data, are more suitable for long-distance transmission than baseband transmission methods. There is. There are various methods for modulating digital data into alternating current signals, such as amplitude modulation, frequency modulation, and phase modulation, but frequency modulation (FSK) methods are particularly resistant to the effects of noise and level fluctuations. It is widely used because the structure of the modulation and demodulation circuits is relatively simple.

この周波数変調方式に基づいてデータ伝送を行う場合に
も、伝送路の距離や温度等の要因によって信号の減衰量
が変動するので、従来は、受信側にAGC回路を設け、
伝送路を介して入力されるFSK信号に対するゲインを
AGC回路で制御して信号減衰を補償するようにしてい
る。
Even when data is transmitted based on this frequency modulation method, the amount of signal attenuation varies depending on factors such as the distance and temperature of the transmission path.
The gain for the FSK signal input via the transmission path is controlled by the AGC circuit to compensate for signal attenuation.

ところで、デジタルデータの符号化は、通常、符号“l
”をハイレベル、符号“0“をローレベル(あるいはそ
の逆に符号“l”をローレベル、符号“0°をハイレベ
ル)とする、いわゆるNRZ(ノンリターンゼロ)方式
が用いられているが、このようなNRZ方式のデジタル
データをそのまま周波数変調してデータ伝送する場合に
は、次の問題が生じる。
By the way, digital data is usually encoded using the code "l".
The so-called NRZ (non-return zero) method is used, in which "" is a high level and the code "0" is a low level (or vice versa, the code "l" is a low level and the code "0° is a high level). If such NRZ digital data is frequency modulated and transmitted as is, the following problem occurs.

一般に、伝送路上を伝送される信号は、その周波数成分
によって伝達特性が異なり、通常、高周波の周波数成分
のものほど減衰が大きくなる。したがって、いま、“l
“のデータを周波数f、で、“0”のデータを周波数f
、(ただし、ここではf。
Generally, signals transmitted on a transmission path have different transfer characteristics depending on their frequency components, and normally, the higher the frequency component, the greater the attenuation. Therefore, now “l
data of “0” at frequency f, data of “0” at frequency f
, (However, here f.

>Lとする)でそれぞれ周波数変調するとした場合、受
信側では高い周波数f1の信号成分の減衰量が大きく、
低い周波数f、の信号成分の減衰量は小さくなる。この
ため、第4図に示すように、NRZ方式のデジタルデー
タとして、符号“I”が符号“0“よりも発生比率が多
し)“110111”という内容を周波数変調して伝送
すると(同図(a))、このFSK信号を受信側のAG
C回路において包絡線検波した後(同図(C))、その
検波出力を積分して得られるゲイン制御信号のレベルは
、平坦でなく凹凸になる(同図(d))。すなわち、振
幅方向にも変調を受けることになる。同様に、第5図に
示すように、符号“0”が符号“l”よりも発生比率が
多い“100000” という内容を周波数変調して伝
送すると(同図(a))、このFSK信号を受信側のA
GC回路において包絡線検波した後(同図(C))、そ
の検波出力を積分して得られるゲイン制御信号のレベル
も、平坦でなく途中でレベルが高くなる(同図(d))
> L), the attenuation of the signal component of the high frequency f1 is large on the receiving side,
The amount of attenuation of the signal component of the low frequency f becomes small. For this reason, as shown in Figure 4, if the content "110111" (where the code "I" occurs more often than the code "0") is frequency modulated and transmitted as digital data in the NRZ system (the number of occurrences of the code "I" is higher than the code "0"), (a)), this FSK signal is sent to the AG on the receiving side.
After envelope detection is performed in the C circuit ((C) in the same figure), the level of the gain control signal obtained by integrating the detection output is not flat but uneven ((d) in the same figure). In other words, it will also be modulated in the amplitude direction. Similarly, as shown in Fig. 5, if the content "100000" in which the code "0" occurs more often than the code "l" is frequency modulated and transmitted (Fig. 5(a)), this FSK signal is transmitted. A on the receiving side
After envelope detection in the GC circuit ((C) in the same figure), the level of the gain control signal obtained by integrating the detection output is also not flat and increases in the middle ((D) in the same figure)
.

つまり、NRZ方式のデジタルデータを単に周波数変調
して伝送した場合には、受信側のAGC回路のゲイン制
御信号は、伝送路の伝達特性だけでなく、伝送されるデ
ータの内容(すなわち、ハイレベルとローレベルの発生
比率=マークスペース比)によってもレベルが変化する
。このため、伝送路による信号減衰量の変動の影響だけ
を検出してゲイン制御を行うことができない。
In other words, when NRZ digital data is simply frequency modulated and transmitted, the gain control signal of the AGC circuit on the receiving side depends not only on the transfer characteristics of the transmission path, but also on the content of the transmitted data (i.e., high level The level also changes depending on the low level occurrence ratio = mark space ratio). Therefore, it is not possible to perform gain control by detecting only the influence of fluctuations in signal attenuation due to the transmission path.

そこで、従来技術では、送信側において、NRZ方式の
デジタルデータを周波数変調したFSK信号に対して、
単一周波数f3(ただしrs< L、f、)のパイロッ
ト信号をキャリアとして重畳する一方、受信側ではこの
パイロット信号を検出し、このパイロット信号をAGC
回路に対するゲイン制御信号として用いることで、デー
タの内容に影響されずに伝送路による信号減衰量を補償
するようにしている。
Therefore, in the conventional technology, on the transmitting side, for an FSK signal obtained by frequency modulating NRZ digital data,
While a pilot signal with a single frequency f3 (rs < L, f,) is superimposed as a carrier, the receiving side detects this pilot signal and converts it into AGC.
By using it as a gain control signal for the circuit, the amount of signal attenuation due to the transmission path is compensated for without being affected by the content of the data.

〈発明が解決しようとする課題〉 しかしながら、従来のようにデジタルデータを周波数変
調したFSK信号に対して、さらにパイロット信号を重
畳する方式では、パイロット信号の発生器やFSK信号
にパイロット信号を重畳する混合器が別途必要となるの
で、伝送装置全体の構成が複雑化するという不具合があ
る。
<Problem to be solved by the invention> However, in the conventional method of superimposing a pilot signal on an FSK signal obtained by frequency modulating digital data, the pilot signal is superimposed on the pilot signal generator or the FSK signal. Since a separate mixer is required, there is a problem that the configuration of the entire transmission device becomes complicated.

〈課題を解決するための手段〉 本発明は、このような事情に鑑みてなされたものであっ
て、伝送すべきデータの内容によってAGC回路のゲイ
ン制御信号のレベルが変動することがないようにして、
FSK信号にパイロット信号を特に重畳しなくても、伝
送路による信号減衰量を補償できるようにするものであ
る。
<Means for Solving the Problems> The present invention has been made in view of the above-mentioned circumstances, and is designed to prevent the level of the gain control signal of the AGC circuit from varying depending on the content of data to be transmitted. hand,
This makes it possible to compensate for the amount of signal attenuation caused by the transmission path without particularly superimposing a pilot signal on the FSK signal.

そのため、本発明は、送信側では、デジタルデータをF
SK変調器によって周波数変調し、これをFSK信号と
して伝送路に送出する一方、受信側では伝送路を介して
入力されるFSK信号に対するゲインをAGC回路で制
御し、このAGC回路でゲイン制御されたFSK信号を
データ復調器でデジタルデータに復調するデータ伝送方
式において、FSK変調器で周波数変調されるデジタル
データとして、マンチェスタ符号化したデータを用いる
ようにしている。
Therefore, in the present invention, on the transmitting side, digital data is
The frequency is modulated by the SK modulator and sent to the transmission line as an FSK signal, while on the receiving side, the gain for the FSK signal input via the transmission line is controlled by the AGC circuit. In a data transmission system in which an FSK signal is demodulated into digital data using a data demodulator, Manchester encoded data is used as the digital data that is frequency modulated by the FSK modulator.

〈作用〉 マンチェスタ符号は、マークスペース比が50%の完全
平衡符号であるから、その平均値レベルはデータの内容
に影響されずに、伝送路の減衰量に比例する。このため
、周波数変調の変調キャリァをパイロット信号として受
信側のAGC回路のゲイン制御に利用することができる
ことになる。
<Operation> Since the Manchester code is a perfectly balanced code with a mark-space ratio of 50%, its average level is not affected by the data content and is proportional to the amount of attenuation of the transmission path. Therefore, the modulated carrier of frequency modulation can be used as a pilot signal for gain control of the AGC circuit on the receiving side.

〈実施例〉 第1図はデータ伝送方式を適用するデータ伝送装置の構
成図である。同図において、符号lはデータ源であり、
このデータ源で取り扱われるデータは、本例ではマンチ
ェスタ符号化されたものである。すなわち、このマンチ
ェスタ符号は、第2図に示すように、一定のサンプリン
グ周期tにおいて、信号の立ち上がりを符号゛l”、信
号の立ち下がりを符号“0”にそれぞれ対応させたもの
で、マークスペース比が50%の完全平衡符号であり、
クロック再生が確実に行える等の利点がある。
<Embodiment> FIG. 1 is a block diagram of a data transmission device to which the data transmission method is applied. In the same figure, the symbol l is the data source,
The data handled by this data source is Manchester encoded in this example. In other words, as shown in Fig. 2, this Manchester code corresponds to the rising edge of a signal to the code "l" and the falling edge of the signal to the code "0" in a certain sampling period t, and the mark space is It is a perfectly balanced code with a ratio of 50%,
There are advantages such as clock reproduction can be performed reliably.

2はこのマンチェスタ符号のデータを周波数変調するF
SK変調器、3は周波数変調して得られるFSK信号を
光信号に変換する発光部、5は光ファイバの伝送路、6
は伝送路5を介して伝送される光信号を電気信号に変換
する受光部、7は受光部6から出力されるFS3S2O
ゲインを制御するAGC回路、8はゲイン制御されたF
SK信号からデンタルデータを復調するデータ復調器で
ある。
2 is F that frequency modulates this Manchester code data.
SK modulator, 3 is a light emitting unit that converts the FSK signal obtained by frequency modulation into an optical signal, 5 is an optical fiber transmission line, 6
7 is a light receiving unit that converts the optical signal transmitted through the transmission line 5 into an electrical signal, and 7 is an FS3S2O output from the light receiving unit 6.
AGC circuit that controls gain, 8 is gain controlled F
This is a data demodulator that demodulates dental data from the SK signal.

上記のAGC回路7は、FSK信号の変調キャリアを包
絡線検波する包絡線検波器7aと、この包絡線検波され
た信号を積分出力する積分器7bと、この積分器7bの
出力をゲイン制御信号として入力してFSK信号のゲイ
ンを制御する被制御増幅器7cとからなる。
The AGC circuit 7 described above includes an envelope detector 7a that envelope-detects the modulated carrier of the FSK signal, an integrator 7b that integrates and outputs the envelope-detected signal, and outputs the output of the integrator 7b as a gain control signal. and a controlled amplifier 7c that controls the gain of the FSK signal.

上記構成において、データ源で用いられるマンチェスタ
符号のデジタルデータを伝送する場合には、FSK変調
器2によってデータがノ\イレベルのときは周波数f、
で、ローレベルのときは周波数f、(ただし、ここでは
ft>ftとする)でもってそれぞれ変調される。本例
では、第3図(a)に示すように、マンチェスタ符号で
“11011ビという内容のデータが周波数変調して伝
送されるものとする。そして、この周波数変調されたF
SK信号は、発光部で光信号に変換された後、伝送路5
に送出される。伝送路上を伝送される信号は、その周波
数成分によって伝達特性が異なり、通常、高い周波数f
、の信号成分の減衰量が大きく、低い周波数f、の信号
成分の減衰量は小さくなる。つまり振幅方向にも変調を
受ける。このため、受光部6で電気信号に変換されたF
SK信号は、同図(b)に示すようになる。このFSK
信号は、被制御増幅器7Cを介して包絡線検波器7aに
入力されて包絡線検波される。その包絡線検波出力は、
同図(c)に示すように、平坦でなく凹凸があるが、し
かし、その形状は送信したデジタルデータの波形に沿っ
たものとなる。前述のごとく、マンチェスタ符号は完全
平衡符号であるから、マークスペース比は50%であり
、したがって、包絡線検波した出力を積分器7bで積分
した出力は、凹凸が完全に平坦化されて同図(d)に示
すように一定になる。すなわち、積分器7bから被制御
増幅器7Cに対して出力されるゲイン制御信号は、デー
タの内容によって変動せず、伝送路5の減衰量にのみ比
例することになる。
In the above configuration, when transmitting Manchester code digital data used in the data source, when the data is at noise level by the FSK modulator 2, the frequency f,
When the signal is at a low level, it is modulated at a frequency f (here, ft>ft). In this example, as shown in FIG. 3(a), it is assumed that data with content "11011 bits" is frequency-modulated and transmitted using Manchester code.Then, this frequency-modulated F
The SK signal is converted into an optical signal by the light emitting section, and then transmitted through the transmission line 5.
will be sent to. Signals transmitted on a transmission path have different transfer characteristics depending on their frequency components, and usually have a high frequency f.
The amount of attenuation of the signal component of , is large, and the amount of attenuation of the signal component of low frequency f, is small. In other words, it is also modulated in the amplitude direction. For this reason, the F
The SK signal becomes as shown in FIG. 4(b). This FSK
The signal is input to the envelope detector 7a via the controlled amplifier 7C and subjected to envelope detection. The envelope detection output is
As shown in FIG. 6(c), it is not flat and has irregularities, but its shape follows the waveform of the transmitted digital data. As mentioned above, since the Manchester code is a completely balanced code, the mark-space ratio is 50%. Therefore, the output obtained by integrating the envelope detection output by the integrator 7b has the unevenness completely flattened and is shown in the same figure. It becomes constant as shown in (d). That is, the gain control signal output from the integrator 7b to the controlled amplifier 7C does not vary depending on the content of the data, and is proportional only to the amount of attenuation of the transmission line 5.

このため、従来のようにパイロット信号発生器を別途設
ける必要はなく、周波数変調の変調キャリアをそのまま
パイロット信号として受信側のAGC回路7のゲイン制
御に利用することができることになる。
Therefore, there is no need to separately provide a pilot signal generator as in the prior art, and the modulated carrier of frequency modulation can be used as it is as a pilot signal for gain control of the AGC circuit 7 on the receiving side.

〈発明の効果〉 本発明によれば、マークスペース比が50%の完全平衡
符号であるマンチェスタ符号を用いるので、その平均値
レベルはデータの内容に影響されずに、伝赳路の減衰量
に比例する。このため、周波数変調の変調キャリアをパ
イロット信号として受信側のAGC回路のゲイン制御に
利用することができる。したがって、従来のようにFS
K信号にパイロット信号を別途重畳しなくても、伝送路
による信号減衰量を補償することができるので、伝送装
置の全体の構成の簡素化が可能となる。
<Effects of the Invention> According to the present invention, since the Manchester code, which is a perfectly balanced code with a mark-space ratio of 50%, is used, the average value level is not affected by the data content and is dependent on the attenuation amount of the transmission path. Proportional. Therefore, the modulated carrier of frequency modulation can be used as a pilot signal for gain control of the AGC circuit on the receiving side. Therefore, as before, FS
Since signal attenuation due to the transmission path can be compensated for without separately superimposing a pilot signal on the K signal, the overall configuration of the transmission device can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の実施例を示すもので、第
1図はデータ伝送方式を適用するデータ伝送装置の構成
図、第2図はマンチェスタ符号の説明図、第3図はマン
チェスタ符号のデータを周波数変調してからAGC回路
の制御信号を取り出す場合を説明するための波形図であ
る。 第4図および第5図はNRZ符号のデータを周波数変調
してからAGC回路の制御信号を取り出す場合を説明す
るための波形図である。 1・・・データ源、2・・・FSK変調器、5・・・伝
送路、7・・・AGC回路、8・・・データ復調器。
1 to 3 show embodiments of the present invention, in which FIG. 1 is a configuration diagram of a data transmission device to which the data transmission method is applied, FIG. 2 is an explanatory diagram of Manchester code, and FIG. 3 is a diagram of Manchester code. FIG. 4 is a waveform diagram for explaining a case where a control signal of an AGC circuit is extracted after frequency modulating code data. FIGS. 4 and 5 are waveform diagrams for explaining the case where a control signal for an AGC circuit is extracted after frequency modulating NRZ code data. DESCRIPTION OF SYMBOLS 1... Data source, 2... FSK modulator, 5... Transmission line, 7... AGC circuit, 8... Data demodulator.

Claims (1)

【特許請求の範囲】[Claims] (1)送信側では、デジタルデータをFSK変調器によ
って周波数変調し、これをFSK信号として伝送路に送
出する一方、受信側では伝送路を介して入力されるFS
K信号に対するゲインをAGC回路で制御し、このAG
C回路でゲイン制御されたFSK信号をデータ復調器で
デジタルデータに復調するデータ伝送方式において、 前記FSK変調器で周波数変調されるデジタルデータと
して、マンチェスタ符号化したデータを用いることを特
徴とするデータ伝送方式。
(1) On the transmitting side, the digital data is frequency-modulated by an FSK modulator and sent out as an FSK signal to the transmission path, while on the receiving side, the FS signal input via the transmission path is
The gain for the K signal is controlled by the AGC circuit, and this AG
A data transmission method in which an FSK signal whose gain is controlled by a C circuit is demodulated into digital data by a data demodulator, characterized in that Manchester encoded data is used as the digital data frequency modulated by the FSK modulator. Transmission method.
JP31070590A 1990-11-15 1990-11-15 Data transmission system Pending JPH04180438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31070590A JPH04180438A (en) 1990-11-15 1990-11-15 Data transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31070590A JPH04180438A (en) 1990-11-15 1990-11-15 Data transmission system

Publications (1)

Publication Number Publication Date
JPH04180438A true JPH04180438A (en) 1992-06-26

Family

ID=18008480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31070590A Pending JPH04180438A (en) 1990-11-15 1990-11-15 Data transmission system

Country Status (1)

Country Link
JP (1) JPH04180438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327362B2 (en) 2008-11-28 2012-12-04 Ricoh Company, Ltd. Workflow information generation unit configured to construct a workflow with a plurality of processes and determine its allowability, a method of constructing the same, and an image processing apparatus configured to execute the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327362B2 (en) 2008-11-28 2012-12-04 Ricoh Company, Ltd. Workflow information generation unit configured to construct a workflow with a plurality of processes and determine its allowability, a method of constructing the same, and an image processing apparatus configured to execute the same

Similar Documents

Publication Publication Date Title
JP3657983B2 (en) Optical transmission method with low dispersion sensitivity, and transmission apparatus and transmission system for implementing the method
EP0967743A2 (en) Method and apparatus for optical frequency demodulation of an optical signal using interferometry
JPH0746224A (en) Transmission system and receiver
US4677608A (en) Method of transferring an additional information channel across a transmission medium
JP2820511B2 (en) Polarization diversity receiver for coherent optical communication
US6882944B2 (en) Threshold setting apparatus for adjustably setting a threshold for use in identifying serial data from a baseband signal
US7457549B2 (en) Sub signal modulation apparatus, sub signal demodulation apparatus, and sub signal modulation demodulation system
JPS61267426A (en) Auxiliary low frequency channel demodulator for digital transmission system
JPH04180438A (en) Data transmission system
US4799238A (en) Differential phase shift keying method for the transmission of data
JPS61239755A (en) Transmission system for digital signal
JP2626286B2 (en) Optical repeater monitoring control signal transmission method
EP1026840B1 (en) Polarisation modulation for optical transmission
US5878084A (en) Method and apparatus for recovering the independent bit streams from each of two co-channel frequency modulated carriers
JPS57174943A (en) Power line carrier device
JPH08191269A (en) Optical communication system
JPH0324846A (en) Abnormality detection system for radio transmission and reception equipment
JPH0195609A (en) Full duplex modem
JPH11251916A (en) Manchester code reception circuit
JPH0360232A (en) Auxiliary signal transmission system
JPS62137A (en) Optical reception system
JPS63169131A (en) Optical digital link
JPH04349727A (en) Optical receiver
JPS61161042A (en) Digital transmission system
JPS63146527A (en) Optical transmission system