JPH04180249A - Integrated circuit - Google Patents

Integrated circuit

Info

Publication number
JPH04180249A
JPH04180249A JP2310358A JP31035890A JPH04180249A JP H04180249 A JPH04180249 A JP H04180249A JP 2310358 A JP2310358 A JP 2310358A JP 31035890 A JP31035890 A JP 31035890A JP H04180249 A JPH04180249 A JP H04180249A
Authority
JP
Japan
Prior art keywords
type
epitaxial layer
semiconductor substrate
layer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2310358A
Other languages
Japanese (ja)
Inventor
Goro Mitarai
御手洗 五郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2310358A priority Critical patent/JPH04180249A/en
Publication of JPH04180249A publication Critical patent/JPH04180249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To obtain a desired high-voltage IC without damaging the characteristics of a element device to be used in a high-voltage IC, by a method wherein high impurity density buried layer is provided with a structure where the layer does not directly contact with a p-type semiconductor substrate. CONSTITUTION:Formed is a first n-type epitaxial layer 11 whose resistivity is determined by the withstanding voltage required on a p-type semiconductor substrate 11. Then, an n-type buried layer 2 with a high impurity concentration is formed on a specified position within the epitaxial layer 11, and a second n-type epitaxial layer 3 is formed to bury the n-type buried layer 2. Then, an isolation area 4 is formed which extends to the p-type semiconductor substrate across the first n-type epitaxial layer 11 and the second n-type epitaxial layer 3. Then, a base region 5 and emitter region 6 for a transistor are formed on the island region that is formed by the isolation area 4, and an n-type collector-wall region 7 with a high impurity concentration is formed. Thus, it is possible to obtain a sufficient high withstanding voltage without making the resistivity of the buried layer 2 high.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明に高耐圧モノリシック集積回路装置に関し、特
に大t5L高耐圧特性が得られる集積回路装置を提供す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high breakdown voltage monolithic integrated circuit device, and particularly provides an integrated circuit device that can obtain large t5L and high breakdown voltage characteristics.

〔従来の技術〕[Conventional technology]

元来より高耐圧モノリシック集積回路装置C以下高耐圧
XCという)として第2図に示す断面構造のものが提案
場れているρ・、以下第8図tfつて従来のものt説明
するO 第2図において、Ill t/i1)形半導体基板、(
21はn形高不純物7I度埋込み層、・31は   n
杉エピタキシャル層、14)はp形分離@域、51はp
杉ペース孤散@臘、16)はコレクタ@域となるn形^
不純物濃度エミッタ拡敢唄戚、・71Hn杉尚不純物績
度コレクターウオール唄戚、(8)は保護膜、(9)は
電極を示す。
Originally, a high-voltage monolithic integrated circuit device C (hereinafter referred to as high-voltage XC) with the cross-sectional structure shown in Figure 2 has been proposed. In the figure, Illt/i1) type semiconductor substrate, (
21 is n-type high impurity 7I degree buried layer, ・31 is n
Cedar epitaxial layer, 14) is p-type isolation @ region, 51 is p
Sugi pace isolated @臘, 16) is the n-type that becomes the collector @ area.
Impurity concentration emitter expansion ratio, 71Hn Sugi Nao impurity level collector wall ratio, (8) indicates a protective film, and (9) indicates an electrode.

上述の高耐圧ICa高耐圧を優るためにその要求される
耐圧に従ってn形エピタキシャル層31に^比抵抗で厚
みが厚く(通常20μm〜50μm)形成されている。
In order to outperform the above-mentioned high breakdown voltage ICa, the n-type epitaxial layer 31 is formed to have a specific resistance and a large thickness (usually 20 μm to 50 μm) according to the required breakdown voltage.

又高耐圧ICKOe用されるトランジスタ、ダイオード
等の11EfIL特性改善のために、n形高不純物濃度
のコレクターウオール頭板(71が埋込み層121に到
達するように形成される一合もある。       ” 〔発明が解決しようとする課題〕 従来の高耐圧XCは以上のように構成されていたので、
n形高不純物濃度連込み層(2)とp形半導体基板11
で形成されるPN接合tlolの降伏電圧(!ft圧)
で^耐圧ICの耐圧が決定され、このため500v以上
の高耐圧を得るためには、p形半導体基板と埋込み層の
内領域の比抵抗を高比抵抗にする必要があるが、埋込み
層を高比抵抗にすると高耐圧工Cに形成されるトランジ
スタ、ダイオード等のIE流特注が損なわれ、あるいは
p形ベース頭戚とn形コレクタ@戚とp形半導体基板と
で形成される高耐圧ICの奇生トランジスタの形成を防
止する効果がうすれるという問題点があった。
In addition, in order to improve the 11EfIL characteristics of transistors, diodes, etc. used in high voltage ICKOe, a collector wall head plate (71) with a high n-type impurity concentration is sometimes formed so as to reach the buried layer 121. Problems to be Solved by the Invention] Since the conventional high voltage XC was configured as described above,
N-type high impurity concentration entrainment layer (2) and p-type semiconductor substrate 11
The breakdown voltage (!ft pressure) of the PN junction tlol formed by
The breakdown voltage of the IC is determined, and therefore, in order to obtain a high breakdown voltage of 500V or more, it is necessary to make the specific resistance of the p-type semiconductor substrate and the inner region of the buried layer high. If the specific resistance is made high, the IE style customization of transistors, diodes, etc. formed in the high-voltage structure C will be impaired, or high-voltage ICs formed with a p-type base head, an n-type collector, and a p-type semiconductor substrate will be damaged. There is a problem in that the effect of preventing the formation of anomalous transistors is diminished.

この発明に上記のような問題はを解消するためになされ
たもので、埋込み層の比抵抗を高比抵抗にすることなし
に十分高耐圧が得られる構造のモノリシック高1酎圧I
Cを得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is a monolithic high pressure I with a structure that can obtain a sufficiently high breakdown voltage without making the specific resistance of the buried layer high.
The purpose is to obtain C.

〔課題をS決するための手段〕 この発明に係る高耐圧ICi、p形半導体基板と埋込み
層とが直接PN棗台を形成しない構造とするため、こ、
p形半導体基板上にn形紙不純物濃度エピタキシャル層
ケ形成し、その後このn杉エピタキシャル層にn杉埋込
み層を形成するようにしたものである。
[Means for resolving the problem] In order to have a structure in which the high breakdown voltage ICi according to the present invention does not directly form a PN base with the p-type semiconductor substrate and the buried layer, the following steps are taken.
An n-type paper impurity concentration epitaxial layer is formed on a p-type semiconductor substrate, and then an n-cedar buried layer is formed on this n-cedar epitaxial layer.

〔作用〕[Effect]

本発明における高耐圧I Cris高耐圧工Cの降伏が
p形半導体基板のn形エピタキシャル層で形成されるP
M接合で決定されるようになり、5oov以上の高耐圧
を得ることができ、埋込み層が十分高不純物−度(低比
抵抗)で形成されるためトランジスタ、ダイオード等の
安素デバイスも良好な電流特性が得られ、又寄生トラン
ジスタの形成防止効果も十分大きな効果2qることかで
きる。
In the present invention, the breakdown of the high voltage I
It is now possible to obtain a high breakdown voltage of 5oOV or more, and because the buried layer is formed with a sufficiently high impurity concentration (low specific resistance), annium devices such as transistors and diodes are also suitable. Current characteristics can be obtained, and a sufficiently large effect 2q can be achieved in preventing the formation of parasitic transistors.

〔実施例〕〔Example〕

以下、この発明の一去施例倉図について説明する。 Hereinafter, a warehouse diagram as an example of this invention will be explained.

この発明に係るモノリシック尚耐圧工Cの一実施例1に
第1図を使って説明する。
A first embodiment of a monolithic pressure-resistant construction C according to the present invention will be described with reference to FIG.

第1図(勘〜1山にこの発明の一実施例でるる高耐圧I
Cの主要な%!逝工程を示す断面図である。
FIG.
Major % of C! It is a sectional view showing a dying process.

なお1図中d11記従来のものと同−品分又は相当部汁
には1同一行号か付しておる。
In addition, the same line number or 1 is attached to the same item or equivalent portion as the conventional one in d11 in Figure 1.

1す第1図1ot /!:示す類<、p形半導体基板山
上に安来される耐圧によって比抵抗が決められた第lの
n形エピタキシャル層d11を形成する。
1S Figure 1 1ot/! A first n-type epitaxial layer d11 whose specific resistance is determined by the withstand voltage is formed on a p-type semiconductor substrate.

続いてエピタキシャル層dυ円の所定)部分Ic n形
高不純物績度埋込み層121形成する。久vc第1図1
b+に示す卯<s”形埋込み層12)を埋込む4くにエ
ピタキシャル成長にて第2のn形エピタキシャル層”3
1を形成する。続いて第1図1ot ic示すヨウに第
1のn形エビクキシャル層dυ及び第2のn形エピタキ
シャル層1311に横切って、p形半導体基板111に
到達する分離*戚141を形成する。
Subsequently, a predetermined portion of the epitaxial layer dυ is formed as an n-type high impurity buried layer 121. Kyu VC Figure 1 1
A second n-type epitaxial layer 3 is formed by epitaxial growth to bury the 4<s” type buried layer 12) shown in b+.
form 1. Subsequently, as shown in FIG. 1, an isolation layer 141 is formed across the first n-type epitaxial layer dυ and the second n-type epitaxial layer 1311 to reach the p-type semiconductor substrate 111.

続いてこの分1@ @ [(41にて形成された14頭
域にトランジスタのペース開成1!11及びエミッタ@
域(6)を形成する。続いてn杉高不純物?Ik度コレ
クターウオール領[+71を形成する。次に第1図(山
に示すように%株表膜(8)及び電極(91を形成して
目的とする高・耐圧工Cが得られる。
Next, for this minute 1@@[(41, the transistor pace is opened in the 14 head area 1!11 and the emitter@
Form area (6). Next is n Sugi Taka impurity? Forms Ik degree collector wall territory [+71. Next, as shown in FIG. 1 (the ridges), a surface film (8) and an electrode (91) are formed to obtain the desired high pressure-resistant structure C.

このような構造の高耐圧工Cにおいては、p形半導体基
板・11と弗1のn形半導体唄域dυ間に形成されるP
I接倚1121に、n形半導体唄臘Uυが十分に高比抵
抗が一択できるため、希望する高耐圧を4ることができ
る。又高欝圧工OK使用さnるトランジスタ、ダイオー
ド等要素デバイスの電流特性及び寄生トランジスタ形成
防止の効果は埋込み/iil +21を十分高濃度に形
成することができるため、慣なわれることなく希望する
特性を得ることができる。従って本実施列の筒耐圧工C
は従来のものと比べ、第2のn形半導体mzuIIを形
成する工程を追刀口するのみで、従来得られなかった高
耐圧が得られ、かつトランジスタ、ダイオード等要素デ
バイスの特性特に電流特性を損うことなく、又高耐圧I
Cで発生しやすい寄生トランジスタの発生を防止できる
高耐圧ICを得ることができる。
In the high-voltage structure C having such a structure, P formed between the p-type semiconductor substrate 11 and the n-type semiconductor region dυ of the film 1 is
Since a sufficiently high resistivity of the n-type semiconductor Uυ can be selected for the I contact 1121, a desired high breakdown voltage can be achieved. In addition, the current characteristics of elemental devices such as transistors and diodes that are used under high pressure conditions and the effect of preventing the formation of parasitic transistors can be achieved without getting used to the current characteristics and the effect of preventing the formation of parasitic transistors. characteristics can be obtained. Therefore, the cylinder pressure work C of this implementation row
Compared to the conventional method, by simply adding the step of forming the second n-type semiconductor mzuII, it is possible to obtain a high withstand voltage that could not be obtained conventionally, and to reduce the loss of characteristics, especially current characteristics, of elemental devices such as transistors and diodes. High withstand voltage I
A high breakdown voltage IC can be obtained that can prevent the generation of parasitic transistors that are likely to occur in C.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、高不純物濃度埋込み層
をp形半導体基板と直暴接胆しない構造とすることによ
り、高耐圧工CK使用される要素デバイスの特性特に大
電流化や低Vcs(aat)特注ケ損うことなく所望の
面耐圧工Cが得られるという効果がある。
As described above, according to the present invention, the high impurity concentration buried layer has a structure that does not come in direct contact with the p-type semiconductor substrate, thereby improving the characteristics of element devices used in high voltage CK, especially large current and low Vcs. (aat) There is an effect that the desired surface pressure-resistant work C can be obtained without damaging the custom order.

【図面の簡単な説明】[Brief explanation of drawings]

第1図tjL+〜tdlはこの発明の一実施例である高
・打圧ICの製造工程を示f断面図、第2図は従来の高
耐圧工Cの構造全示す断面図である。 図において%:鳳」はp形半導体基板、21はni高不
純物濃度埋込み層、31は粥2のn形エピタキシャル層
、・4)はp形分41@域、 +51はペース頭載、1
6)はエミッタ@域、171はn形高不純物濃度コレク
ターウオール@域、18)は保護膜、I9)に電極、 
tlQlはPN接合、anは第lのn形エピタキシャル
層、 a21はPM接合を示す。 なお1図中、同一符号は同一、またFi柑当部分を示す
FIG. 1 tjL+ to tdl is a sectional view f showing the manufacturing process of a high pressure IC according to an embodiment of the present invention, and FIG. In the figure, %: Otori' is the p-type semiconductor substrate, 21 is the ni high impurity concentration buried layer, 31 is the n-type epitaxial layer of porridge 2, 4) is the p-type portion 41@ area, +51 is the paste head, 1
6) is the emitter @ region, 171 is the n-type high impurity concentration collector wall @ region, 18) is the protective film, I9) is the electrode,
tlQl represents a PN junction, an represents the l-th n-type epitaxial layer, and a21 represents a PM junction. In Figure 1, the same reference numerals are the same and indicate the corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  第1導電形を有する半導体基板、この半導体基板上に
形成された第2導電形を有する第1の半導体層、この第
1の半導体層の所定の部分に形成された第2導電形を有
する高不純物濃度の第2の半導体領域、この第2の領域
を埋込む如くに形成された第2導電形を有する第3の半
導体層、前記第1の半導体層及び第3の半導体層を横切
り、前記半導体基板に到達する第1導電形を有する分離
領域を少なくとも有する事を特徴とする集積回路装置。
A semiconductor substrate having a first conductivity type, a first semiconductor layer having a second conductivity type formed on the semiconductor substrate, and a semiconductor layer having the second conductivity type formed in a predetermined portion of the first semiconductor layer. a second semiconductor region having an impurity concentration; a third semiconductor layer having a second conductivity type formed so as to bury the second region; crossing the first semiconductor layer and the third semiconductor layer; An integrated circuit device comprising at least an isolation region having a first conductivity type that reaches a semiconductor substrate.
JP2310358A 1990-11-14 1990-11-14 Integrated circuit Pending JPH04180249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2310358A JPH04180249A (en) 1990-11-14 1990-11-14 Integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2310358A JPH04180249A (en) 1990-11-14 1990-11-14 Integrated circuit

Publications (1)

Publication Number Publication Date
JPH04180249A true JPH04180249A (en) 1992-06-26

Family

ID=18004275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2310358A Pending JPH04180249A (en) 1990-11-14 1990-11-14 Integrated circuit

Country Status (1)

Country Link
JP (1) JPH04180249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043534A (en) * 1997-11-05 2000-03-28 Matsushita Electronics Corporation High voltage semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236483A (en) * 1975-09-17 1977-03-19 Matsushita Electronics Corp Semiconductor integrated circuit
JPS59124736A (en) * 1982-12-29 1984-07-18 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236483A (en) * 1975-09-17 1977-03-19 Matsushita Electronics Corp Semiconductor integrated circuit
JPS59124736A (en) * 1982-12-29 1984-07-18 Fujitsu Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043534A (en) * 1997-11-05 2000-03-28 Matsushita Electronics Corporation High voltage semiconductor device

Similar Documents

Publication Publication Date Title
US4001869A (en) Mos-capacitor for integrated circuits
JPS6322070B2 (en)
JPS5937867B2 (en) Semiconductor device and its manufacturing method
US4005469A (en) P-type-epitaxial-base transistor with base-collector Schottky diode clamp
US4639757A (en) Power transistor structure having an emitter ballast resistance
JPH0332216B2 (en)
JPS58186965A (en) Transistor
JPH04180249A (en) Integrated circuit
US3319139A (en) Planar transistor device having a reentrant shaped emitter region with base connection in the reentrant portion
JP2622521B2 (en) Gate cut-off thyristor and manufacturing method thereof
US4197147A (en) Method of manufacturing an integrated circuit including an analog circuit and an I2 L circuit utilizing staged diffusion techniques
JPS6239547B2 (en)
JPH055373B2 (en)
JPS6155775B2 (en)
JPH0440273Y2 (en)
JP3041908B2 (en) Semiconductor device
JPS61129867A (en) Semiconductor device
JPS6322068B2 (en)
JP2576489B2 (en) Memory device
JPS6350870B2 (en)
JPS60144961A (en) Semiconductor integrated circuit
JPS61129868A (en) Semiconductor device
JPH01286356A (en) Semiconductor integrated circuit
JPS634715B2 (en)
JPH0462927A (en) Semiconductor device