JPH0418015B2 - - Google Patents

Info

Publication number
JPH0418015B2
JPH0418015B2 JP63124591A JP12459188A JPH0418015B2 JP H0418015 B2 JPH0418015 B2 JP H0418015B2 JP 63124591 A JP63124591 A JP 63124591A JP 12459188 A JP12459188 A JP 12459188A JP H0418015 B2 JPH0418015 B2 JP H0418015B2
Authority
JP
Japan
Prior art keywords
rolling
less
weight
cold
reduction ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63124591A
Other languages
Japanese (ja)
Other versions
JPH01294823A (en
Inventor
Shunichi Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12459188A priority Critical patent/JPH01294823A/en
Publication of JPH01294823A publication Critical patent/JPH01294823A/en
Publication of JPH0418015B2 publication Critical patent/JPH0418015B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、深絞り性に極めて優れた冷延鋼板の
製造方法に関する。 〔従来の技術〕 従来、冷延鋼板の製造工程においては、A3
態点以上の仕上温度で熱間圧延した素材を酸洗
し、75%程度の冷延率で冷間圧延した後、焼鈍す
るのが一般的である。このような従来方法におい
て、上記冷延鋼板のランクフオード値(以下r値
と記す)を向上させるためには、上記冷延率を75
%程度から90%程度に上げてやればよいことがわ
かつているが、この場合、冷延機の能力の都合か
らこのような高圧下の冷延率を採用することは困
難であつた。また、仮にレバース圧延機などを採
用することにより上記高冷延率での圧延が可能と
なつたとしても、現実には熱延仕上板厚が酸洗ラ
イン通過可能な最大厚さ6mm程度に制限されるの
で、これから例えば0.8mmtの冷延鋼板を製造す
る場合、87%の冷延率した取れず、結局上記高冷
延率は実現困難であり、十分な冷延集合組織の発
達が望めない。その結果、再結晶焼鈍後に深絞り
性に有効な集合組織が発達せず、r値が2.0前後
となつていた。 〔発明が解決しようとする問題点〕 以上のように、従来の冷延鋼板の製造方法で
は、理想的な冷延率が取れずに十分な冷延集合組
織が得られないため、得られる深絞り性、つまり
r値に限度があるという問題点があつた。 本発明の目的は、上記従来の状況に鑑みてなさ
れたもので、深絞り性の極めて良好な冷延鋼板の
製造方法を提供することにある。 本件発明者は、上記従来の問題点を解決するた
めに鋭意研究し、冷間圧延の集合組織の一部を熱
延段階で作り、続く冷間圧延でそれを完全なもの
とし、又冷延鋼板に要求される形状、精度、表面
品質については冷延段階で作り上げればよいこと
を見出し、本発明を成したものである。 〔問題点を解決するための手段〕 そこで本願の特定発明は、C:0.01重量%以
下、N:0.01重量%以下を含有し、Ti:0.2重量
%以下、Nb:0.2重量%以下で、かつ(C/12+
N/14)<(Ti/48+Nb/93)となる量のTiある
いはNbの一方又は双方を添加した鋼に対し、ス
ラブ加熱温度を1000℃以上とし、900℃〜1200℃
で粗圧延を施すとともに、Ti,Nbの炭、窒化物
を析出させて固溶(C,N)を20ppm以下とし、
800℃〜600℃の未再結晶温度範囲で熱間圧延仕上
板厚t1が4.5mm未満となるように、該仕上板厚t1
対してロール径D1がD1>100t1となる圧延ロール
を用いて圧下率R1の仕上圧延を行い、600℃以下
で巻取り、酸洗後、冷間圧延仕上板厚t2が1.5mm
未満となるように、該仕上板厚t2に対してロール
径D2がD2>100t2となる圧延ロールを用いて圧下
率R2>50%(但し、R1とR2との合計圧下率Rは
95%>R>75%)の冷間圧延を施した後、焼鈍す
るようにした製造方法である。また、本願の関連
発明は、上記特定発明における化学成分の鋼に
B:0.0005〜0.005重量%を含有させ、これを上
記製造方法に適用したものである。なお、ここで
合計圧下率Rは下記式で求められる。 R=1−(1−R1)(1−R2) また、粗圧延については従来の再加熱圧延で
も、鋳造後ただちに圧延を行う直接圧延であつて
も良い。 ここで、本願発明の成分限定理由及び製造条件
について説明する。 まず特定発明における成分限定理由について説
明する。 C,Nは、それぞれ0.01%を越えて添加する
と、TiC,TiN,NbCなどの析出物が多くなるた
め製品の加工性が悪くなり、又これを固着するた
めのTi,Nbの量が多くなつて高価になることか
ら、C≦0.01%、N≦0.01%とした。 Ti,Nbは、これを添加することで、その炭、
窒化物を形成させて鋼中の固溶(C,N)を減
じ、さらにフエライト再結晶温度を大幅に上げる
ことができ、加工中の回復も遅らせることが可能
になる。これによつて冶金的にみた場合、冷間で
圧延したのと同様な状態を高温域800℃以下まで
延長することができ、冷間集合組織の一部分を熱
間圧延時に作ることが可能となる。そしてこの
Ti,Nbの添加量は炭、窒化物を形成して鋼中の
固溶(C,N)を固定するに必要な量、即ち
(C/12+N/14)<(Ti/48+Nb/93)を満足
する量とし、かつ経済性をも考慮してTi:0.2重
量%以下、Nb:0.2重量%以下とした。 また、他の成分については限定していないが、
加工用冷延鋼板として通常含まれている成分、例
えばMn<0.3%、Si<0.2%、P<0.02%、S<
0.02%、Al<0.1%等がある。 次に関連発明における成分限定理由について説
明する。なお、C,N,Ti,Nbについては上記
特定発明で説明した理由と同様であるので、その
説明は省略する。 Bは、これを添加することで耐たて割れ性を改
善できる。即ち、Ti,Nbを添加することによ
り、固溶Cを低減することができるが、この固溶
Cの低減は結晶粒界の結合力を弱め、2次加工時
の耐たて割れ性を劣化させる。そこでBを添加す
ることで、このBを結晶粒界に偏析させて結晶粒
界の結合力を強めることができる。ここで、Bの
添加量については0.0005%未満では上述の効果が
得られず、0.005%を越える添加は経済的に不利
な上、過剰なBの添加は製品の深絞り性に悪影響
を及ぼすことから、0.0005%〜0.005%とした。 次に製造条件について説明する。 Ti,Nbの炭、窒化物析出処理を行う点:固溶
(C,N)が多量に含まれている状態で未再結晶
フエライト域圧延を施しても、再結晶焼鈍時に板
面に平行な(111)集合組織は発達せず、深絞り
性に悪影響を及ぼす(200)集合組織が発達する。
冷間圧延で高い深絞り性を得ようとする場合に
は、熱間圧延終了後に高温で巻取つて炭、窒化物
を析出させておくことが必要であるが、これと同
様に880℃〜600℃の温度範囲での、特に800℃以
下の未再結晶圧延前に、Ti,Nbの炭、窒化物を
析出させて、鋼中の固溶(C,N)を減じておく
ことが必要である。 ここで熱延仕上前に、Ti(C,N),Nb(C,
N)を充分に析出させる方法としては次の3つが
考えられる。 再加熱圧延の場合、スラブ加熱温度を900℃
〜1100℃と低温にして、スラブ加熱段階で析出
物をあまり固溶させない方法。 粗圧延温度を900〜1000℃と低くして、Ti,
Nbの炭、窒化物を圧延誘起析出させる方法。 粗圧延の終了から熱圧延仕上までに時間をお
いて、この間に炭、窒化物を析出させる方法
(この場合、待ち時間は析出物生成温度域で4
分以上が望ましい)。 温間圧延温度を880〜600℃とした点、及び冷間
圧延との合計圧下率を75%以上95%以下とした
点:800℃を越える温度での圧延では、フエライ
トが再結晶し加工組織圧延集合組織は残らない。
この温度域での圧下量と最終製品の特性とは関係
しない。また、800℃以下の未再結晶フエライト
域での圧下率が次工程の冷間圧延とともに圧延集
合組織を形成する上で重要であり、従つてトータ
ルで75〜95%になるようにこの温度域での圧下量
を制御する。一方、600℃未満の温度での圧延で
は材料の変形抵抗が大きすぎるので、実際的では
ない。そのため800℃〜600℃とした。 また、再結晶焼鈍で深絞り性に有効な集合組織
を得るためには、冷延集合組織を十分に発達させ
ておかなければならない。そのためには、先のフ
エライト未再結晶域での圧延率と冷間圧延率との
合計が75〜95%必要である。即ち、温間圧延での
圧下率R1は、それに続く冷間圧延の圧下率R2
の合計圧下率R〔=1−(1−R1)(1−R2)〕が
75%以上95%以下となるようにする。また巻取り
温度は巻取り段階で再結晶しない条件、つまり
600℃以下にする必要がある。それ以上になると
冷延との積算効果が期待できなくなるからであ
る。 この場合、冷間圧延については、上記熱間圧延
で作られた集合組織を完全なものとし、かつ表面
形状を整えるために、50%以上の圧下率を必要と
する。 熱間圧延における潤滑:熱延時の潤滑について
は、この潤滑が優れている程冷延と同等の特性が
もたらされ好ましいが、潤滑条件が悪くとも冷延
との合計圧下率が本発明範囲であれば、それ以下
の圧下率の冷延鋼板よりも高いr値を得ることが
できるので、特に規定する必要はない。 ロール径を規定した点:ロール径が仕上板厚に
比べてあまり小さいと、冷延率を高くしても板の
中心部まで塑性歪が入らず、十分な冷延集合組織
が得られない。そのため、仕上板厚tに対してロ
ール径DをD>100tとなるようにする。なお、こ
のことは冷延ロールについても同様である。 〔作用〕 本発明に係る冷延鋼板の製造方法においては、
Ti,Nbの炭、窒化物を析出させて鋼中の固溶
(C,N)を低減するとともに、所定ロール径の
圧延ロールによつて所定圧下率の温間圧延及び冷
間圧延を行うようにしたので、冶金的に見て冷間
のみで圧延したのと略同様な状態を、高温域800
℃以下まで延長することができ、深絞り性に影響
する冷延集合組織をこの両圧延で発達させること
が可能となり、高い深絞り性が得られる。 また、本願の関連発明においては、Bを添加す
るようにしたことから、上述の効果に加えて鋼中
の固溶(C,N)の低減に起因する耐たて割れ性
の劣化が防止できる。 〔実施例〕 以下、本発明の実施例を図について説明する。 まず、本願の特定発明の実施例について説明す
る。 第1表は本発明の鋼(表中、C,D)及び比較
鋼(表中、A,B)の化学成分を示す。 本実施例では第1表に示す4鋼種を転炉で溶製
し、通常の工程でスラブを製造した後、第2表に
示す条件で熱間圧延を行い、これをコイルに巻取
り、酸洗した後、これも第2表に示す条件で冷間
圧延を行い、850℃×1.5分の連続焼鈍(CAL)も
しくは750℃×3時間のバツチ焼鈍(BOX)を行
い、材料のr値を測定した。 その結果を第2表に示す。 第2表からも明らかなように、本願発明の鋼
(第3,4,6,7,10欄)では、いずれにおい
てもr値が2.0以上と高く、良好な深絞り性が得
られていることがわかる。 また本件発明者は、圧延率と深絞り性(r値)
との関係について実験を行つた。 図は、上記実験結果を示す特性図である。この
実験は、0.0025%C−0.01%Si−0.15%Mn−
0.001%S−0.08%Ti−0.003%Nの熱延板を、圧
下率を変化させて冷間圧延し、850℃×2分の再
結晶焼鈍した後、r値を測定した(図中、○印で
示す)。また、上記熱延板を全圧下率の半分を800
℃以下の熱延で行い、残り半分を冷延で行つて、
同様に850℃×2分の再結晶焼鈍をした後、r値
を測定した(図中、●印で示す)。 同図からも明らかなように、合計圧下率75〜95
%の範囲では、いずれも(○,●印)2.0以上の
r値が得られていることがわかる。 次に、本願の関連発明の実施例について説明す
る。 第3表は本願の関連発明の鋼(表中のE)及び
比較鋼(表中のC)の化学成分を示す。本実施例
[Industrial Application Field] The present invention relates to a method for manufacturing a cold rolled steel sheet having extremely excellent deep drawability. [Conventional technology] Conventionally, in the manufacturing process of cold-rolled steel sheets, a material that has been hot-rolled at a finishing temperature of A3 transformation point or higher is pickled, cold-rolled at a cold rolling rate of about 75%, and then annealed. It is common to do so. In such a conventional method, in order to improve the rank-ford value (hereinafter referred to as r value) of the cold rolled steel sheet, the cold rolling rate is set to 75.
It has been found that increasing the rolling rate from about 10% to about 90% is sufficient, but in this case, it has been difficult to adopt such a high cold rolling rate due to the capacity of the cold rolling mill. Furthermore, even if it were possible to roll at the above-mentioned high cold rolling rate by adopting a reverse rolling mill, in reality, the finished hot-rolled sheet thickness would be limited to a maximum thickness of about 6 mm that can pass through the pickling line. Therefore, when manufacturing a cold-rolled steel sheet of, for example, 0.8 mmt, a cold-rolling rate of 87% cannot be obtained, and in the end, it is difficult to achieve the above-mentioned high cold-rolling rate, and sufficient cold-rolling texture cannot be expected to develop. . As a result, a texture effective for deep drawability did not develop after recrystallization annealing, and the r value was around 2.0. [Problems to be solved by the invention] As described above, in the conventional manufacturing method of cold-rolled steel sheets, an ideal cold-rolling rate cannot be obtained and a sufficient cold-rolling texture cannot be obtained. There was a problem that there was a limit to the drawability, that is, the r value. The object of the present invention was made in view of the above-mentioned conventional situation, and it is an object of the present invention to provide a method for manufacturing a cold-rolled steel sheet having extremely good deep drawability. In order to solve the above-mentioned conventional problems, the inventor of the present invention conducted intensive research, created a part of the texture of cold rolling in the hot rolling stage, perfected it in the subsequent cold rolling, and The inventors have discovered that the shape, precision, and surface quality required for a steel plate can be achieved during the cold rolling process, and have thus completed the present invention. [Means for solving the problem] Therefore, the specified invention of the present application contains C: 0.01% by weight or less, N: 0.01% by weight or less, Ti: 0.2% by weight or less, Nb: 0.2% by weight or less, and (C/12+
For steel to which one or both of Ti and Nb is added in an amount such that N/14)<(Ti/48+Nb/93), the slab heating temperature is 1000℃ or higher, and the heating temperature is 900℃ to 1200℃.
In addition to rough rolling, Ti and Nb carbon and nitride are precipitated to reduce the solid solution (C, N) to 20 ppm or less,
In the non-recrystallized temperature range of 800°C to 600°C, the roll diameter D 1 is D 1 > 100t 1 with respect to the finished hot rolled plate thickness t 1 so that the finished plate thickness t 1 is less than 4.5 mm. Finish rolling with a reduction ratio of R 1 using rolling rolls, winding at 600℃ or less, and after pickling, the cold rolled finish plate thickness t 2 is 1.5 mm.
To ensure that the rolling reduction ratio R 2 > 50% (however, the sum of R 1 and R 2 The rolling reduction ratio R is
This manufacturing method involves cold rolling (95%>R>75%) and then annealing. Further, a related invention of the present application is that the steel having the chemical composition in the above specific invention contains B: 0.0005 to 0.005% by weight, and this is applied to the above manufacturing method. In addition, the total rolling reduction ratio R is calculated|required here by the following formula. R=1-(1- R1 )(1- R2 ) Further, the rough rolling may be conventional reheat rolling or direct rolling in which rolling is performed immediately after casting. Here, the reason for limiting the components and manufacturing conditions of the present invention will be explained. First, the reason for limiting the components in the specific invention will be explained. If C and N are added in excess of 0.01% each, precipitates such as TiC, TiN, and NbC will increase, resulting in poor workability of the product, and the amount of Ti and Nb to fix them will increase. Therefore, C≦0.01% and N≦0.01% were set. By adding Ti and Nb, the charcoal,
By forming nitrides, the solid solution (C, N) in the steel can be reduced, and the ferrite recrystallization temperature can be significantly increased, making it possible to delay recovery during processing. From a metallurgical point of view, this makes it possible to extend the state similar to cold rolling to a high temperature range of 800°C or lower, making it possible to create part of the cold texture during hot rolling. . And this
The amount of Ti and Nb added is the amount necessary to form carbon and nitrides and fix the solid solution (C, N) in the steel, that is, (C/12 + N/14) < (Ti/48 + Nb/93). In order to satisfy the requirements and also to take economic efficiency into account, Ti: 0.2% by weight or less and Nb: 0.2% by weight or less. In addition, there are no restrictions on other ingredients, but
Ingredients normally included in cold rolled steel sheets for processing, such as Mn < 0.3%, Si < 0.2%, P < 0.02%, S <
0.02%, Al<0.1%, etc. Next, the reason for limiting the components in the related invention will be explained. Note that the reason for C, N, Ti, and Nb is the same as that explained in the above-mentioned specific invention, so the explanation thereof will be omitted. By adding B, the warp cracking resistance can be improved. That is, by adding Ti and Nb, it is possible to reduce solid solution C, but this reduction in solid solution C weakens the bonding strength of grain boundaries and deteriorates the warp cracking resistance during secondary processing. let Therefore, by adding B, it is possible to segregate this B at the grain boundaries and strengthen the bonding force at the grain boundaries. Here, regarding the amount of B added, if it is less than 0.0005%, the above effects cannot be obtained, and if it is added more than 0.005%, it is economically disadvantageous, and addition of excessive B has a negative effect on the deep drawability of the product. From 0.0005% to 0.005%. Next, manufacturing conditions will be explained. The point of performing carbon and nitride precipitation treatment for Ti and Nb: Even if rolling is performed in the unrecrystallized ferrite region in a state where a large amount of solid solution (C, N) is included, the The (111) texture does not develop, and the (200) texture develops, which has a negative effect on deep drawability.
In order to obtain high deep drawability through cold rolling, it is necessary to precipitate carbon and nitrides by coiling at a high temperature after hot rolling. Before non-recrystallization rolling in the temperature range of 600℃, especially below 800℃, it is necessary to precipitate carbon and nitrides of Ti and Nb to reduce the solid solution (C, N) in the steel. It is. Here, before hot rolling finishing, Ti (C, N), Nb (C,
The following three methods can be considered to sufficiently precipitate N). For reheat rolling, the slab heating temperature is 900℃
A method that uses a low temperature of ~1100℃ to prevent precipitates from forming a solid solution during the slab heating stage. By lowering the rough rolling temperature to 900-1000℃, Ti,
A method for rolling-induced precipitation of carbon and nitride of Nb. A method in which carbon and nitrides are precipitated after a period of time between the end of rough rolling and the finishing of hot rolling (in this case, the waiting time is 400 yen in the precipitate formation temperature range).
(preferably more than 1 minute). The point that the warm rolling temperature was 880 to 600℃, and the total reduction ratio with cold rolling was 75% or more and 95% or less: When rolling at a temperature exceeding 800℃, ferrite recrystallizes and the processed structure changes. No rolling texture remains.
The amount of reduction in this temperature range has no relation to the properties of the final product. In addition, the rolling reduction in the unrecrystallized ferrite region below 800°C is important for forming the rolling texture during the next cold rolling process, and therefore it is important to ensure that the rolling reduction rate in the unrecrystallized ferrite region is 75 to 95% in total. Control the amount of reduction. On the other hand, rolling at temperatures below 600°C is not practical because the deformation resistance of the material is too high. Therefore, the temperature was set at 800℃ to 600℃. Further, in order to obtain a texture effective for deep drawability by recrystallization annealing, the cold rolling texture must be sufficiently developed. For this purpose, the sum of the rolling rate in the ferrite non-recrystallized area and the cold rolling rate must be 75 to 95%. In other words, the rolling reduction ratio R 1 in warm rolling is the total rolling reduction ratio R [=1-(1-R 1 )(1-R 2 )] including the rolling reduction ratio R 2 in the subsequent cold rolling.
The ratio should be 75% or more and 95% or less. In addition, the winding temperature is set under conditions that do not recrystallize during the winding stage, that is,
It is necessary to keep the temperature below 600℃. This is because if it exceeds this, the cumulative effect of cold rolling cannot be expected. In this case, in cold rolling, a reduction ratio of 50% or more is required in order to perfect the texture created by the hot rolling and to adjust the surface shape. Lubrication during hot rolling: Regarding lubrication during hot rolling, the better the lubrication, the better the properties equivalent to those of cold rolling, but even if the lubrication conditions are poor, as long as the total reduction with cold rolling is within the range of the present invention. Since it is possible to obtain a higher r value than a cold-rolled steel sheet with a rolling reduction of less than , there is no need to specify it in particular. Points for specifying the roll diameter: If the roll diameter is too small compared to the finished sheet thickness, plastic strain will not reach the center of the sheet even if the cold rolling rate is increased, and a sufficient cold rolling texture will not be obtained. Therefore, the roll diameter D is set so that D>100t with respect to the finished plate thickness t. Note that this also applies to cold rolling rolls. [Function] In the method for manufacturing a cold rolled steel sheet according to the present invention,
In addition to precipitating carbon and nitrides of Ti and Nb to reduce the solid solution (C, N) in the steel, warm rolling and cold rolling are performed at a prescribed reduction rate using rolling rolls with a prescribed roll diameter. From a metallurgical point of view, the condition is almost the same as cold rolling only, but in the high temperature range 800℃.
The cold rolling texture, which affects deep drawability, can be developed by both rolling processes, resulting in high deep drawability. In addition, in the related invention of the present application, since B is added, in addition to the above-mentioned effects, deterioration of warp cracking resistance due to reduction of solid solution (C, N) in steel can be prevented. . [Example] Hereinafter, an example of the present invention will be described with reference to the drawings. First, embodiments of the specific invention of the present application will be described. Table 1 shows the chemical components of the steel of the present invention (C, D in the table) and the comparative steel (A, B in the table). In this example, the four steel types shown in Table 1 were melted in a converter, a slab was manufactured using the normal process, and then hot rolled under the conditions shown in Table 2, wound into a coil, and After washing, cold rolling was performed under the conditions shown in Table 2, and continuous annealing (CAL) at 850°C for 1.5 minutes or batch annealing (BOX) at 750°C for 3 hours was performed to determine the r value of the material. It was measured. The results are shown in Table 2. As is clear from Table 2, the steel of the present invention (columns 3, 4, 6, 7, and 10) has a high r value of 2.0 or more in all cases, and good deep drawability is obtained. I understand that. In addition, the inventor of the present invention has determined that rolling reduction and deep drawability (r value)
We conducted an experiment on the relationship between The figure is a characteristic diagram showing the above experimental results. This experiment consisted of 0.0025%C-0.01%Si-0.15%Mn-
Hot-rolled sheets of 0.001%S-0.08%Ti-0.003%N were cold-rolled with varying reduction ratios and recrystallized at 850°C for 2 minutes, after which the r value was measured (○ in the figure). (indicated by a symbol). In addition, half of the total rolling reduction of the above hot-rolled sheet was reduced to 800
The material is hot-rolled at temperatures below ℃, and the remaining half is cold-rolled.
Similarly, after recrystallization annealing at 850°C for 2 minutes, the r value was measured (indicated by ● in the figure). As is clear from the figure, the total rolling reduction rate is 75 to 95.
% range, it can be seen that r values of 2.0 or more were obtained in all cases (○, ●). Next, embodiments of related inventions of the present application will be described. Table 3 shows the chemical components of the steel of the related invention of the present application (E in the table) and the comparative steel (C in the table). This example

【表】【table】

【表】【table】

【表】 表中、*は本発明の製造条件外を示す。
では第3表に示す2鋼種を溶製し、通常の工程で
スラブを製造した後、100℃に再加熱してγ域で
30mm厚さに粗圧延し、850℃になつたところで仕
上圧延を行い、800℃以下の圧下率を60%にして
2.9mmの厚さに仕上げ、仕上温度は両鋼(E,C)
とも730℃程度とした。次に、これを500℃で巻取
つた後、酸洗して冷間圧延した。この冷間圧延の
仕上板厚は0.8mmであるから、800℃以下の温度範
囲での圧下率は合計89%である。また熱間圧延の
ロール径はφ800、冷間圧延のロール径はφ580で
ある。 そして、上記製造方法により得られた鋼板を
850℃×1.5分の連続焼鈍した後、r値の測定及び
2次加工時の耐たて割れ性の試験を行つた。この
耐たて割れ性の試験はカツプ縦割れ試験を採用
し、鋼板をφ145でブランクした後、絞り比α:
2.0で試験用カツプを作製し、これを液体窒素温
度から常温までの温度範囲で、円錐ポンチにかぶ
せてカツプ底面から荷重をかけて破壊し、その時
の脆性破壊率から遷移温度を測定した。
[Table] In the table, * indicates outside the manufacturing conditions of the present invention.
Then, we melted the two steel types shown in Table 3, produced a slab using the normal process, and then reheated it to 100℃ to produce a slab in the γ range.
Roughly rolled to a thickness of 30mm, finish rolled when the temperature reached 850℃, and the rolling reduction was 60% below 800℃.
Finished to a thickness of 2.9mm, finishing temperature is both steel (E, C)
Both temperatures were set at around 730℃. Next, this was rolled up at 500°C, pickled, and cold rolled. Since the finished plate thickness of this cold rolling is 0.8 mm, the total rolling reduction in the temperature range of 800°C or less is 89%. The roll diameter for hot rolling is φ800, and the roll diameter for cold rolling is φ580. Then, the steel plate obtained by the above manufacturing method is
After continuous annealing at 850°C for 1.5 minutes, the r value was measured and the warp cracking resistance test during secondary processing was conducted. This vertical cracking resistance test adopted the cup vertical cracking test, and after blanking the steel plate with φ145, the drawing ratio α:
A test cup was prepared using 2.0, and the cup was placed over a conical punch and fractured by applying a load from the bottom of the cup at a temperature ranging from liquid nitrogen temperature to room temperature. The transition temperature was measured from the brittle fracture rate at that time.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る超深絞り性冷延鋼
板の製造方法によれば、Ti,Nbの炭、窒化物を
析出させて鋼中の固溶(C,N)を低減するとと
もに、熱延段階で冷間圧延集合組織の一部又はそ
のほとんどを作り、冷延段階でこの集合組織を完
全なものとするとともに表面性状を整えるように
したので、表面性状に優れ、かつ深絞り性に極め
て優れた冷延鋼板が得られる効果がある。 また本願の関連発明によれば、さらにBを添加
するようにしたので、上記効果に加えて耐たて割
れ性を向上できる効果がある。
As described above, according to the method for producing an ultra-deep drawable cold rolled steel sheet according to the present invention, carbon and nitrides of Ti and Nb are precipitated to reduce the solid solution (C, N) in the steel, and A part or most of the cold rolling texture is created during the hot rolling stage, and this texture is completed and the surface texture is adjusted during the cold rolling stage, resulting in excellent surface texture and deep drawability. This has the effect of producing extremely superior cold-rolled steel sheets. Further, according to the related invention of the present application, since B is further added, there is an effect of improving warp cracking resistance in addition to the above-mentioned effect.

【図面の簡単な説明】[Brief explanation of drawings]

図面は圧下率とr値との関係を示す特性図であ
る。
The drawing is a characteristic diagram showing the relationship between rolling reduction and r value.

Claims (1)

【特許請求の範囲】 1 C:0.01重量%以下、N:0.01重量%以下を
含有し、Ti:0.2重量%以下、Nb:0.2重量%以
下で、かつ(C/12+N/14)<(Ti/48+Nb/
93)となるような量のTiあるいはNbの一方又は
双方を添加した残部Fe及び不可避的不純物より
なる鋼に対し、スラブ加熱温度を1000℃以上と
し、900℃〜1200℃の温度範囲にて粗圧延を施す
とともに、Ti又はNbの炭化物、窒化物を析出さ
せて固溶C及び固溶Nの総量を20ppm以下とし、
800℃〜600℃の未再結晶温度範囲で、熱間圧延仕
上板厚t1が4.5mm未満となるように、該仕上板厚t1
に対してロール径D1がD1>100t1となる圧延ロー
ルを用いて未再結晶域での圧下率R1の仕上圧延
を施した後、600℃以下で巻取り、酸洗を行い、
さらに冷間圧延仕上板厚t2が1.5mm未満となるよ
うに、該仕上板厚t2に対してロール径D2がD2
100t2となる圧延ロールを用いて圧下率R2>50%
(但しR1とR2との合計圧下率Rは95%>R>75
%)の冷間圧延を施した後、焼鈍を行うようにし
たことを特徴とする超深絞り用冷延鋼板の製造方
法。 2 C:0.01重量%以下、N:0.01重量%以下、
B:0.0005〜0.005重量%を含有し、Ti:0.2重量
%以下、Nb:0.2重量%以下で、かつ(C/12+
N/14)<(Ti/48+Nb/93)となるような量の
TiあるいはNbの一方又は双方を添加した残部Fe
及び不可避的不純物よりなる鋼に対し、スラブ加
熱温度を1000℃以上とし、900℃〜1200℃の温度
範囲にて粗圧延を施すとともに、Ti又はNbの炭
化物、窒化物を析出させて固溶C及び固溶Nの総
量を20ppm以下とし、800℃〜600℃の未再結晶温
度範囲で、熱間圧延仕上板厚t1が4.5mm未満とな
るように、該仕上板厚t1に対してロール径D1
D1>100t1となる圧延ロールを用いて未再結晶域
での圧下率R1の仕上圧延を施した後、600℃以下
で巻取り、酸洗を行い、さらに冷間圧延仕上板厚
t2が1.5mm未満となるように、該仕上板厚t2に対し
てロール径D2がD2>100t2となる圧延ロールを用
いて圧下率R2>50%(但しR1とR2との合計圧下
率Rは95%>R>75%)の冷間圧延を施した後、
焼鈍を行うようにしたことを特徴とする超深絞り
用冷延鋼板の製造方法。
[Claims] 1 Contains C: 0.01% by weight or less, N: 0.01% by weight or less, Ti: 0.2% by weight or less, Nb: 0.2% by weight or less, and (C/12+N/14)<(Ti /48+Nb/
93) For steel consisting of residual Fe and unavoidable impurities with the addition of one or both of Ti and Nb in amounts such as While rolling, carbides and nitrides of Ti or Nb are precipitated to reduce the total amount of solute C and solute N to 20 ppm or less,
The finished hot rolled plate thickness t 1 is less than 4.5 mm in the non - recrystallized temperature range of 800°C to 600°C.
After finish rolling with a reduction ratio R 1 in the non-recrystallized area using a roll with a roll diameter D 1 of D 1 > 100t 1 , it is wound up at 600°C or less and pickled.
Further, so that the cold rolled finished plate thickness t 2 is less than 1.5 mm, the roll diameter D 2 is set to D 2 > with respect to the finished plate thickness t 2 .
Rolling reduction ratio R 2 > 50% using a rolling roll of 100t 2
(However, the total reduction ratio R of R 1 and R 2 is 95%>R>75
%), and then annealing is performed. 2 C: 0.01% by weight or less, N: 0.01% by weight or less,
Contains B: 0.0005 to 0.005% by weight, Ti: 0.2% by weight or less, Nb: 0.2% by weight or less, and (C/12+
N/14) < (Ti/48+Nb/93).
Remaining Fe with one or both of Ti and Nb added
For steel containing unavoidable impurities, the slab heating temperature is set to 1000°C or higher, and rough rolling is performed in a temperature range of 900°C to 1200°C, and carbides and nitrides of Ti or Nb are precipitated to form solid solution C. and the total amount of solid solution N is 20 ppm or less, and the finished hot rolled plate thickness t 1 is less than 4.5 mm in the non - recrystallized temperature range of 800 ° C to 600 ° C. Roll diameter D 1
After finish rolling with a rolling reduction ratio of R 1 in the non-recrystallized area using rolling rolls with D 1 > 100t 1 , winding is performed at 600℃ or less, pickling is performed, and the final cold rolled plate thickness is
In order to make t 2 less than 1.5 mm, use a rolling roll whose roll diameter D 2 is D 2 > 100t 2 for the finished plate thickness t 2 and set the rolling reduction ratio R 2 > 50% (however, R 1 and R After cold rolling with a total reduction ratio R of 95%>R>75%),
A method for producing a cold-rolled steel sheet for ultra-deep drawing, characterized in that annealing is performed.
JP12459188A 1988-05-20 1988-05-20 Manufacture of cold rolled steel plate for ultra-deep drawing Granted JPH01294823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12459188A JPH01294823A (en) 1988-05-20 1988-05-20 Manufacture of cold rolled steel plate for ultra-deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12459188A JPH01294823A (en) 1988-05-20 1988-05-20 Manufacture of cold rolled steel plate for ultra-deep drawing

Publications (2)

Publication Number Publication Date
JPH01294823A JPH01294823A (en) 1989-11-28
JPH0418015B2 true JPH0418015B2 (en) 1992-03-26

Family

ID=14889248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12459188A Granted JPH01294823A (en) 1988-05-20 1988-05-20 Manufacture of cold rolled steel plate for ultra-deep drawing

Country Status (1)

Country Link
JP (1) JPH01294823A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009931A1 (en) * 1993-10-05 1995-04-13 Nkk Corporation Continuously annealed and cold rolled steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036624A (en) * 1983-08-09 1985-02-25 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing
JPS62287018A (en) * 1986-06-06 1987-12-12 Nippon Steel Corp Production of high-strength cold rolled steel sheet having excellent deep drawability
JPS63230828A (en) * 1987-03-19 1988-09-27 Kobe Steel Ltd Manufacture of thick cold-rolled steel sheet excellent in deep drawability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036624A (en) * 1983-08-09 1985-02-25 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing
JPS62287018A (en) * 1986-06-06 1987-12-12 Nippon Steel Corp Production of high-strength cold rolled steel sheet having excellent deep drawability
JPS63230828A (en) * 1987-03-19 1988-09-27 Kobe Steel Ltd Manufacture of thick cold-rolled steel sheet excellent in deep drawability

Also Published As

Publication number Publication date
JPH01294823A (en) 1989-11-28

Similar Documents

Publication Publication Date Title
JPS5850299B2 (en) Manufacturing method for precipitation-strengthened high-strength cold-rolled steel sheets
JP3493722B2 (en) Method for producing ferritic stainless steel strip with excellent stretch formability
JP2503224B2 (en) Method for manufacturing thick cold-rolled steel sheet with excellent deep drawability
US5425820A (en) Oriented magnetic steel sheets and manufacturing process therefor
JPH0582458B2 (en)
JPH0144771B2 (en)
JPH0418015B2 (en)
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JPH02141536A (en) Production of steel sheet for drawn can decreased earing
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP3046663B2 (en) Method for producing hot-rolled steel sheet with excellent deep drawability using thin slab
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JPH03150316A (en) Production of cold rolled steel sheet for deep drawing
JP3508491B2 (en) Soft cold rolled steel sheet excellent in microstructure stability and method for producing the same
JPS59123720A (en) Production of cold rolled steel sheet for deep drawing
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JPH0137454B2 (en)
JPH07103424B2 (en) Method for producing hot rolled steel sheet with excellent deep drawability
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JP3046661B2 (en) Method for efficiently producing hot-rolled steel sheet with excellent deep drawability
JPH0394020A (en) Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness
JP3412243B2 (en) Manufacturing method of steel sheet for deep drawing with excellent formability
JPH06279859A (en) Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
JPH0369967B2 (en)