JPH04180015A - Driving method for liquid crystal electrooptical element - Google Patents

Driving method for liquid crystal electrooptical element

Info

Publication number
JPH04180015A
JPH04180015A JP30931790A JP30931790A JPH04180015A JP H04180015 A JPH04180015 A JP H04180015A JP 30931790 A JP30931790 A JP 30931790A JP 30931790 A JP30931790 A JP 30931790A JP H04180015 A JPH04180015 A JP H04180015A
Authority
JP
Japan
Prior art keywords
waveform
period
liquid crystal
waveforms
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30931790A
Other languages
Japanese (ja)
Inventor
Akihiko Ito
昭彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP30931790A priority Critical patent/JPH04180015A/en
Publication of JPH04180015A publication Critical patent/JPH04180015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To suppress crosstalks and to eliminate unequal display by respectively outputting the waveforms for displaying on 1st and 2nd scanning electrodes and repetitively outputting both waveforms as a method for outputting the on-pulses of the driving waveforms to be impressed to signal electrodes. CONSTITUTION:The period t1 of the driving waveforms is determined as a 1st frame and the polarities of the impressed voltage are alternated at every selection of the two lines of the scanning electrodes 410. The waveform B is impressed in the period t9, the waveform A in the period t10, the waveform A in the period t11 and the waveform B in the period t12. The periods t7 and t8 are alternately repeated in such a manner. The period t2 is determined as a 2nd frame and this period is so determined that the polarities of the voltage impressed to picture elements 408, 409 on the scanning electrode 410 are reversed when the same scanning electrode 410 as the period t1 and that the waveform B is impressed at the time of the period t2 if the signal electrode waveforms 105, 106 while the same scanning electrode 410 is selected in the periods t1, t2 are selected are the waveform A at the time of the period t1 and that waveform A is impressed at the time of the period t2 when the above-mentioned waveforms are the waveform B at the time of the period t1.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は液晶電気光学素子の駆動方法に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a method for driving a liquid crystal electro-optical element.

[従来の技術] 従来の電圧平均化法によるマルチプレクス駈動による液
晶電気光学素子の駆動方法で、特にパルス幅変調による
階調表示をするための駆動方法は第5図に示すような駆
動波形による方法であった。
[Prior Art] A driving method for a liquid crystal electro-optical element by multiplexing using a conventional voltage averaging method, in particular a driving method for displaying gradations by pulse width modulation, uses a driving waveform as shown in Fig. 5. The method was as follows.

[発明が解決しようとする課題] 従来の駆動波形を第5図に示す。第5図の502に示す
波形が第4図の405に印加され、第5図の503の波
形が第4図の406に印加されるべき理想的な波形の一
例である。しかし、第4図の401の液晶ドライバから
出力される実際の波形は第5図の502が505に示す
ようになり、503が506に示すようになる。これは
、液晶ドライバ内での駆動用電源の配線抵抗や出力抵抗
があるために波形がなまったり、同一液晶ドライバ内で
の他の波形の影響を受けて505の波形のBで示すよう
なスパイク状の電圧変動が生ずる。
[Problems to be Solved by the Invention] A conventional drive waveform is shown in FIG. The waveform shown at 502 in FIG. 5 is applied to 405 in FIG. 4, and the waveform at 503 in FIG. 5 is an example of an ideal waveform that should be applied to 406 in FIG. However, the actual waveforms output from the liquid crystal driver 401 in FIG. 4 are as shown by 502 in FIG. 5 and 506 in FIG. This is because the waveform is distorted due to wiring resistance and output resistance of the drive power supply in the liquid crystal driver, or spikes as shown in waveform B of 505 are caused by the influence of other waveforms within the same liquid crystal driver. Voltage fluctuations occur.

そのために、第4図の408と409の画素の様に同じ
実効電圧が印加されるべきところが実際には実効電圧に
差が出てしまいクロストークが発生して表示品質が悪く
なる。
Therefore, even though the same effective voltage should be applied to the pixels 408 and 409 in FIG. 4, a difference in effective voltage actually appears, causing crosstalk and deteriorating display quality.

また、第6図(a)の603で示す印加電圧の極性切り
替え前の液晶電気光学素子の印加電圧波形を見ると選択
期間t’3において0部で示すようになり実効電圧が高
めとなり、 (b)の606で示す印加電圧の極性切り
替えのときの液晶電気光学素子の印加電圧波形を見ると
選択期間t+4においてD部で示すようになり実効電圧
が低めとなる。
Furthermore, looking at the applied voltage waveform of the liquid crystal electro-optical element before the polarity switching of the applied voltage shown at 603 in FIG. Looking at the waveform of the voltage applied to the liquid crystal electro-optical element when switching the polarity of the applied voltage shown at 606 in b), the effective voltage becomes lower as shown by part D in the selection period t+4.

この主な原因は、信号電極波形の電圧変化の影響による
もので、この選択期間に於ける実効電圧の差によって横
方向にクロストークが発生する。
The main cause of this is due to the influence of voltage changes in the signal electrode waveform, and crosstalk occurs in the lateral direction due to the difference in effective voltage during this selection period.

[課題を解決するための手段] 本発明の液晶電気光学素子の駆動方法は、信号電極に印
加する駆動波形のONパルスの出力方法として、第一の
走査電極上に表示するための波形として波形Aを8力し
て、第二の走査電極上に表示するための波形として波形
Bを出力し、波形Aと波形Bが繰り返し出力される事を
特徴とする。
[Means for Solving the Problems] A method for driving a liquid crystal electro-optical element according to the present invention includes a method for outputting an ON pulse of a driving waveform to be applied to a signal electrode. It is characterized in that waveform B is output as a waveform to be displayed on the second scanning electrode by inputting 8 inputs of waveform A, and waveform A and waveform B are repeatedly output.

[実施例] 以下、実施例により本発明の詳細を示す。尚、本実施例
では表示データが4ビツトの16階調表示で、電圧を印
加しないときが黒となる表示モードを例にあげて説明す
る。
[Example] Hereinafter, the details of the present invention will be shown by Examples. In this embodiment, a display mode in which the display data is 4-bit 16-gradation display and black is displayed when no voltage is applied will be described as an example.

(実施例1) 第1図は、実施例1における駆動方法の一例を示す駆動
波形であり、第3図が各表示データにおける階調パルス
波形の一例を示す図でt15で示す期間がONパルスの
幅で、データooooのときONパルスの幅がいちばん
狭く、0001,0010と数字が大きくなるに連れて
ONパルスの幅が広くなり1111のときONパルスの
幅がいちばん広い。そして、波形Aでは階調パルス波形
の右端を基準としてONパルスの幅が左に広がるように
し、波形Bでは階調パルス波形の左端を基準としてON
パルスの幅が右に広がるようにしている。第4図は、液
晶デイスプレィモジュールの一例を示すブロック図で、
■9とv5の間を抵抗分割によって駆動電圧を決めボル
テージフォロアのオペアンプ412で受はテV11. 
 vl、  V2.  V3.  V4、v5の駆動電
圧を作り信号電極ドライバ401゜402及び走査電極
ドライバ403,404に入力している。そして、走査
線選択信号によって線順次に走査電極を選択する走査電
極波形を走査電極ドライバから出力し、その中で407
に出力される理想的な波形を第1図の101に示してい
る。
(Example 1) FIG. 1 is a drive waveform showing an example of a driving method in Example 1, and FIG. 3 is a diagram showing an example of a gradation pulse waveform in each display data, and the period indicated by t15 is an ON pulse. The width of the ON pulse is the narrowest when the data is oooo, the width of the ON pulse becomes wider as the number increases to 0001, 0010, and the width of the ON pulse is the widest when the number is 1111. In waveform A, the width of the ON pulse is expanded to the left with the right end of the gradation pulse waveform as a reference, and in waveform B, the width of the ON pulse is expanded to the left with the left end of the gradation pulse waveform as a reference.
The width of the pulse is expanded to the right. FIG. 4 is a block diagram showing an example of a liquid crystal display module.
■The drive voltage is determined by resistor division between V9 and V5, and the voltage is received by the voltage follower operational amplifier 412.
vl, V2. V3. Drive voltages V4 and V5 are generated and input to signal electrode drivers 401 and 402 and scan electrode drivers 403 and 404. Then, the scan electrode driver outputs a scan electrode waveform that selects the scan electrodes line-by-line according to the scan line selection signal.
The ideal waveform outputted to is shown at 101 in FIG.

また、信号電極ドライバ401,402に入力される表
示データによって信号電極波形を信号電極ドライバから
出力し、その中で405に出力される理想的な波形の一
例を第1図の102に示し、406に出力される理想的
な波形の一例を第1図の103に示す。しかし、実際の
駆動波形は101が104のようになり、102が10
5のようになり、103が106のようになっている。
Further, signal electrode waveforms are output from the signal electrode drivers according to display data input to the signal electrode drivers 401 and 402, and an example of an ideal waveform outputted to 405 is shown at 102 in FIG. An example of an ideal waveform output to is shown at 103 in FIG. However, in the actual drive waveform, 101 becomes 104, and 102 becomes 10.
5, and 103 becomes 106.

例えば、第4図の信号電極ドライバ401の出力のうち
約半分が405の出力波形と同じで、残りが406の出
力波形と同じになるようにしく402の信号電極ドライ
バも401と同じ波形がでているものとする。)、40
5の信号電極上の表示が上から3画素が黒で次の5画素
が中間調で残りの4画素が黒で、406の信号電極上の
表示が上から3画素が黒で次の5画素が405より暗い
中間調で残りの4画素が黒とすると、理想的には4゜5
に印加される波形は第1図の102となり406に印加
される波形は第1図の103となるはずであるが、実際
の波形を見ると405に印加される波形は105のよう
になり、406に印加される波形は106のようになる
。第1図のt、の期間が第一のフレームで、走査電極を
2ライン選択するごとに印加電圧の極性を入れ替えてい
る。そして、t、の期間の中でt7とt8の期間につい
てみると、t9間では波形Bが印加され、t+s間では
波形Aが印加されるためにt9とt+llの期間のさか
いでの電圧波形の変化がなく走査電極波形への影響もで
ない。また、印加電圧の極性の変わり目であるtheと
1++では、tl11間では波形Aが印加され、tl間
でも波形Aが印加されているために液晶電気光学素子に
印加される電圧の極付が変わっても実際に印加されてい
る電圧の変化はなく走査電極波形への影響もない。また
、1++とtapの期間についてみると、1+1間では
波形Aが印加され、tl2間では波形Bが印加されるた
めにtllとtl2の期間のさかいでの電圧波形の変化
がなく走査電極波形への影響もでない。このようにして
t7の期間とt8の期間を交互に練り近す。そして、t
2の期間が第二のフレームで、この期間は、tlの期間
と同じ走査電極が選択されたときにその走査電極上の画
素に印加される電圧の極性を逆にし、しかも、tlの期
間とt2の期間において同じ走査電極が選択されている
ときの信号電極波形がtlのとき波形Aであればt2の
ときは波形Bとなり、tlのとき波形Bであればt2の
ときは波形Aとなるようにしている。このような駆動波
形にすることによって、走査電極の選択期間に印加され
る電圧パルスが信号電極波形にあまり影響されることな
く印加され、しかも、105.106に示す波形のB部
で示されている波形の歪が105の波形と106の波形
に平均的に出るようになるために液晶電気光学素子に印
加される実効電圧が表示内容によって影響されにくくな
りクロストークが抑えられる。
For example, about half of the output of the signal electrode driver 401 in FIG. It is assumed that ), 40
The display on signal electrode No. 5 is black for the top three pixels, the next five pixels are halftone, and the remaining four pixels are black, and the display on signal electrode No. 406 is black for the top three pixels and the next five pixels. If it is a halftone darker than 405 and the remaining 4 pixels are black, the ideal value is 4°5.
The waveform applied to 405 should be 102 in Figure 1 and the waveform applied to 406 should be 103 in Figure 1, but if you look at the actual waveform, the waveform applied to 405 will be 105. The waveform applied to 406 is as shown in 106. The period t in FIG. 1 is the first frame, and the polarity of the applied voltage is switched every time two lines of scanning electrodes are selected. Looking at the periods t7 and t8 within the period t, waveform B is applied between t9 and waveform A is applied between t+s, so the voltage waveform between t9 and t+ll is There is no change and no effect on the scanning electrode waveform. Furthermore, at the and 1++ points where the polarity of the applied voltage changes, waveform A is applied between tl11 and waveform A is also applied between tl, so the polarity of the voltage applied to the liquid crystal electro-optical element changes. However, there is no change in the voltage actually applied, and there is no effect on the scan electrode waveform. Also, regarding the periods 1++ and tap, waveform A is applied between 1+1 and waveform B is applied between tl2, so there is no change in the voltage waveform between the periods tll and tl2, and the waveform changes to the scanning electrode waveform. There is no influence either. In this way, the period t7 and the period t8 are alternately refined. And t
The period No. 2 is the second frame, and during this period, when the same scan electrode as the period tl is selected, the polarity of the voltage applied to the pixel on the scan electrode is reversed. If the signal electrode waveform when the same scanning electrode is selected in the period t2 is waveform A at tl, it becomes waveform B at t2, and if it is waveform B at tl, it becomes waveform A at t2. That's what I do. By using such a drive waveform, the voltage pulse applied during the selection period of the scanning electrode can be applied without being influenced much by the signal electrode waveform, and moreover, the voltage pulse applied during the selection period of the scanning electrode can be applied without being influenced much by the signal electrode waveform. Since the distortion of the waveform shown in FIG. 10 is averaged over the waveforms 105 and 106, the effective voltage applied to the liquid crystal electro-optical element is less likely to be affected by the display content, and crosstalk can be suppressed.

(実施例2) 第2図は、実施例2における駆動方法の一例を示す駆動
波形であり、液晶電気光学素子に印加される走査電極波
形と信号電極波形の合成波形である実際に液晶電気光学
素子にかかっている電圧は実施例1と同じである。実施
例1との違いは信号電極波形の電圧を低く抑えて数ボル
トとし、走査電極波形の電圧を実施例1の約二倍として
いることである。このようにすることによって信号電極
ドライバの耐圧を極端に低く抑えることができる。
(Example 2) FIG. 2 shows a driving waveform showing an example of the driving method in Example 2, and is a composite waveform of a scanning electrode waveform and a signal electrode waveform applied to a liquid crystal electro-optic element. The voltage applied to the element is the same as in Example 1. The difference from the first embodiment is that the voltage of the signal electrode waveform is kept low to several volts, and the voltage of the scan electrode waveform is about twice that of the first embodiment. By doing so, the breakdown voltage of the signal electrode driver can be kept extremely low.

第2図の201は走査電極の1ライン目、202は2ラ
イン目、203は3ライン目にそれぞれ印加されるべき
理想的な波形で、204と205は信号電極に印加され
るべき理想的な波形の一例である。しかし、実際の駆動
波形は201が206のようになり、204が207の
ようになり、205が208のようになっている。そし
て、206.207.208の駆動波形が実施例1の駆
動波形と対応し、104のかわりに206.105のか
わりに207.106のかわりに208の波形が第4図
に示すような液晶デイスプレィモジュールに印加される
と、各画素にかかる合成電圧は実施例1と同じであるの
で、実施例1で説明したのと同様に、走査電極の選択期
間に印加される電圧パルスが信号電極波形にあまり影響
されることなく印加され、しかも、207.208に示
す波形のB部で示されている波形の歪が207の波形と
208の波形に平均的に出るようになるために液晶電気
光学素子に印加される実効電圧が表示内容によって影響
されにくくなりクロストークが抑えられる。
In FIG. 2, 201 is the ideal waveform that should be applied to the first line of the scanning electrode, 202 is the ideal waveform that should be applied to the second line, and 203 is the ideal waveform that should be applied to the third line. 204 and 205 are the ideal waveforms that should be applied to the signal electrode. This is an example of a waveform. However, in actual driving waveforms, 201 becomes like 206, 204 becomes like 207, and 205 becomes like 208. The driving waveforms of 206, 207, and 208 correspond to the driving waveforms of Example 1, and the waveforms of 206, 105, 207, 208 instead of 104 correspond to those of the liquid crystal display as shown in FIG. When applied to the spray module, the composite voltage applied to each pixel is the same as in Example 1, so the voltage pulse applied during the selection period of the scanning electrode is the signal electrode waveform, similar to that described in Example 1. The liquid crystal electro-optical The effective voltage applied to the element is less likely to be affected by the displayed content, and crosstalk can be suppressed.

尚、本実施例では、走査電極の選択を2ラインするごと
に極性を切り替えているが、これは何ラインごとでもよ
く、たとえば4ラインごとの切り替えの場合の信号電極
波形のでがたは、正極性で波形A、波形B、波形A、波
形Bの順番であれば負極性では波形B、波形A、波形B
、液形Aの順番となり、正極性で波形B、波形A、波形
B、 fTL形Aの順番であれば負極性では波形A、波
形B、波形A、波形Bの順番となる。そして、この極性
切り替えのライン数は、何ラインごとでもよいがとくに
2n(nは整数)ライン毎にするのがよい。
In this embodiment, the polarity is switched every two lines of scanning electrode selection, but this can be done every any number of lines. For example, the shape of the signal electrode waveform in the case of switching every four lines is different from that of the positive polarity. If the order is waveform A, waveform B, waveform A, waveform B in negative polarity, waveform B, waveform A, waveform B in negative polarity.
, liquid form A, and if the order is waveform B, waveform A, waveform B, and fTL form A for positive polarity, the order is waveform A, waveform B, waveform A, and waveform B for negative polarity. The number of lines for this polarity switching may be any number of lines, but it is particularly preferable to switch the polarity for every 2n (n is an integer) line.

また、本実施例では16階調について説明したが階調数
が幾つになっても同様の考え方で駆動すればよく、二値
表示の場合でも第3図のデータ0000と1111で示
す波形で駆動すればよい。
In addition, in this embodiment, 16 gradations have been explained, but no matter how many gradations there are, driving can be done using the same concept, and even in the case of binary display, driving is performed using the waveforms shown by the data 0000 and 1111 in Figure 3. do it.

U発明の効果コ 以上述べたように本発明によれば、走査電極選択時の印
加電圧波形の歪や、信号電極ドライバ内の電源ラインの
配線抵抗や出力抵抗による信号電極液形の歪によって生
ずる表示ムラをなくすことができ、より表示品質の高い
デイスプレィを提供することができる。
U Effects of the Invention As described above, according to the present invention, distortion of the applied voltage waveform when selecting the scanning electrode and distortion of the signal electrode liquid shape due to the wiring resistance and output resistance of the power supply line in the signal electrode driver can be avoided. Display unevenness can be eliminated and a display with higher display quality can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1の駆動波形を示すタイミン
グチャート図である。 第2図は、本発明の実施例2の駆動波形を示すタイミン
グチャート図である。 第3図は、波形Aと波形Bの階調パルス波形を示す図で
ある。 第4図は、液晶デイスプレィモジュールの一例を示すブ
ロック図である。 第5図は、従来の駆動波形を示すタイミングチャート図
である。 第6図は、従来の駆動波形での走査電極選択時の波形を
示すタイミングチャート図である。 101:理想的な走査電極波形 102.103: 理想的な信号電極波形104:実際
の走査電極波形 105.106: 実際の信号電極波形201.202
,203: 理想的な走査電極波形204.205: 
理想的な信号電極波形206二実際の走査電極波形 207.208+ 実際の信号電極波形401.402
: 信号電極ドライバ 403.404: 走査電極ドライバ 405.406: 信号電極波形 407:走査電極波形 408.409: 画素 410:走査電極 411:信号電極 412:オペアンプ 以  上 比願人 セイコーエプソン株式会社 代理人 弁理士 鈴木 喜三部(化1名)第4図
FIG. 1 is a timing chart showing drive waveforms in Example 1 of the present invention. FIG. 2 is a timing chart showing drive waveforms in Example 2 of the present invention. FIG. 3 is a diagram showing gradation pulse waveforms of waveform A and waveform B. FIG. 4 is a block diagram showing an example of a liquid crystal display module. FIG. 5 is a timing chart showing conventional drive waveforms. FIG. 6 is a timing chart showing waveforms when scanning electrodes are selected using conventional drive waveforms. 101: Ideal scanning electrode waveform 102.103: Ideal signal electrode waveform 104: Actual scanning electrode waveform 105.106: Actual signal electrode waveform 201.202
, 203: Ideal scanning electrode waveform 204.205:
Ideal signal electrode waveform 206 + Actual scanning electrode waveform 207.208 + Actual signal electrode waveform 401.402
: Signal electrode driver 403, 404: Scanning electrode driver 405, 406: Signal electrode waveform 407: Scanning electrode waveform 408, 409: Pixel 410: Scanning electrode 411: Signal electrode 412: Operational amplifier or above Representative of Seiko Epson Corporation Patent attorney Kizobe Suzuki (1 person) Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも、走査電極の形成された基板と信号電
極の形成された基板間に液晶を挟持した液晶電気光学素
子をマルチプレクス駆動する方法に於て、信号電極に印
加する駆動波形のONパルスの出力方法として、第一の
走査電極上に表示するための波形として波形Aを出力し
て、第二の走査電極上に表示するための波形として波形
Bを出力し、波形Aと波形Bが繰り返し出力される事を
特徴とする液晶電気光学素子の駆動方法。
(1) At least in a method of multiplex driving a liquid crystal electro-optical element in which a liquid crystal is sandwiched between a substrate on which a scanning electrode is formed and a substrate on which a signal electrode is formed, an ON pulse of a driving waveform is applied to the signal electrode. As an output method, waveform A is output as a waveform to be displayed on the first scanning electrode, waveform B is output as a waveform to be displayed on the second scanning electrode, and waveform A and waveform B are A method for driving a liquid crystal electro-optical element characterized by repeated output.
(2)液晶電気光学素子に印加する電圧の極性が同じ間
は波形Aと波形Bを交互に繰り返し、印加電圧の極性が
切り替わるところでは同一波形が連続することを特徴と
する特許請求の範囲第1項記載の液晶電気光学素子の駆
動方法。
(2) Waveform A and waveform B are alternately repeated while the polarity of the voltage applied to the liquid crystal electro-optical element is the same, and the same waveform continues where the polarity of the applied voltage changes. A method for driving a liquid crystal electro-optical element according to item 1.
(3)液晶電気光学素子に印加する電圧の極性が走査線
のn(nは整数)ラインおきに切り替わる事を特徴とす
る特許請求の範囲第1項又は第2項記載の液晶電気光学
素子の駆動方法。
(3) The liquid crystal electro-optical element according to claim 1 or 2, wherein the polarity of the voltage applied to the liquid crystal electro-optical element is switched every n scanning lines (n is an integer). Driving method.
JP30931790A 1990-11-15 1990-11-15 Driving method for liquid crystal electrooptical element Pending JPH04180015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30931790A JPH04180015A (en) 1990-11-15 1990-11-15 Driving method for liquid crystal electrooptical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30931790A JPH04180015A (en) 1990-11-15 1990-11-15 Driving method for liquid crystal electrooptical element

Publications (1)

Publication Number Publication Date
JPH04180015A true JPH04180015A (en) 1992-06-26

Family

ID=17991564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30931790A Pending JPH04180015A (en) 1990-11-15 1990-11-15 Driving method for liquid crystal electrooptical element

Country Status (1)

Country Link
JP (1) JPH04180015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053363A1 (en) * 1997-05-23 1998-11-26 Citizen Watch Co., Ltd. Liquid crystal driving method and liquid crystal driver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053363A1 (en) * 1997-05-23 1998-11-26 Citizen Watch Co., Ltd. Liquid crystal driving method and liquid crystal driver
US6140991A (en) * 1997-05-23 2000-10-31 Citizen Watch Co., Ltd. Liquid crystal driving method and driving apparatus

Similar Documents

Publication Publication Date Title
KR100343513B1 (en) Liquid crystal driving method and apparatus
EP0735520B1 (en) Brightness control in a liquid crystal display device with non-linearity compensation
JP3568644B2 (en) Liquid crystal display device and driving method thereof
JPH03132692A (en) Method for driving liquid crystal display device and its driving circuit
JPS623229A (en) Liquid crystal driving system
JPH11352941A (en) Optical modulator
JPH08211364A (en) Bistable liquid crystal display element, data signal generator and addressing method for liquid crystal display element
JP3001317B2 (en) Driving method of active matrix type liquid crystal display device
WO2001024154A1 (en) Liquid crystal display device with driving voltage correction for reducing negative effects caused by capacitive coupling between adjacent pixel electrodes
JPH0792937A (en) Liquid crystal driving method and liquid crystal display device
JP3426723B2 (en) Liquid crystal display device and driving method thereof
JPH10325946A (en) Optical modulation device
US5870070A (en) Liquid crystal display device and method for driving display device
US6069603A (en) Method of driving a matrix display device
JP3875809B2 (en) Driving method of liquid crystal display device
JPH04180015A (en) Driving method for liquid crystal electrooptical element
JPH03130797A (en) Display controller
JPH07120725A (en) Driving method for liquid crystal display device and liquid crystal display device
EP0441591B1 (en) A method for driving a liquid crystal panel
JPH04180091A (en) Method for driving liquid crystal electrooptical element
JP3627354B2 (en) Driving method of liquid crystal display device
JP3328944B2 (en) Driving method of liquid crystal display device
JPH0854600A (en) Driving method for liquid crystal display device
JPH0450919A (en) Driving method for liquid crystal display device and driver used for execution of this method
JP3185663B2 (en) Driving method of liquid crystal display device