JPH04179909A - Optical system for lens barrel - Google Patents

Optical system for lens barrel

Info

Publication number
JPH04179909A
JPH04179909A JP2308191A JP30819190A JPH04179909A JP H04179909 A JPH04179909 A JP H04179909A JP 2308191 A JP2308191 A JP 2308191A JP 30819190 A JP30819190 A JP 30819190A JP H04179909 A JPH04179909 A JP H04179909A
Authority
JP
Japan
Prior art keywords
optical axis
optical element
optical
angle
lens barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2308191A
Other languages
Japanese (ja)
Other versions
JP3140456B2 (en
Inventor
Kazuo Kajitani
和男 梶谷
Kazuhiko Cho
和彦 長
Kiyoshi Koike
小池 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP02308191A priority Critical patent/JP3140456B2/en
Publication of JPH04179909A publication Critical patent/JPH04179909A/en
Application granted granted Critical
Publication of JP3140456B2 publication Critical patent/JP3140456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the posture of an image from being changed by positioning an incident optical axis on a 1st optical element, an outgoing optical axis from a 3rd optical element and 1st and 2nd reflected optical axes, on the same plane. CONSTITUTION:This system is provided with the 1st optical element 6 which bends the course of a light beam having the incident optical axis AI, which passes through an objective lens 5 and is made incident, at right angle, a 2nd optical element 7 which bends the course of the incident light beam from the 1st optical element 6 at right angle twice and projects the light beam in a parallel and opposite direction to the incident light beam at a position where the optical axis is misaligned, and the 3rd optical element 8 which bends the incident light beam from the element 7 at right angle to project as the light beam having the outgoing optical axis A0. When the incident optical axis AI and the outgoing optical axis A0 are parallel and in the same direction, the incident optical axis AI, the outgoing optical axis A0 and the 1st reflected optical axis A1 and the 2nd reflected optical axis A2 are made to position on the same plane. Thus, the nearly same height of an eye point is obtained at the same angle of depression or at a smaller angle, and the posture of the image is not changed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、顕微鏡等において鏡筒の傾斜角を変えられる
鏡筒用光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical system for a lens barrel in a microscope or the like, in which the inclination angle of the lens barrel can be changed.

〔従来の技術〕[Conventional technology]

従来、鏡筒の傾斜角即ち接眼レンズ光軸の傾斜角を変え
ることができるようにした顕微鏡として、例えば特開昭
59−195602号公報に記載されたものがある。こ
の顕微鏡は三つの光学素子に関して、二つの光学素子間
の反射光軸と一致する回転軸を二つ有していて、複数の
光学素子の回転動作を連動させることによって、正立化
した像の姿勢を変えずに鏡筒の傾斜角を変えることがで
きるようにしたものである。
2. Description of the Related Art Conventionally, there is a microscope that is capable of changing the inclination angle of a lens barrel, that is, the inclination angle of an eyepiece optical axis, as described in, for example, Japanese Unexamined Patent Publication No. 195602/1983. This microscope has two rotational axes for three optical elements that coincide with the reflection optical axis between the two optical elements, and by linking the rotational movements of multiple optical elements, an erected image can be created. This allows the tilt angle of the lens barrel to be changed without changing the posture.

又、この顕微鏡と基本構成を同じくする顕微鏡の鏡筒用
光学系として、特開昭60−91322号公報に記載さ
れたものがある。この光学系を第6図(al、 (b)
に基づいて説明すると、図中、三角プリズム1は図示し
ない結像レンズを介して下方がら入射する入射光軸a1
を直角に曲げて第一反射光軸alとして台形プリズム2
へ入射させる。台形プリズム2では、第一反射光軸al
をプリズム内で直角に曲げて第二反射光軸a2とし、更
に直角に曲げて第一反射光軸alと平行且つ逆方向の第
三反射光軸a3として(イエンチ型の)双眼接眼ユニッ
ト(又は第二の三角プリズム)3へ入射させる。双眼接
眼ユニット3では、第三反射光軸alの光束を二つに分
岐させ且つ直角に曲げて射出光軸a0として夫々接眼レ
ンズへ導(ようになっている。
Furthermore, an optical system for a lens barrel of a microscope having the same basic configuration as this microscope is described in Japanese Patent Application Laid-Open No. 60-91322. This optical system is shown in Figure 6 (al, (b)).
In the figure, the triangular prism 1 has an incident optical axis a1 that enters from below through an imaging lens (not shown).
The trapezoidal prism 2 is bent at a right angle and set as the first reflection optical axis al.
make it incident on the In the trapezoidal prism 2, the first reflected optical axis al
is bent at a right angle in a prism to form a second reflection optical axis a2, and further bent at a right angle to form a third reflection optical axis a3 parallel to and in the opposite direction to the first reflection optical axis al. (second triangular prism) 3. In the binocular eyepiece unit 3, the luminous flux of the third reflected optical axis al is split into two parts, bent at a right angle, and guided to the respective eyepieces as an output optical axis a0.

又、第一及び第三反射光軸a1+83は夫々台形プリズ
ム2.双眼接眼ユニット3の回転軸を構成しており、三
角プリズムlと双眼接眼ユニット3には同一有効径のギ
ヤが夫々固定され且つ互いに噛合された状態になってい
る。従って、台形プリズム2を三角プリズムlに対しで
ある角度回転させると、双眼接眼ユニット3は台形プリ
ズム2に対して同方向に等角度回転せしめられることに
なる。そして入射光軸a、と射出光軸a。とが平行且つ
同一方向の状態で、第一乃至第三反射光軸a 1. H
a 2 +  a 3は入射光軸al及び射出光軸a0
と直交する平面上に位置するように構成されている(第
6図(al参照)。
Further, the first and third reflection optical axes a1+83 are each formed by a trapezoidal prism 2. It constitutes the rotation axis of the binocular eyepiece unit 3, and gears having the same effective diameter are fixed to the triangular prism l and the binocular eyepiece unit 3, respectively, and are meshed with each other. Therefore, when the trapezoidal prism 2 is rotated by a certain angle with respect to the triangular prism l, the binocular eyepiece unit 3 is rotated by an equal angle in the same direction with respect to the trapezoidal prism 2. Then, an incident optical axis a, and an exit optical axis a. are parallel and in the same direction, and the first to third reflection optical axes a1. H
a 2 + a 3 is the incident optical axis al and the exit optical axis a0
(see FIG. 6 (al)).

従って、上述の構成のもとで、例えば第6図(bl実線
で示すように射出光軸a。が水平である位置から、この
鏡筒用光学系の傾斜角を変えようとする場合、第一反射
光軸alを中心に台形プリズム2を角度α回転させると
、双眼接眼ユニットも第三反射光軸alを中心に台形プ
リズム2に対して等角度回転せしめられ、結局角度2α
傾斜角が変化することになる。
Therefore, under the above-mentioned configuration, when trying to change the inclination angle of this lens barrel optical system from the position where the exit optical axis a is horizontal as shown in FIG. 6 (bl solid line), for example, When the trapezoidal prism 2 is rotated by an angle α around the first reflection optical axis al, the binocular eyepiece unit is also rotated by an equal angle with respect to the trapezoidal prism 2 around the third reflection optical axis al, resulting in an angle of 2α.
The angle of inclination will change.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上述の鏡筒用光学系では、光路長を短縮する
工夫により、結像レンズ又は対物レンズから像までの距
離が短い場合でもレンズリレー系による延伸を必要とし
ないが、その反面、構造上、接眼アイポイントと傾斜角
を変えるための回転軸即ち反射光軸al+a3とが近接
しているため、光軸傾斜角を変えることのもう一つの効
果であるアイポイントの昇降という点を考えると、昇降
ストロークが小さくなってしまい、十分なストロークが
得られないという問題がある。
By the way, in the above-mentioned lens barrel optical system, by shortening the optical path length, there is no need for extension using a lens relay system even when the distance from the imaging lens or objective lens to the image is short. Since the eyepiece eyepoint and the rotation axis for changing the tilt angle, that is, the reflection optical axis al+a3 are close to each other, considering that another effect of changing the optical axis tilt angle is the elevation of the eyepoint. There is a problem in that the lifting stroke becomes small and a sufficient stroke cannot be obtained.

又、上述の鏡筒用光学系は、偏角プリズムと双眼接眼ユ
ニットとを有する傾斜角固定鏡筒と比較すると、顕微鏡
本体への取付は位置に対するアイポイントの高さがかな
り低くなり、不都合である。
In addition, the above-mentioned lens barrel optical system is inconvenient because the height of the eye point relative to the position is considerably lower when installed on the microscope body, compared to a fixed tilt angle lens barrel that has a declination prism and a binocular eyepiece unit. be.

即ち、顕微鏡の鏡筒部分について、傾斜角固定鏡筒から
上述した傾斜角可変鏡筒に付は替えた時、傾斜角固定鏡
筒と同程度のアイポイント高さを得るためには俯角がか
なり大きくなってしまう。又、同一の机に傾斜角固定鏡
筒の顕微鏡と上述のような傾斜角可変鏡筒の顕微鏡とが
並べて置かれた場合にも、これらを交互に使用するとな
ると検鏡姿勢がかなり変わってしまう。一般に、俯角が
45°を越える程度に大きくなると、観察者は頭を下へ
向ける姿勢となり、使用しづ゛らくなるという欠点があ
る。
In other words, when changing the lens barrel of a microscope from a fixed tilt angle lens barrel to the variable tilt angle lens barrel described above, the depression angle must be considerably increased in order to obtain the same eye point height as the fixed tilt angle lens barrel. It gets bigger. Furthermore, even if a microscope with a fixed tilt angle barrel and a microscope with a variable tilt angle barrel like the one described above are placed side by side on the same desk, the examination posture will change considerably if they are used alternately. . Generally, when the angle of depression increases to an extent exceeding 45°, the observer is forced to turn his or her head downward, making it difficult to use the device.

更に、観察される像の姿勢(上下関係)についても、傾
斜角固定鏡筒では倒立像であるのに対し、上述の傾斜角
可変鏡筒では正立像となり、標本のスキャニング操作が
逆になるため、鏡筒を付は替えた時等やはり不便である
という欠点を有する。
Furthermore, regarding the posture (vertical relationship) of the observed image, a fixed tilt angle lens barrel results in an inverted image, whereas the above-mentioned variable tilt angle lens barrel results in an erect image, which reverses the scanning operation of the specimen. However, it has the disadvantage that it is inconvenient when attaching or changing the lens barrel.

本発明はこのような問題点に鑑み、通常の傾斜角固定鏡
筒との付は替え使用等の場合に、俯角が同−又はより小
さい角度で同程度のアイポイント高さを得ることができ
ると共に、像の姿勢が変化しないようにした傾斜角可変
の鏡筒用光学系を提供することを目的とする。
In view of these problems, the present invention makes it possible to obtain the same eyepoint height with the same or smaller depression angle when used as a replacement for a normal fixed tilt angle lens barrel. Another object of the present invention is to provide an optical system for a lens barrel whose tilt angle is variable so that the attitude of the image does not change.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による鏡筒用光学系は、入射角を直角に反射させ
て第一の反射光軸とする第一光学素子と、第一の反射光
軸を二回直角に曲げて第一の反射光軸に平行且つ逆向き
の第二の反射光軸とし且つ第一の反射光軸を中心に回動
可能な第二光学素子と、 第二の反射光軸を直角に反射させて射出光軸とし且つ第
二の反射光軸を中心に回動可能な第三光字素子と、 第一の反射光軸を中心に回動可能で第一光学素子に固定
されている第一両軍部材と、 第二の反射光軸を中心に回動可能で第三光学素子に固定
されていて、第一両軍部材と噛合し且つ第一両軍部材と
同一径を有する第二歯車部材と、が備えられていて、 入射光軸と射出光軸とが平行且つ同一方向である時に、
入射光軸、射出光軸、第一の反射光軸及び第二の反射光
軸が同一平面上に位置するようにしたことを特徴とする
ものである。
The optical system for a lens barrel according to the present invention includes a first optical element that reflects an incident angle at a right angle to form a first reflected optical axis, and a first optical element that bends the first reflected optical axis twice at right angles to produce a first reflected light. a second optical element having a second reflective optical axis parallel to and in the opposite direction to the axis and rotatable about the first reflective optical axis; and a second optical element that reflects the second reflective optical axis at right angles to serve as an exit optical axis. and a third optical element rotatable around the second reflective optical axis; a first bidirectional member rotatable around the first reflective optical axis and fixed to the first optical element; a second gear member that is rotatable about the second reflective optical axis, is fixed to the third optical element, meshes with the first and both members, and has the same diameter as the first and both members; When the incident optical axis and the exit optical axis are parallel and in the same direction,
It is characterized in that the incident optical axis, the exit optical axis, the first reflected optical axis, and the second reflected optical axis are located on the same plane.

〔作 用〕[For production]

傾斜角を変える場合、第一光学素子に対して第二光学素
子を角度α回転させると、第二歯車部材が第一両軍部材
に対して角度α公転しながら同一角度自転するため、第
三光学素子は第二光学素子に対して同方向に角度α回転
し、結局角度2α傾斜角が変わり、その際のアイポイン
トの昇降ストロークは比較的大きい。又、通常の傾斜角
固定鏡筒との付は替え使用等の場合においても、傾斜角
固定鏡筒に対して俯角が同−又はより小さい角度でアイ
ポイントの高さを同程度に保持することができると共に
、像の姿勢も変化することはない。
When changing the inclination angle, when the second optical element is rotated by an angle α relative to the first optical element, the second gear member rotates at the same angle while revolving at an angle α relative to the first and both gear members, so that the third The optical element rotates by an angle α in the same direction with respect to the second optical element, resulting in a change in the angle of inclination 2α, and the lifting stroke of the eyepoint at this time is relatively large. Also, even when used as a replacement for a regular fixed tilt angle lens barrel, the eyepoint height can be maintained at the same level with the same or smaller depression angle than the fixed tilt angle lens barrel. At the same time, the posture of the statue does not change.

〔実施例〕〔Example〕

以下、本発明を図示した実施例に従って詳細に説明する
Hereinafter, the present invention will be described in detail according to illustrated embodiments.

まず、第1図において、5は図示しない顕微鏡の対物レ
ンズ(又は結像レンズ)、6は対物レンズ5を通過して
入射した入射光軸a1を有する光線の進路を直角に曲げ
る第一光学素子としてのプリズム、7は第一光学素子6
の側方に配置されていて第一光学素子6からの入射光線
の進路を二回直角に曲げて光軸がずれた位置で入射光線
と平行且つ反対方向へ光線を出射させる第二光学素子と
してのプリズム、A、は第一光学素子6に対する第二光
学素子7の回動中心となる反射光軸、A2は第二光学素
子7内において反射光軸A1が直角に曲げられて成る反
射光軸、8は第二光学素子7の一部に対面して配置され
ていて第二光学素子7からの入射光線を直角に曲げて射
出光軸A。を有する光線として射出させる第三光学素子
、A3は第二光学素子7に対する第三光学素子8の回動
中心となる反射光軸である。
First, in FIG. 1, 5 is an objective lens (or imaging lens) of a microscope (not shown), and 6 is a first optical element that bends the course of the light beam having the incident optical axis a1 that has passed through the objective lens 5 at a right angle. as a prism, 7 is the first optical element 6
as a second optical element which is placed on the side of the first optical element 6 and bends the path of the incident light ray from the first optical element 6 at right angles twice to emit the light beam parallel to and in the opposite direction to the incident light ray at a position where the optical axis is shifted. In the prism, A is a reflection optical axis that is the center of rotation of the second optical element 7 with respect to the first optical element 6, and A2 is a reflection optical axis formed by bending the reflection optical axis A1 at a right angle in the second optical element 7. , 8 are disposed facing a part of the second optical element 7 and bend the incident light beam from the second optical element 7 at right angles to form an exit optical axis A. The third optical element A3, which emits a light beam having , is a reflection optical axis that is the center of rotation of the third optical element 8 with respect to the second optical element 7.

9は第三光学素子8からの射出光軸A。を有する入射光
を左眼視系光束と右眼視系光束とに分割する光束分割プ
リズム、lOは左眼視系光束を直角に曲げて図示しない
接眼レンズへ光線を導くプリズム、11は右眼視系光束
を直角に曲げて図示しない接眼レンズへ光線を導くプリ
ズムであり、これらは双眼接眼部12を構成し、第三光
学素子8と一体に回動する。
Reference numeral 9 indicates an optical axis A of light emitted from the third optical element 8. A beam splitting prism divides the incident light into a left-eye visual system light beam and a right-eye visual system light beam, 10 is a prism that bends the left-eye visual system light beam at right angles and guides the light beam to an eyepiece (not shown), and 11 is a right-eye optical system beam splitting prism. These prisms bend the visual system light beam at right angles and guide the light beams to the eyepiece lenses (not shown), and these prisms constitute the binocular eyepiece section 12 and rotate together with the third optical element 8 .

そして基本的には、反射光軸A1を中心に第二光学素子
7を回転させると、第三光学素子8も一体に回転するよ
うに構成されている。
Basically, when the second optical element 7 is rotated about the reflection optical axis A1, the third optical element 8 is also rotated together.

しかも、本発明では第一乃至第三光学素子6゜7.8は
、以下に示すi)、ii)の条件を満たすように装架さ
れている。
Moreover, in the present invention, the first to third optical elements 6°7.8 are mounted so as to satisfy the conditions i) and ii) shown below.

i) 第二光学素子7を第一光学素子6に対しである角
度回転させる時に、第三光学素子8は第二光学素子7に
対して同方向に等角度回転する。
i) When the second optical element 7 is rotated by a certain angle with respect to the first optical element 6, the third optical element 8 is rotated by an equal angle in the same direction with respect to the second optical element 7.

或いは第二光学素子7に対して第一光学素子6と第三光
学素子8とが互いに反対方向に等角度回転する。
Alternatively, the first optical element 6 and the third optical element 8 are rotated at equal angles in opposite directions with respect to the second optical element 7.

ii)  第一光学素子6への入射光軸A+と第三光学
素子8からの射出光軸Aoとが平行且つ同一方向の状態
で、これらの光軸A+、Aoと反射光軸AH,反射光軸
A2及び反射光軸A、とが同一平面上に位置する。
ii) When the incident optical axis A+ to the first optical element 6 and the output optical axis Ao from the third optical element 8 are parallel and in the same direction, these optical axes A+, Ao and the reflected optical axis AH, the reflected light The axis A2 and the reflection optical axis A are located on the same plane.

上述の条件i)については、第1図において、第一光学
素子6の反射面と第二光学素子7の一方の反射面とが対
向する位置にあり、又第二光学素子7の他方の反射面と
第三光学素子8の反射面とが対向する位置にあるから、
第二光学素子7をある角度回転させることによって像の
姿勢が変化しても、第三光学素子8を第二光学素子7に
対して同一角度回転させれば、像の回転を抑えることが
できる。従って、像の姿勢を変えずに双眼接眼部12即
ち鏡筒の傾斜角を変えることができる。
Regarding the above condition i), in FIG. 1, the reflective surface of the first optical element 6 and one reflective surface of the second optical element 7 are in opposing positions, and Since the surface and the reflective surface of the third optical element 8 are in opposing positions,
Even if the attitude of the image changes by rotating the second optical element 7 by a certain angle, the rotation of the image can be suppressed by rotating the third optical element 8 by the same angle with respect to the second optical element 7. . Therefore, the inclination angle of the binocular eyepiece 12, that is, the lens barrel, can be changed without changing the posture of the image.

第2図にはその具体的な構成が示されている。FIG. 2 shows its specific configuration.

図(a)は各光学素子6〜8の平面図、図(b)は図(
a)に対して正面方向から見たギヤの接続を示す説明図
であり、14は反射光軸A1と同心でしかも第一光学素
子6に固定配置されている第一ギヤ、I5は反射光軸A
、と同心でしかも第三光学素子8に固定配置されていて
第一ギヤ14と噛合し且つ第一ギヤ14と同一有効径を
有する第二ギヤである。
Figure (a) is a plan view of each optical element 6 to 8, and figure (b) is a figure (
It is an explanatory diagram showing the connection of gears seen from the front direction with respect to a), 14 is a first gear concentric with the reflection optical axis A1 and fixedly arranged on the first optical element 6, and I5 is the reflection optical axis. A
, and is fixedly disposed on the third optical element 8, meshes with the first gear 14, and has the same effective diameter as the first gear 14.

本実施例は上述のように構成されており、第2図及び第
3図に基づいてその作用を説明する。尚、第3図(al
において、第二光学素子7は三点鎖線で表わされ、又図
(a)、 FC+において第一及び第二ギヤ14.15
は省略されている。
This embodiment is constructed as described above, and its operation will be explained based on FIGS. 2 and 3. Furthermore, Figure 3 (al
In Figure (a), the second optical element 7 is represented by a three-dot chain line, and in Figure (a), FC+, the first and second gears 14, 15
is omitted.

第3図(a)において、二点鎖線で示す本実施例による
鏡筒用光学系は条件ii)を満たす垂直な平面上に各光
軸A、、AO,A、、A2.A3が位置する状態にあり
、アイポイントは最も高い位置にある。この状態から傾
斜角を変えるために第二光学素子7を第一光学素子6に
対して反射光軸A。
In FIG. 3(a), the optical system for a lens barrel according to this embodiment, indicated by a two-dot chain line, has optical axes A, AO, A, A2, . A3 is in the position, and the eye point is at the highest position. In order to change the inclination angle from this state, the second optical element 7 is set to reflect the optical axis A with respect to the first optical element 6.

を中心に角度α回転させると、第2図に示す第二ギヤ1
5は第一ギヤ14に対して角度α公転しながら同一角度
自転するため、第三光学素子8(及び双眼接眼部12)
は第二光学素子7に対して角度α傾斜した第3図fa)
実線図示位置に到る。この状態で第三光学素子8は第一
光学素子6に対して角度2α傾斜した位置にある。
When rotated by an angle α around , the second gear 1 shown in FIG.
5 rotates at the same angle while revolving at an angle α with respect to the first gear 14, the third optical element 8 (and binocular eyepiece unit 12)
is inclined at an angle α with respect to the second optical element 7 fa)
The position shown by the solid line is reached. In this state, the third optical element 8 is in a position inclined at an angle of 2α with respect to the first optical element 6.

この時、α=45°とすれば鏡筒の傾斜角即ち射出光軸
A。は水平位置にある。一方、通常の傾斜角固定鏡筒の
光学系を第3図(b)で示せば、図示しない対物レンズ
を通過した光線は、偏角プリズム17で進行方向を所定
角変曲げられ、双眼接眼部12を同一角度の俯角を以っ
て通過することになる。そして本実施例における水平な
傾斜角のアイポイント(第3図(al参照)を、傾斜角
固定鏡筒のアイポイント(同図(b)参照)と比較すれ
ば、はぼ同程度の高さとなる。従って、本実施例による
鏡筒と傾斜角固定鏡筒とを付は替えて観察したり、これ
ら鏡筒が取付けられた各顕微鏡を交互に観察したりする
場合、アイポイントがほぼ同程度の高さであり、しかも
本実施例による鏡筒の方がその俯角が小さ(て済むこと
になる。
At this time, if α=45°, the inclination angle of the lens barrel, that is, the exit optical axis A. is in a horizontal position. On the other hand, if the optical system of a normal fixed-angle lens barrel is shown in FIG. It will pass through section 12 with the same angle of depression. Comparing the eye point with a horizontal tilt angle in this example (see Figure 3 (al)) and the eye point with a fixed tilt angle lens barrel (see Figure 3 (b)), it is found that the height is approximately the same. Therefore, when observing by replacing the lens barrel according to this embodiment with the fixed tilt angle lens barrel, or alternately observing each microscope to which these lens barrels are attached, the eye point will be approximately the same. Moreover, the lens barrel according to this embodiment has a smaller angle of depression.

そして第3図(C)に示すように、傾斜角が水平の位置
から第二光学素子7を角度β上方へ回転させると、第三
光学素子8及び双眼接眼部12は角度2β同一方向へ回
転することになる。この場合、構造上反射光軸A、は常
に反射光軸A、より上方(図面参照)に位置するため、
傾斜角を変化させる際のアイポイントの昇降ストローク
が上述の従来技術と比較してかなり大きくなる。
Then, as shown in FIG. 3(C), when the second optical element 7 is rotated upward at an angle β from the horizontal position, the third optical element 8 and the binocular eyepiece 12 are moved in the same direction at an angle 2β. It will rotate. In this case, because the reflection optical axis A is structurally always located above the reflection optical axis A (see drawing),
The lifting stroke of the eyepoint when changing the inclination angle becomes considerably larger compared to the above-mentioned prior art.

又、本実施例においては、第一光学素子6に対する第二
光学素子7の角度α又はβの傾斜によって像が回転する
が、この反射光を受ける第三光学素子8も同一方向に角
度α又はβ傾斜しているがら、第三光学素子8で反射す
る像の姿勢は変化しない。よって、双眼接眼部12では
、傾斜角の変化に拘らず、対物レンズ5の像は倒立の姿
勢に保持される。故に傾斜角固定鏡筒と同一の向きの像
が得られる。
In this embodiment, the image is rotated by tilting the second optical element 7 at an angle α or β with respect to the first optical element 6, but the third optical element 8 that receives this reflected light also tilts at an angle α or β in the same direction. Although it is tilted by β, the attitude of the image reflected by the third optical element 8 does not change. Therefore, in the binocular eyepiece section 12, the image of the objective lens 5 is maintained in an inverted position regardless of the change in the inclination angle. Therefore, an image in the same direction as the fixed tilt angle lens barrel can be obtained.

尚、第3図(a) Jこおいて角度αが45@を越える
と、第一光学素子6に対する第三光学素子8の回転角は
90°を越え、俯角がマイナスになるため検鏡姿勢が著
しく悪くなる。よって角度α≦45゜であることが好ま
しい。
If the angle α exceeds 45@ in FIG. 3 (a) J, the rotation angle of the third optical element 8 with respect to the first optical element 6 will exceed 90 degrees, and the angle of depression will become negative, so the speculum posture will change. becomes significantly worse. Therefore, it is preferable that the angle α≦45°.

上述のように本実施例によれば、鏡筒の傾斜角を変える
際のアイポイントの昇降ストロークを大きくすることが
できる。又、本実施例による傾斜角可変鏡筒を傾斜角固
定鏡筒と付は替えて使用したり、或いは両鏡筒を夫々備
えた二つの顕微鏡を並べて交互に観察するような場合、
同程度のアイポイント高さを得るのに本実施例は傾斜角
固定鏡筒より小さい俯角で済むから、検鏡姿勢があまり
変化せず、頭を下に向ける度合が小さくて観察が容易で
ある。しかも像の姿勢が変化しないから、この点におい
ても観察が容易であると共に、標本のスキャニング操作
も逆にならず便利である。
As described above, according to this embodiment, it is possible to increase the vertical stroke of the eyepoint when changing the inclination angle of the lens barrel. In addition, when the variable tilt angle lens barrel according to this embodiment is used interchangeably with the fixed tilt angle lens barrel, or when two microscopes each equipped with both lens barrels are placed side by side and observed alternately,
In order to obtain the same eyepoint height, this example requires a smaller depression angle than a fixed tilt angle lens barrel, so the examination posture does not change much and the degree to which the head is turned downward is small, making observation easier. . Moreover, since the posture of the image does not change, observation is easy in this respect as well, and the scanning operation of the specimen is convenient because it does not reverse.

尚、本実施例の光学系に関し、対物レンズ5の像までの
距離が160+o+n以上で視野数が約23以下であれ
ば、リレーレンズで像を延伸することなしにプリズムの
みで構成することができる。
Regarding the optical system of this embodiment, if the distance to the image of the objective lens 5 is 160 + o + n or more and the number of fields of view is about 23 or less, it can be configured only with prisms without extending the image with a relay lens. .

次に、第4図は本発明の第一変形例を示すものであり、
第一光学素子6の入射側に偏角プリズム17を配設して
、入射光軸A1が所定角度を有するように光束を反射さ
せている。そのため、本実施例の場合、条件ii)を為
す各光軸A + 1 A o +A1.A2 、Asが
含まれる平面も所定角度に構成されることになる。又、
第三光学素子8として双眼接眼部12の光束分割プリズ
ム9が配置されている。
Next, FIG. 4 shows a first modification of the present invention,
A polarizing prism 17 is disposed on the incident side of the first optical element 6 to reflect the light beam so that the incident optical axis A1 has a predetermined angle. Therefore, in the case of this embodiment, each optical axis A + 1 A o + A1 . that satisfies condition ii). The plane containing A2 and As will also be configured at a predetermined angle. or,
A beam splitting prism 9 of the binocular eyepiece 12 is arranged as the third optical element 8.

第5図は本発明の第二変形例を示すものであり、第一光
学素子6の前面に偏角プリズム17を配置することで光
路長が長くなるため、レンズリレー系を配置して像を延
伸させている。
FIG. 5 shows a second modification of the present invention, in which the optical path length becomes longer by arranging the deflection prism 17 in front of the first optical element 6, so a lens relay system is arranged to change the image. It is stretched.

即ち、第5図(a)はリレーレンズが省略された光学系
が示されており、図(b)は第一乃至第三光学素子6.
7.8とリレーレンズ群が示された平面図である。図中
、18は第一及び第二光学素子6゜7間に配置された凸
レンズ、19は第二及び第三光学素子7,8間に配置さ
れた凹凸レンズ、20は凹凸レンズ19と第三光学素子
8の間に配置された凸レンズである。
That is, FIG. 5(a) shows an optical system in which the relay lens is omitted, and FIG. 5(b) shows the optical system in which the first to third optical elements 6.
FIG. 7.8 is a plan view showing the relay lens group. In the figure, 18 is a convex lens placed between the first and second optical elements 6°7, 19 is a concave-convex lens placed between the second and third optical elements 7 and 8, and 20 is a concave-convex lens between the concave-convex lens 19 and the third optical element. This is a convex lens placed between the optical elements 8.

この構成によれば、倒立像の前に凹凸レンズ19等が配
置されるから像が拡大され、結像位置を遠ざけることが
できる。そのため、光路長が長くなっても中間結像させ
ることな(倒立像のまま像を延伸させることができる。
According to this configuration, since the concave-convex lens 19 and the like are arranged in front of the inverted image, the image is enlarged and the image formation position can be moved away. Therefore, even if the optical path length becomes long, the image can be stretched without forming an intermediate image (the image can be stretched as an inverted image).

尚、双眼接眼部12としてイエンチ型、ジープントツブ
型の何れを採用してもよい。
Incidentally, the binocular eyepiece section 12 may be of either a zigzag type or a jeep-tooth type.

又、上述の実施例は双眼鏡部に関するものであるが、単
一の観察鏡筒にも適用できることはいうまでもない。又
、第一乃至第三光学素子6,7゜8としてプリズムの代
わりにミラーを使用してもよい。更にリレーレンズの配
置は上述の実施例に限定されることなく種々に変更が可
能である。
Further, although the above-described embodiment relates to a binocular section, it goes without saying that it can also be applied to a single observation lens barrel. Further, mirrors may be used instead of prisms as the first to third optical elements 6, 7.8. Furthermore, the arrangement of the relay lenses is not limited to the above-mentioned embodiments, and can be modified in various ways.

尚、第一ギャ14.第二ギヤ15は夫々第一歯軍部材、
第二歯軍部材を構成する。
In addition, the first gear 14. The second gear 15 is a first tooth member,
It constitutes the second tooth force member.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明に係る鏡筒用光学系は、第一光学素
子への入射光軸、第三光学素子からの射出光軸、第一及
び第二の反射光軸が同一平面上に位置し得るように構成
されているから、傾斜角を変更する際のアイポイントの
昇降ストロークを大きくすることができる。又、通常の
傾斜角固定鏡筒と比較して同−又は小さい俯角で同等の
アイポイント高さを得ることができ、しかも像の姿勢も
変化しないという実用上重要な利点を有する。
As described above, in the optical system for a lens barrel according to the present invention, the optical axis of incidence on the first optical element, the optical axis of exit from the third optical element, and the first and second reflective optical axes are located on the same plane. Since the eye point is configured to be able to change the tilt angle, it is possible to increase the vertical stroke of the eye point when changing the inclination angle. In addition, compared to a normal fixed tilt angle lens barrel, it is possible to obtain the same eye point height with the same or smaller depression angle, and the image attitude does not change, which is an important practical advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による鏡筒用光学系の一実施例について
の各光学素子の構成図、第2図(alは各光学素子の構
成、(b)は図fa)に対応する各ギヤの位置関係を夫
々示す図、第3図(alは実施例について傾斜角の変化
を示す光学系の図、(b)は傾斜角固定鏡筒の光学系を
示す図、(C)は実施例について水平な傾斜角を変化さ
せた場合を示す図、第4図は本発明の第一変形例につい
て各光学素子の位置関係を示す図、第5図(a)は本発
明の第二変形例についての第4図と同様な図、(b)は
要部光学系を示す図、第6図は従来技術を示すものであ
って、(a)は光学系、(b)は傾斜角を変えた時の各
光学素子の位置関係を示す図である。 6・・・・第一光学素子、7・・・・第二光学素子、8
・・・・第三光学素子、14・・・・第一ギヤ、I5・
・・・第二ギヤ。 (a) 第4図 第5図 (a) 手続補正書(自発) 平成 3年 7月 9日 1、事件の表示 特願平2−308191号2、発 明
 の 名 称   鏡筒用光学系4、代   理   
人   〒105東京都港区新橋5の19電話 東京(
3432)4576 5、補正の対象 明細書の発明の詳細な説明の欄及び特許請求の範囲の欄
。 6、補正の内容 (11特許請求の範囲を別紙添付の通り訂正する。 (2)明細書第7頁2行目の「回動可能で」を削除する
。 (3)  明細書第11頁9行目の「第二光学素子7」
の後に「の光軸AtJを挿入する。 (4)明細書第15頁19行目から第16頁3行目の[
倒立像の前〜こ7とができる。」を「中間結像するため
正立像になる。1と訂正する。 以上 特許請求の範囲 入射光軸を直角に反射させて第一の反射光軸とする第一
光学素子と、 該第一の反射光軸を二回直角に曲げて第一の反射光軸に
平行且つ逆向きの第二の反射光軸とし且つ第一の反射光
軸を中心に回動可能な第二光学素子と、 該第二の反射光軸を直角に反射させて射出光軸とし且つ
第二の反射光軸を中心に回動可能な第三光学素子と、 前記第一の反射光軸を中心に第一光学素子に固定されて
いる第一歯車部材と、 前記第二の反射光軸を中心に回動可能で第三光学素子に
固定されていて、第一歯車部材と噛合し且つ該第一歯車
部材と同一径を有する第二歯車部材と、が備えられてい
て、 前記入射光軸と射出光軸とが平行且つ同一方向である時
に、該入射光軸、射出光軸、第一の反射光軸及び第二の
反射光軸が同一平面上に位置するようにした鏡筒用光学
系。
Figure 1 is a configuration diagram of each optical element in an embodiment of the optical system for a lens barrel according to the present invention, and Figure 2 (al is the configuration of each optical element, (b) is a diagram of each gear corresponding to figure fa). Figures showing the positional relationships, Figure 3 (al is a diagram of the optical system showing changes in the tilt angle for the example, (b) is a diagram showing the optical system of a fixed tilt angle lens barrel, (C) is a diagram for the example FIG. 4 is a diagram showing the positional relationship of each optical element for the first modification of the present invention, and FIG. 5(a) is for the second modification of the present invention. Figure 4 is similar to Figure 4, (b) is a diagram showing the main optical system, and Figure 6 is a diagram showing the conventional technology, where (a) is the optical system and (b) is a diagram with a different tilt angle. It is a diagram showing the positional relationship of each optical element at the time. 6...first optical element, 7... second optical element, 8
...Third optical element, 14...First gear, I5.
...Second gear. (a) Figure 4 Figure 5 (a) Procedural amendment (voluntary) July 9, 1991 1, Case description Patent Application No. 2-308191 2, Name of invention Optical system for lens barrel 4 , representative
People Address: 19, Shinbashi 5, Minato-ku, Tokyo 105 Phone: Tokyo (
3432) 4576 5. Detailed description of the invention and scope of claims in the specification subject to amendment. 6. Contents of the amendment (11 Claims are corrected as attached. (2) "Rotating" in the second line of page 7 of the specification is deleted. (3) 9 of page 11 of the specification "Second optical element 7" in row
Insert the optical axis AtJ after "." (4) From page 15, line 19 of the specification to page 16, line 3, [
You can stand in front of an inverted statue. '' is corrected to ``Because it forms an intermediate image, it becomes an erect image. a second optical element whose reflective optical axis is bent twice at right angles to form a second reflective optical axis parallel to and opposite to the first reflective optical axis, and which is rotatable about the first reflective optical axis; a third optical element that reflects a second reflected optical axis at right angles to serve as an output optical axis and is rotatable about the second reflected optical axis; and a first optical element that is rotatable about the first reflected optical axis. a first gear member that is fixed to the second gear member; and a first gear member that is rotatable about the second reflective optical axis and is fixed to the third optical element, that meshes with the first gear member and is the same as the first gear member. a second gear member having a diameter, and when the input optical axis and the output optical axis are parallel and in the same direction, the input optical axis, the output optical axis, the first reflected optical axis and the second An optical system for a lens barrel in which two reflective optical axes are located on the same plane.

Claims (1)

【特許請求の範囲】 入射光軸を直角に反射させて第一の反射光軸とする第一
光学素子と、 該第一の反射光軸を二回直角に曲げて第一の反射光軸に
平行且つ逆向きの第二の反射光軸とし且つ第一の反射光
軸を中心に回動可能な第二光学素子と、 該第二の反射光軸を直角に反射させて射出光軸とし且つ
第二の反射光軸を中心に回動可能な第三光学素子と、 前記第一の反射光軸を中心に回動可能で第一光学素子に
固定されている第一歯車部材と、 前記第二の反射光軸を中心に回動可能で第三光学素子に
固定されていて、第一歯車部材と噛合し且つ該第一歯車
部材と同一径を有する第二歯車部材と、が備えられてい
て、 前記入射光軸と射出光軸とが平行且つ同一方向である時
に、該入射光軸、射出光軸、第一の反射光軸及び第二の
反射光軸が同一平面上に位置するようにした鏡筒用光学
系。
[Claims] A first optical element that reflects an incident optical axis at right angles to form a first reflected optical axis; and a first optical element that bends the first reflected optical axis twice at right angles to form the first reflected optical axis. a second optical element having a parallel and oppositely directed second reflective optical axis and rotatable about the first reflective optical axis; a third optical element rotatable about the second reflective optical axis; a first gear member rotatable about the first reflective optical axis and fixed to the first optical element; a second gear member that is rotatable about the second reflective optical axis, is fixed to the third optical element, meshes with the first gear member, and has the same diameter as the first gear member; When the input optical axis and the output optical axis are parallel and in the same direction, the input optical axis, the output optical axis, the first reflected optical axis, and the second reflected optical axis are positioned on the same plane. Optical system for the lens barrel.
JP02308191A 1990-11-14 1990-11-14 Optical system for lens barrel Expired - Fee Related JP3140456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02308191A JP3140456B2 (en) 1990-11-14 1990-11-14 Optical system for lens barrel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02308191A JP3140456B2 (en) 1990-11-14 1990-11-14 Optical system for lens barrel

Publications (2)

Publication Number Publication Date
JPH04179909A true JPH04179909A (en) 1992-06-26
JP3140456B2 JP3140456B2 (en) 2001-03-05

Family

ID=17978013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02308191A Expired - Fee Related JP3140456B2 (en) 1990-11-14 1990-11-14 Optical system for lens barrel

Country Status (1)

Country Link
JP (1) JP3140456B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258515A (en) * 1998-03-16 1999-09-24 Olympus Optical Co Ltd Eyepiece lens-barrel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258515A (en) * 1998-03-16 1999-09-24 Olympus Optical Co Ltd Eyepiece lens-barrel

Also Published As

Publication number Publication date
JP3140456B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US7088516B2 (en) Wide field of view head mounted display device
US20020101666A1 (en) Variable focal length optical element and optical system using the same
JPH0778574B2 (en) Variable tilt angle binocular tube for stereo microscope
JPH08278448A (en) Lens barrel optical system
JP2002328302A (en) Optical system
JP3290467B2 (en) Binocular stereo microscope
JPH01233430A (en) Keplerian finder optical system
JPS62189419A (en) Visual field converting optical system
CN109298542B (en) Time sequence three-dimensional projection display system
JPH08286115A (en) Microscope with infinity correction objective lens
JPH04179909A (en) Optical system for lens barrel
JPH0458006B2 (en)
JPH0641208Y2 (en) Combination prism and binocular microscope using this combination prism
JP3944262B2 (en) Surgical microscope
JP4847095B2 (en) Stereo microscope binocular tube
JPS61294408A (en) Depression visual angle variable observation optical system
JPH06347867A (en) Real image finder optical system
US20230346502A1 (en) Microscope tube
JP2888408B2 (en) Stereo microscope
JPH04166907A (en) Optical system for lens barrel
JP3030058B2 (en) Stereo microscope
JP4499223B2 (en) Surgical microscope
JP2000098237A (en) Depression angle varying lens barrel for microscope
JP3850073B2 (en) Stereo microscope binocular tube
JP3884161B2 (en) Eyepiece tube

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees