JPH04178509A - Measurement method for coordinate measuring machine - Google Patents

Measurement method for coordinate measuring machine

Info

Publication number
JPH04178509A
JPH04178509A JP30649390A JP30649390A JPH04178509A JP H04178509 A JPH04178509 A JP H04178509A JP 30649390 A JP30649390 A JP 30649390A JP 30649390 A JP30649390 A JP 30649390A JP H04178509 A JPH04178509 A JP H04178509A
Authority
JP
Japan
Prior art keywords
probe
stylus
measured
measuring machine
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30649390A
Other languages
Japanese (ja)
Inventor
Shinichiro Ogiwara
真一郎 荻原
Seiji Yamamoto
清二 山本
Noboru Kikuchi
昇 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP30649390A priority Critical patent/JPH04178509A/en
Publication of JPH04178509A publication Critical patent/JPH04178509A/en
Pending legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To perform reliable measurement by mounting a spherical stylus on a probe body displaceably in a three-dimensional direction, locating a filler between the body and the stylus when the stylus is brought into contact with the surface of an object to be measured to measure a coordinate, and correcting the measuring value of the stylus by means of a bending amount of the filler. CONSTITUTION:In a coordinate measuring machine employing a three-dimensional probe, a probe itself is also movable in three axial directions independently away from movement in the directions of an X-, an Y-, and a Z-axis of a probe holding part. When the surface of an object 50 to be measured is measured in the direction of, for example, the Z-axis by means of a coordinate measuring amount having a probe 52, a stylus 54 of the probe 52 is brought into contact with the surface of the object 50 to be measured and a measuring force F in the direction of the Z-axis is exerted on the stylus 54, and in this case, a reaction force is sometimes exerted in three axial directions. Thus, a filler 56 is located between the probe 52 and the stylus 54, and by bending the filler, a reaction force is prevented from generation. The filler 56 is also located in a similar manner described above in the direction of the Y-axis and the direction of the X-axis, and a true measuring value is produced from the stylus 54.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は座標測定機の測定方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a measuring method using a coordinate measuring machine.

〔従来の技術〕[Conventional technology]

被測定物表面の座標や形状を測定する装置としてプロー
ブ本体にフィーラを介して球状のスタイラスを三次元方
向(X、YSZ軸方向)へ変位可能に保持し、スタイラ
スを被測定物表面に接触させて被測定物の座標や形状を
測定する座標測定機がある。
As a device for measuring the coordinates and shape of the surface of an object to be measured, a spherical stylus is held in the probe body via a feeler so that it can be displaced in three-dimensional directions (X, YSZ axis directions), and the stylus is brought into contact with the surface of the object to be measured. There is a coordinate measuring machine that measures the coordinates and shape of a measured object.

この座標測定機には、プローブの測定力を可変できる座
標測定機と、変位によって測定力が与えられる座標測定
機とがある。プローブの測定力を可変できる座標測定機
は、第4図(A)に示すようにプローブ10のスタイラ
ス12を被測定物表面14に接触させた状態から、第4
図(B)に示すようにプローブ10に測定力を付与して
、プローブスケール16でその時の変位量を読み取る。
There are two types of coordinate measuring machines: one in which the measuring force of the probe can be varied and the other in which the measuring force is applied by displacement. A coordinate measuring machine that can vary the measuring force of the probe is used to adjust the measuring force from the state in which the stylus 12 of the probe 10 is in contact with the surface 14 of the object to be measured as shown in FIG. 4(A).
As shown in Figure (B), a measuring force is applied to the probe 10, and the amount of displacement at that time is read with the probe scale 16.

そして予め最小二乗法で求められている測定力Fとプロ
ーブ10の変位量とに関する補正係数を示したグラフ1
8 (第5図参照)から測定力Fに対応するプローブ1
0の補正値を求めて、プローブ10の変位量を補正する
Graph 1 shows correction coefficients regarding the measuring force F and the displacement amount of the probe 10, which are determined in advance by the least squares method.
8 (see Figure 5) to probe 1 corresponding to the measuring force F.
A correction value of 0 is obtained and the displacement amount of the probe 10 is corrected.

また変位によって測定力が与えられる座標測定機は、第
6図(A)に示すようにプローブ20のスタイラス22
を被測定物表面24に接触させた状態から、第6図(B
)に示すように測定機本体を移動させて、測定機本体の
変位を本体スケール26から読み取りると共にプローブ
の変位をプローブスケール28から読み取る。そして予
め最小二乗法で求められている測定機本体の変位とプロ
ーブ20の変位に関する補正係数を示したグラフ30(
第6図参照)から補正値を測定機本体の変位に対応する
プローブ20を求めて、プローブ20の変位量を補正す
る。
In addition, a coordinate measuring machine that applies measuring force by displacement uses a stylus 22 of a probe 20 as shown in FIG. 6(A).
6 (B) from the state in which the
), the measuring machine main body is moved, and the displacement of the measuring machine main body is read from the main body scale 26, and the displacement of the probe is read from the probe scale 28. A graph 30 (
(See FIG. 6), a correction value is determined for the probe 20 corresponding to the displacement of the measuring instrument body, and the amount of displacement of the probe 20 is corrected.

〔発明が解決しようとする課題) ところで、被測定物には、例えば表面が球状に形成され
たものがあり、この場合プローブ12の測定方向によっ
てツイータのたわみ方向が変化して一次元の方向だけに
限らない。
[Problems to be Solved by the Invention] By the way, some objects to be measured have, for example, a spherical surface, and in this case, the direction of deflection of the tweeter changes depending on the measurement direction of the probe 12, so that the deflection direction of the tweeter changes only in one dimension. Not limited to.

しかしながら、従来はプローブ10の測定方向、即ち一
次元の方向しか補正をしていないので、被測定物の表面
形状を正確に測定できないという問題がある。
However, conventional methods have only corrected the measurement direction of the probe 10, that is, the one-dimensional direction, so there is a problem that the surface shape of the object to be measured cannot be accurately measured.

本発明は、このような事情に鑑みてなされたもので、被
測定物の表面形状を正確に測定できる座標測定機の測定
方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a measuring method using a coordinate measuring machine that can accurately measure the surface shape of an object to be measured.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は、前記目的を達成する為に、座標測定機本体に
設けられ、X、Y、Z軸の三次元方向に変位可能なプロ
ーブのツイータに設けられたスタイラスにて被測定物の
形状等を測定する座標測定機の測定方法に於いて、予め
X、Y、Z軸方向の単位力当りのツイータのたわみ量を
求め、前言己スライラスを所定の測定力で被測定物に押
圧し、前記プローブを測定方向に移動して前記被測定物
の測定値を求め、該測定値と前記単位当りのフィ〜うの
たわみ量とから前記測定時のツイータのたわみ量を求約
1該たわみ量で前記測定値を補正することを特徴とする
In order to achieve the above object, the present invention has a stylus attached to a tweeter of a probe that is attached to a coordinate measuring machine body and can be displaced in three-dimensional directions of X, Y, and Z axes to measure the shape of an object to be measured, etc. In the measuring method of the coordinate measuring machine, the amount of deflection of the tweeter per unit force in the X, Y, and Z axis directions is determined in advance, and the slirus is pressed against the object to be measured with a predetermined measuring force. Move the probe in the measurement direction to obtain the measured value of the object to be measured, and calculate the deflection amount of the tweeter at the time of the measurement from the measured value and the deflection amount of the fee per unit. The method is characterized in that the measured value is corrected.

〔作用〕[Effect]

本発明によれば、所定の測定力で三次元方向に曲面が形
成されている球形等の被測定物の形状を測定する場合、
測定力と予め求められている3軸方向の単位当りのツイ
ータのたわみ量とから、測定時のツイータのたわみ量を
求め、このたわみ量で測定時の測定値を補正した値を被
測定物の形状測定値とする。
According to the present invention, when measuring the shape of an object to be measured such as a sphere having a curved surface in a three-dimensional direction with a predetermined measuring force,
The amount of deflection of the tweeter at the time of measurement is determined from the measurement force and the amount of deflection of the tweeter per unit in the three axis directions determined in advance, and the value obtained by correcting the measured value at the time of measurement using this amount of deflection is calculated as Shape measurement value.

〔実施例〕〔Example〕

以下添付図面に従って本発明に係るに座標測定機の測定
方法についてm説する。
A measuring method using a coordinate measuring machine according to the present invention will be explained below with reference to the accompanying drawings.

本発明では、いわゆる三次元プローブ(電子プローブ)
を用いた座標測定機での測定方法について説明する。こ
こで、三次元プローブとは、プローブ保持部がX、Y、
Zの3軸方向に移動されるのと独立して、プローブ自体
もX、Y、Zの3軸方向に移動可能なプローブのことを
いう。
In the present invention, a so-called three-dimensional probe (electronic probe)
We will explain the measurement method using a coordinate measuring machine using Here, the three-dimensional probe means that the probe holding part is
This refers to a probe that is movable in the three axes of X, Y, and Z independently of being moved in the three axes of Z.

第1図に示すように、球状に形成されている被測定物5
00表面をプローブ52を備えた座標測定機でZ軸方向
の測定する場合、プローブ52のスタイラス54を被測
定物50の表面に接触させて、Z軸方向の測定力Fをツ
イータ56を介してスタイラス54に付与する。
As shown in FIG. 1, the object to be measured 5 is formed into a spherical shape.
When measuring a 00 surface in the Z-axis direction with a coordinate measuring machine equipped with a probe 52, the stylus 54 of the probe 52 is brought into contact with the surface of the object to be measured 50, and a measuring force F in the Z-axis direction is applied via the tweeter 56. It is attached to the stylus 54.

この場合、スタイラス54は被測定物50の球状曲面に
接触されているので、被測定物50からスタイラス54
に作用する反力がX、Y、Z軸の3軸方向に作用する場
合があり、ツイータ56はxlY、、z軸の3軸方向に
たわむ。このたわみ量を(dxzSdyz、dzz)で
表わすと、X軸方向のたわみ量dxzは測定機本体の変
位から第2図に示すグラフ60で求めることができる。
In this case, since the stylus 54 is in contact with the spherical curved surface of the object to be measured 50, the stylus 54 is
In some cases, the reaction force acting on the tweeter 56 is deflected in the three axial directions of the X, Y, and Z axes, and the tweeter 56 is deflected in the three axial directions of the x, Y, and Z axes. If this amount of deflection is expressed as (dxzSdyz, dzz), the amount of deflection dxz in the X-axis direction can be determined from the graph 60 shown in FIG. 2 from the displacement of the measuring instrument body.

第2図に示すグラフ60は縦軸に測定機本体の変位Mx
、横軸にプローブ52の変位Pxzをとり、測定力をF
l、F2 、F3 、F4 、Fs と変化させて各々
の測定機で測定した時のプローブ52のX軸方向のたわ
み量から最小二乗法で求められている。
The graph 60 shown in FIG. 2 has the displacement Mx of the measuring machine main body on the vertical axis.
, the displacement Pxz of the probe 52 is plotted on the horizontal axis, and the measuring force is F.
It is determined by the least squares method from the amount of deflection of the probe 52 in the X-axis direction when measured with each measuring device by varying the values 1, F2, F3, F4, and Fs.

またYs11方向のたわみ量dyz及びZ軸方向のたわ
み量dzzについても上述した方法で求めることができ
る。
Further, the deflection amount dyz in the Ys11 direction and the deflection amount dzz in the Z-axis direction can also be determined by the method described above.

更に、Y軸方向に測定カビが作用した場合の3軸方向の
たわみ量(tixySdV’J、dzy)や、第1図の
想像線で示されたようにX軸方向に測定力Fが作用した
場合の3軸方向のたわみ量(dxx、 d y x、 
d z x)も、前述したX軸方向に測定力Fが作用し
た場合と同様に求めることができる。
Furthermore, the amount of deflection in the three-axis directions (tixySdV'J, dzy) when the measuring mold acts in the Y-axis direction, and the measuring force F acting in the X-axis direction as shown by the imaginary line in Figure 1. The amount of deflection in the three axial directions (dxx, d y x,
d z x) can also be obtained in the same way as when the measuring force F acts in the X-axis direction described above.

従って、測定されたX、YSZ軸方向のブo −ブの変
位を各々Px、pySPzとすると、フィーラ56のた
わみ量を補正したプローブの変位(qx、qy、qx)
と測定されたプローブの変位(Px、PySPz)とは
(1)式の関係が成豆する。
Therefore, if the measured displacements of the probe in the X and YSZ axis directions are Px and pySPz, respectively, then the probe displacement (qx, qy, qx) after correcting the amount of deflection of the feeler 56 is
and the measured displacement of the probe (Px, PySPz) have the relationship shown in equation (1).

また、(1]式を使用してプローブ52と測定機本体と
の平行度を補正することができる。すなわち、第3図に
示すようにプローブ52が測定機本体に傾いてセットさ
れた場合、Y軸方向の測定機本体の変位をYM、  と
して、この時のY軸方向のプローブの変位をYP、 、
X軸方向の変位をxPl とすると、Y軸方向とX軸方
向の補正係数ciyy、dxyは、 YM。
Furthermore, the parallelism between the probe 52 and the measuring machine body can be corrected using equation (1).In other words, when the probe 52 is set at an angle to the measuring machine body as shown in FIG. Let the displacement of the measuring machine body in the Y-axis direction be YM, and the displacement of the probe in the Y-axis direction at this time be YP, ,
When the displacement in the X-axis direction is xPl, the correction coefficients ciyy and dxy in the Y-axis direction and the X-axis direction are YM.

XP。XP.

で表される。It is expressed as

また、X軸方向の測定機本体の変位をχM2  として
、この時のX軸方向のプローブの変位をXP2 、YM
方向の変位をYP2 とすると、X軸方向とY軸方向の
補正係数dxx、dYXは、 M 2 dxx= − XP。
In addition, the displacement of the measuring machine body in the X-axis direction is χM2, and the displacement of the probe in the X-axis direction at this time is XP2, YM
If the displacement in the direction is YP2, the correction coefficients dxx and dYX in the X-axis direction and the Y-axis direction are M 2 dxx=−XP.

YP。YP.

で表される。It is expressed as

上述した補正係数はX#、Y軸の2軸の場合につし)て
説明したが、xSy、z軸の3軸の場合も同様の方法で
補正係数を求めることができる。この補正係数を前述し
た(1)式に代入してプローブ52と測定機本体との平
行度を補正することができる。従ってプローブ52を測
定機本体にセットする時間を短縮することができる。
Although the above-mentioned correction coefficients have been explained in the case of two axes, X# and Y axes, the correction coefficients can be obtained in a similar manner in the case of three axes, xSy and Z axes. By substituting this correction coefficient into the above-mentioned equation (1), the parallelism between the probe 52 and the measuring instrument body can be corrected. Therefore, the time required to set the probe 52 in the measuring instrument body can be shortened.

また、同様の考え方でプローブ52の内部の直角度を補
正することができるので、従来のようにプローブ52内
部の調整機構で内部の直角度を調整する必要がない。
Further, since the internal squareness of the probe 52 can be corrected using the same concept, there is no need to adjust the internal squareness using an adjustment mechanism inside the probe 52 as in the conventional case.

C発胡の効果〕 以上述べたように本発明に係る座標測定機の測定方法に
よれば、フィーラが三次元空間のいずれの方向にたわん
だ場合でもプローブの測定値を補正することができるの
で、プローブを任意の方向に向けて測定することが可能
であり、又フィーラの長さが長くなってたわみ量が増加
しても高精度の測定が可能である。
[Effect of C-hook] As described above, according to the measuring method of the coordinate measuring machine according to the present invention, the measured value of the probe can be corrected even if the feeler is deflected in any direction in the three-dimensional space. , it is possible to measure by pointing the probe in any direction, and even if the length of the feeler becomes longer and the amount of deflection increases, highly accurate measurement is possible.

また三次元方向の補正によりプローブ内部の直角度を厳
密に調整する必要がないので、プローブ内部の調整機構
による直角度の調整を除去することができる。
Further, since it is not necessary to strictly adjust the squareness inside the probe by three-dimensional correction, it is possible to eliminate the squareness adjustment by an adjustment mechanism inside the probe.

更にプローブを測定機に取付ける時に正確に測定機と平
行合わせを行う必要がないのでプローブの着脱が容易に
行なえ、ナだ正確な平行合わせ機構を除去することがで
きるので構造の簡略化を図ることができる。
Furthermore, since there is no need to accurately align the probe parallel to the measuring machine when attaching it to the measuring machine, the probe can be easily attached and detached, and the structure can be simplified since the accurate parallel alignment mechanism can be removed. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る座標測定機の要部拡大図、第2図
は本発明に係る座標測定機の補正に使用するグラフ、第
3図は本発明に係る座標測定機の平行合わせの補正に使
用するグラフ、第4図(A)、(B)及び第6図(A)
、(B)は従来の座標測定機の要部拡大図、第5図、第
7図は第4図、第5図に示す座標測定機の補正に使用す
るグラフである。 50・・・被測定物、  52・・・プローブ、54・
・・スタイラス、  56・・・フィーラ。
Fig. 1 is an enlarged view of the main parts of the coordinate measuring machine according to the present invention, Fig. 2 is a graph used for correction of the coordinate measuring machine according to the present invention, and Fig. 3 is a graph for parallel alignment of the coordinate measuring machine according to the present invention. Graphs used for correction, Figure 4 (A), (B) and Figure 6 (A)
, (B) are enlarged views of main parts of a conventional coordinate measuring machine, and FIGS. 5 and 7 are graphs used for correction of the coordinate measuring machines shown in FIGS. 4 and 5. 50... object to be measured, 52... probe, 54...
...Stylus, 56...Feeler.

Claims (1)

【特許請求の範囲】[Claims] (1)座標測定機本体に設けられ、X、Y、Z軸の三次
元方向に変位可能なプローブのフィーラに設けられたス
タイラスを、被測定物に接触させ形状等を測定する座標
測定機の測定方法に於いて、予めX、Y、Z軸方向の単
位力当りのフィーラのたわみ量を求め、 前記スライラスを所定の測定力で被測定物に押圧し、前
記プローブを測定方向に移動して前記被測定物の測定値
を求め、 該測定値と前記単位当りのフィーラのたわみ量とから前
記測定時のフィーラのたわみ量を求め、該たわみ量で前
記測定値を補正することを特徴とする座標測定機の測定
方法。
(1) A coordinate measuring machine that measures the shape, etc. by bringing the stylus attached to the feeler of the probe, which is installed in the main body of the coordinate measuring machine and can be displaced in the three-dimensional directions of the X, Y, and Z axes, into contact with the object to be measured. In the measurement method, the amount of deflection of the feeler per unit force in the X, Y, and Z axis directions is determined in advance, the sliver is pressed against the object to be measured with a predetermined measuring force, and the probe is moved in the measurement direction. A measured value of the object to be measured is determined, an amount of deflection of the feeler at the time of the measurement is determined from the measured value and the amount of deflection of the feeler per unit, and the measured value is corrected by the amount of deflection. How to measure using a coordinate measuring machine.
JP30649390A 1990-11-13 1990-11-13 Measurement method for coordinate measuring machine Pending JPH04178509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30649390A JPH04178509A (en) 1990-11-13 1990-11-13 Measurement method for coordinate measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30649390A JPH04178509A (en) 1990-11-13 1990-11-13 Measurement method for coordinate measuring machine

Publications (1)

Publication Number Publication Date
JPH04178509A true JPH04178509A (en) 1992-06-25

Family

ID=17957686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30649390A Pending JPH04178509A (en) 1990-11-13 1990-11-13 Measurement method for coordinate measuring machine

Country Status (1)

Country Link
JP (1) JPH04178509A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528709A (en) * 1998-10-24 2002-09-03 レニショウ パブリック リミテッド カンパニー Analog probe calibration and error mapping method
JP2006509194A (en) * 2002-12-05 2006-03-16 レニショウ パブリック リミテッド カンパニー Workpiece inspection method
JP2007515638A (en) * 2003-12-16 2007-06-14 レニショウ パブリック リミテッド カンパニー Method for calibration of a coordinate position determination device
JP2011501139A (en) * 2007-10-19 2011-01-06 カール ザイス インダストリエル メステクニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for correcting the measurement value of a coordinate measuring machine and coordinate measuring machine
JP2017151069A (en) * 2016-02-26 2017-08-31 株式会社ミツトヨ Measurement probe
US10393495B2 (en) 2016-02-26 2019-08-27 Mitutoyo Corporation Measuring probe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145908A (en) * 1988-11-28 1990-06-05 Okuma Mach Works Ltd Automatic setting for correcting deflection of stylus in digitizing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145908A (en) * 1988-11-28 1990-06-05 Okuma Mach Works Ltd Automatic setting for correcting deflection of stylus in digitizing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528709A (en) * 1998-10-24 2002-09-03 レニショウ パブリック リミテッド カンパニー Analog probe calibration and error mapping method
JP2006509194A (en) * 2002-12-05 2006-03-16 レニショウ パブリック リミテッド カンパニー Workpiece inspection method
JP2007515638A (en) * 2003-12-16 2007-06-14 レニショウ パブリック リミテッド カンパニー Method for calibration of a coordinate position determination device
JP2011501139A (en) * 2007-10-19 2011-01-06 カール ザイス インダストリエル メステクニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for correcting the measurement value of a coordinate measuring machine and coordinate measuring machine
JP2017151069A (en) * 2016-02-26 2017-08-31 株式会社ミツトヨ Measurement probe
US10393495B2 (en) 2016-02-26 2019-08-27 Mitutoyo Corporation Measuring probe
US10415949B2 (en) 2016-02-26 2019-09-17 Mitutoyo Corporation Measuring probe

Similar Documents

Publication Publication Date Title
JP5042409B2 (en) Method for calibrating a scanning system
US5501096A (en) Calibration method for determining and compensating differences of measuring forces in different coordinate directions in a multi-coordinate scanning system
US6412329B1 (en) Method of and apparatus for reducing vibrations on probes carried by coordinate measuring machines
EP0360853B1 (en) Surface-sensing device
US5594668A (en) Method for correcting coordinate measurement on workpieces based on bending characteristics
JP2988588B2 (en) Position measuring device
JPH03180711A (en) Probe and method, apparatus and guide means for calibrating continuously measuring probe
US5649368A (en) Method for calibrating a coordinate measuring apparatus having two pivot axes
WO1997013117A1 (en) Method of improving accuracy of touch trigger probe
US5152072A (en) Surface-sensing device
Miguel et al. A review on methods for probe performance verification
Chan et al. Some performance characteristics of a multi-axis touch trigger probe
JPH04178509A (en) Measurement method for coordinate measuring machine
JP3032334B2 (en) Method and apparatus for measuring surface profile
EP2385342B1 (en) Apparatus and method for calibrating a coordinate measuring apparatus
Peggs et al. Creating a standards infrastructure for co-ordinate measurement technology in the UK
Ouyang et al. Ball array calibration on a coordinate measuring machine using a gage block
JPH05126556A (en) Probe for three-dimensional measuring machine
Lee et al. Squareness estimation for coordinate measuring machine using the laser interferometer measurement based on the face-diagonal method
JPS5857686B2 (en) Measurement method of coordinate measuring machine and reference point block for the measurement method
JP2579726B2 (en) Contact probe
JP3633863B2 (en) Autonomous determination method of systematic error of surface profile measurement system using calibration object
JPH04140691A (en) Positioner
CN117718800A (en) Standard device and calibration method for calibrating multisource integrated errors of on-machine measurement system
CN110030963B (en) REVO measuring head probe length calibration method