JPH04178403A - Method for curing diethylentically unsaturated monomer - Google Patents

Method for curing diethylentically unsaturated monomer

Info

Publication number
JPH04178403A
JPH04178403A JP30641090A JP30641090A JPH04178403A JP H04178403 A JPH04178403 A JP H04178403A JP 30641090 A JP30641090 A JP 30641090A JP 30641090 A JP30641090 A JP 30641090A JP H04178403 A JPH04178403 A JP H04178403A
Authority
JP
Japan
Prior art keywords
unsaturated monomer
ultraviolet ray
benzophenone
parts
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30641090A
Other languages
Japanese (ja)
Inventor
Fumie Watari
亘 文恵
Seiichiro Hayakawa
誠一郎 早川
Tsutomu Isaka
勉 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP30641090A priority Critical patent/JPH04178403A/en
Publication of JPH04178403A publication Critical patent/JPH04178403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain a cured resin, excellent in mass productivity, ultraviolet ray cutting properties, transparency, etc., and suitable as optical parts, etc., by blending a diethylenically unsaturated monomer with a specific photoinitiator and a specified ultraviolet ray absorber and then irradiating the resultant blend with active energy rays at a specific wavelength. CONSTITUTION:A photo-setting composition prepared by blending (A) 100 pts.wt. diethylenically unsaturated monomer [e.g. ethylene glycol di(meth)acrylate] with (B) 0.01-0.3 pt.wt. photoinitiator selected from compounds expressed by the formula (X is methyl, methoxy, etc.; n is 2 or 3; R is phenyl or methoxy), acetophenone-based photoinitiators and benzophenone-based photoinitiators and (C) 0.01-0.2 pt.wt. ultraviolet ray absorber selected from benzophenone-based ultraviolet ray absorbers and benzotriazole-based ultraviolet ray absorbers is irradiated with active energy rays at 40% ratio of energy at 370-450nm when the energy at 300-450nm is 100%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジエチレン性不飽和単量体を、紫外線等の活
性エネルギー線照射により硬化する方法に関する0本発
明の方法は、レンズ、プリズム、ミラー、光ディスク等
の光学部品の製造に適する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for curing a diethylenically unsaturated monomer by irradiation with active energy rays such as ultraviolet rays. Suitable for manufacturing optical parts such as mirrors and optical discs.

〔従来の技術〕[Conventional technology]

光硬化性樹脂に、活性エネルギー線として、水銀ランプ
などの紫外線を照射することによりプラスチックレンズ
を製造する方法は、既に提案されている(特開昭61−
194401号、特開昭63−207632号公報等)
、これらの方法によれば、紫外線照射により、短時間で
硬化できるという利点はあるが、硬化樹脂の内部均質性
や面の転写精度が充分でなく、また、一般に、得られる
硬化樹脂の透明性や色相が、ポリメチルメタクリレート
、ポリカーボネート、ジエチレングリコールビスアリル
カーボネート等の重合体に比べて劣るという欠点があっ
た。そのため、従来のこの種の紫外線を用いた方法によ
って得られる硬化樹脂を用いたレンズ等の光学部品は実
用上で多くの問題があった。
A method of manufacturing plastic lenses by irradiating a photocurable resin with ultraviolet rays from a mercury lamp as active energy rays has already been proposed (Japanese Unexamined Patent Application Publication No. 1983-1989).
194401, Japanese Patent Application Laid-Open No. 63-207632, etc.)
Although these methods have the advantage of being able to be cured in a short time by UV irradiation, the internal homogeneity of the cured resin and surface transfer accuracy are insufficient, and the transparency of the cured resin that is obtained is generally low. It had the disadvantage that its color and hue were inferior to those of polymers such as polymethyl methacrylate, polycarbonate, and diethylene glycol bisallyl carbonate. Therefore, optical parts such as lenses using cured resins obtained by conventional methods using ultraviolet rays have had many problems in practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記した従来方法の欠点を改良しようとする
ものであり、特に、量産性に優れ、内部均質性、面の転
写精度、紫外線カツト性、透明性及び色相等の特性に優
れた硬化物を与える光学部品の製造に適した方法を提供
しようとするものである。
The present invention aims to improve the drawbacks of the conventional methods described above, and in particular, it is a curing method that is excellent in mass production and has excellent characteristics such as internal homogeneity, surface transfer accuracy, ultraviolet protection, transparency, and hue. The purpose is to provide a method suitable for manufacturing optical components that provide objects.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、ジエチレン性不飽和単量体に、特定の
光重合開始剤と特定の紫外線吸収剤とを特定の割合で含
んでなる光硬化性組成物に、特定波長を有する活性エネ
ルギー線を照射することにより、その目的を達成するこ
とができたものである。
According to the present invention, a photocurable composition comprising a diethylenically unsaturated monomer, a specific photopolymerization initiator, and a specific ultraviolet absorber in a specific ratio is coated with active energy rays having a specific wavelength. This goal was achieved by irradiating the area with light.

即ち、本発明の方法は、 (A)ジエチレン性不飽和単量体100重量部に対して
、 (B)下記−数式(1) (式中、Xはメチル基、メトキシ基又は塩素原子を示し
、nは2又は3の数を示し、Rは、フェニル基又はメト
キシ基を示す。) で示される化合物、アセトフェノン系光開始剤及び、ベ
ンゾフェノン系光開始剤から選ばれる少なくとも′1種
の光開始剤を、0.01〜0.3重量部、及び (C)ベンゾフェノン系紫外線吸収剤及びベンゾトリア
ゾール系紫外線吸収剤から選ばれる少な(とも1種の紫
外線吸収剤を、0.01〜0.2重量部の割合で含有し
てなる光硬化性組成物に、300〜450nmの波長範
囲のエネルギーを100%としたときに、370〜45
0nsの波長範囲のエネルギーの割合が、40%以上で
ある活性エネルギー線を照射することを特徴とするジエ
チレン性不飽和単量体の硬化方法を提供するものである
That is, in the method of the present invention, (A) based on 100 parts by weight of diethylenically unsaturated monomer, (B) the following formula (1) (wherein, X represents a methyl group, a methoxy group, or a chlorine atom). , n represents a number of 2 or 3, and R represents a phenyl group or a methoxy group. 0.01 to 0.3 parts by weight of the agent, and (C) a small amount selected from benzophenone ultraviolet absorbers and benzotriazole ultraviolet absorbers (both 0.01 to 0.2 parts by weight of one type of ultraviolet absorber) When the energy in the wavelength range of 300 to 450 nm is taken as 100%, the photocurable composition contains 370 to 45 parts by weight.
The present invention provides a method for curing diethylenically unsaturated monomers, which comprises irradiating active energy rays in which the ratio of energy in the 0 ns wavelength range is 40% or more.

本発明で用いられるジエチレン性不飽和単量体としては
、例えば、P−ビス〔β−(メタ)アクリロイルオキシ
エチルチオフキシリレン、m−ビス〔β−(メタ)アク
リロイルオキシエチルチオフキシリレン、P−ビス〔β
−(メタ)アクリロイルオキシエチルオキシエチルチオ
〕キシリレン、m−ビス〔β−(メタ)アクリロイルオ
キシエチルオキシエチルチオ〕キシリレン、4.4’−
ビス〔β−(メタ)アクリロイルオキシエチルチオ〕ジ
フェニルスルフォン等のイオウ含有ジ(メタ)アクリレ
ート類、エチレングリコールジ(メタ)アクリレート、
ジエチレングリコールジ(メタ)アクリレート、トリエ
チレングリコールジ(メタ)アクリレート、プロピレン
グリコール(メタ)アクリレート、ヘキサンジオールジ
(メタ)アクリレート等のアルキレングリコールジ(メ
タ)アクリレート類、2.2−ビス〔4−(メタ)アク
リロイルオキシフェニル〕プロパン、そのハロゲン置換
誘導体、2.2−ビス(4−(2−メタクリロイルオキ
シエトキシ)フェニル〕プロパン、そのハロゲン置換誘
導体等のビスフェノール人骨格含有ジ(メタ)アクリレ
ート類、m−ビス〔(4−ビニルフェニル)メチルチオ
〕キシリレン、β、β′−ビス〔(4−ビニルフェニル
)メチルチオ〕ジエチルエーテル等のスチレン系化合物
等が挙げられる。好ましいジエチレン性不飽和単量体は
、P−ビス〔β−(メタ)アクリロイルオキシエチルチ
オフキシリレン、m−ビス〔β−(メタ)アクリロイル
オキシエチルチオフキシリレン等のイオウ含有ジ(メタ
)アクリレート類である。
Examples of the diethylenically unsaturated monomer used in the present invention include P-bis[β-(meth)acryloyloxyethylthiofoxylylene, m-bis[β-(meth)acryloyloxyethylthiofoxylylene, −Bis[β
-(meth)acryloyloxyethyloxyethylthio]xylylene, m-bis[β-(meth)acryloyloxyethyloxyethylthio]xylylene, 4.4'-
Sulfur-containing di(meth)acrylates such as bis[β-(meth)acryloyloxyethylthio]diphenylsulfone, ethylene glycol di(meth)acrylate,
Alkylene glycol di(meth)acrylates such as diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, propylene glycol(meth)acrylate, hexanediol di(meth)acrylate, 2.2-bis[4-( Bisphenol human skeleton-containing di(meth)acrylates such as meth)acryloyloxyphenyl]propane, its halogen-substituted derivatives, 2,2-bis(4-(2-methacryloyloxyethoxy)phenyl)propane, its halogen-substituted derivatives, m -Bis[(4-vinylphenyl)methylthio]xylylene, β,β'-bis[(4-vinylphenyl)methylthio]diethyl ether, and other styrenic compounds. Preferred diethylenically unsaturated monomers include: These are sulfur-containing di(meth)acrylates such as P-bis[β-(meth)acryloyloxyethylthiofylylene and m-bis[β-(meth)acryloyloxyethylthiofylylene.

尚、本明細書に記載の「(メタ)アクリロイル」又は「
(メタ)アクリレート」は、アクリロイルとメタクリロ
イル又はアクリレートとメタクリレートの総称である。
In addition, "(meth)acryloyl" or "(meth)acryloyl" described in this specification
"(Meth)acrylate" is a general term for acryloyl and methacryloyl or acrylate and methacrylate.

本発明で用いられる光重合開始剤は、前記−数式(I)
で表わされる化合物、アセトフェノン系光開始剤、及び
ベンゾフェノン系光開始剤から選ばれるものであり、そ
の1種類を用いてもよいし、2種以上を併用してもよい
The photopolymerization initiator used in the present invention has the above-mentioned formula (I)
The photoinitiator is selected from the following compounds, acetophenone photoinitiators, and benzophenone photoinitiators, and one type thereof may be used, or two or more types thereof may be used in combination.

光重合開始剤の具体例として、下記のものをあげること
ができる。
Specific examples of photopolymerization initiators include the following.

前記−数式〔I〕で表わされる2、6−シメチルベンゾ
イルジフエニルフオスフインオキシド、2,4゜6−ド
リメチルベンゾイルジフエニルフオスフインオキシド、
2.4.6− )リメチルベンゾイルフェニルフォスフ
ィン酸メチルエステル、2.6−シクロルベンゾイルジ
フエニルフオスフインオキシド、2,6−シメトキシベ
ンゾイルジフエニルフオスフインオキシド等のアシルフ
ォスフインオキシド及びアシルフォスフイン酸エステル
類、1−フェニル−2−ヒドロキシ−2−メチルプロパ
ン−1−オン、1−ヒドロキシシクロへキシルフェニル
ケトン、4−ジフェノキシジクロロアセトフェノン、ジ
ェトキシアセトフェノン、1−(4−イソプロピルフェ
ニル)−2−ヒドロキシ−2−メチルプロパン−1−オ
ン等のアセトフェノン系化合物、及びベンゾフェノン、
ベンゾイル安息香酸メチル、4−フェニルベンゾフェノ
ン、ヒドロキシベンゾフェノン、3.3′−ジメチル−
4−メトキシベンゾフェノン、ジフェノキシベンゾフェ
ノン等のベンゾフェノン系化合物等である。好ましい光
重合開始剤は、2,4.6− )リメチルベンゾイルジ
フェニルフォスフィンオキシド、トリメチルベンゾイル
フェニルフォスフイン酸メチルエステル、1−ヒドロキ
シシクロへキシルフェニルケトン、ベンゾフェノン及び
、ジフェノキシベンゾフェノンである。
2,6-dimethylbenzoyldiphenylphosphine oxide, 2,4゜6-dolimethylbenzoyldiphenylphosphine oxide represented by the above-mentioned formula [I],
2.4.6-) Acylphosphine oxides and acyls such as methylbenzoyl phenylphosphinate methyl ester, 2,6-cyclobenzoyldiphenylphosphine oxide, 2,6-cymethoxybenzoyldiphenylphosphine oxide, etc. Phosphinate esters, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 4-diphenoxydichloroacetophenone, jetoxyacetophenone, 1-(4-isopropylphenyl) )-2-hydroxy-2-methylpropan-1-one and other acetophenone compounds, and benzophenone,
Methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, 3,3'-dimethyl-
These include benzophenone compounds such as 4-methoxybenzophenone and diphenoxybenzophenone. Preferred photoinitiators are 2,4.6-)limethylbenzoyldiphenylphosphine oxide, trimethylbenzoylphenylphosphinic acid methyl ester, 1-hydroxycyclohexylphenylketone, benzophenone, and diphenoxybenzophenone.

これ等の光重合開始剤の割合は、ジエチレン性不飽和単
量体100重量部に対し、0.01〜0.3重量部、好
ましくは、0.02〜0.2重量部である。
The proportion of these photopolymerization initiators is 0.01 to 0.3 parts by weight, preferably 0.02 to 0.2 parts by weight, based on 100 parts by weight of the diethylenically unsaturated monomer.

光重合開始剤の配合割合が多すぎると、硬化樹脂の内部
均質性が劣るだけでなく、色相も悪化する。
If the blending ratio of the photopolymerization initiator is too large, not only the internal homogeneity of the cured resin will be poor, but also the hue will deteriorate.

また、光重合開始剤が少なすぎると、組成物を充分に硬
化させることが出来なくなる。
Furthermore, if the amount of photopolymerization initiator is too small, the composition cannot be sufficiently cured.

本発明で用いられる紫外線吸収剤は、ベンゾフェノン系
紫外線吸収剤及びベンゾトリアゾール系紫外線吸収剤か
ら選ばれるものであり、これ等は、単独又は2種以上を
併用して用いてもよい。
The ultraviolet absorber used in the present invention is selected from benzophenone ultraviolet absorbers and benzotriazole ultraviolet absorbers, and these may be used alone or in combination of two or more.

その具体例としては、2.4−ジヒドロキシベンゾフェ
ノン、2−ヒドロキシ−4−メトキシンゾフェノン、2
−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒ
ドロキシ−4−オクタデシロキシベンゾフェノン、2.
2’−ジヒドロキシ−4−メトキシベンゾフェノン、2
.2’ −ジヒドロキシ−4,4′−ジメトキシベンゾ
フェノン等のベンゾフェノン系化合物、2− (2’−
ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール
、2−(2′−ヒドロキシ−3’ 、5’−ジターシャ
リ−ブチルフェニル)ベンゾトリアゾール、2− (2
’−ヒドロキシ−3′−ターシ中す−フ゛チル−5′−
メチルフェニル)ベンゾトリアゾール等のベンゾトリア
ゾール系化合物である。
Specific examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxinezophenone,
-Hydroxy-4-octoxybenzophenone, 2-hydroxy-4-octadecyloxybenzophenone, 2.
2'-dihydroxy-4-methoxybenzophenone, 2
.. Benzophenone compounds such as 2'-dihydroxy-4,4'-dimethoxybenzophenone, 2- (2'-
Hydroxy-5-methylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-ditertiary-butylphenyl)benzotriazole, 2-(2
'-Hydroxy-3'-tacyl-5'-
Benzotriazole compounds such as (methylphenyl)benzotriazole.

これらの紫外線吸収剤の割合は、ジエチレン性不飽和単
量体100重量部に対して、0.01〜0.2重量部、
好ましくは0.03〜0.1重量部である。紫外線吸収
剤の配合割合が、多すぎると、硬化物が充分に硬化しな
いか、もしくは、得られた硬化物の内部均質性が悪くな
る。また、少なすぎると、所望の紫外線カツト性が得ら
れなくなる。
The proportion of these ultraviolet absorbers is 0.01 to 0.2 parts by weight, based on 100 parts by weight of the diethylenically unsaturated monomer.
Preferably it is 0.03 to 0.1 part by weight. If the blending ratio of the ultraviolet absorber is too large, the cured product will not be sufficiently cured or the internal homogeneity of the obtained cured product will deteriorate. On the other hand, if the amount is too small, desired ultraviolet blocking properties cannot be obtained.

本発明の方法では、ジエチレン性不飽和単量体を硬化さ
せる活性エネルギー線として、300〜450n−の波
長範囲のエネルギーを100%としたときに、370〜
b ギーの割合が、40%以上、好ましくは、50%以上、
より好ましくは、60%以上を占める活性エネルギー線
を用いる。370〜450■の波長範囲のエネルギーの
割合が少なすぎると、硬化物の内部均質性や面の転写精
度が悪くなる。この様な波長特性を有する活性エネルギ
ー線としては、鉄、マグネシウム、ガリウム等の沃化物
、塩化物を水銀と一緒に放電管に封入した、いわゆるメ
タルハライドランプ、Fusion System C
orp、の■型、D型の無電極ランプ等により得ること
が出来る。
In the method of the present invention, when the energy in the wavelength range of 300 to 450 n- is taken as 100%, the active energy ray for curing the diethylenically unsaturated monomer is 370 to 450 nm.
b The proportion of ghee is 40% or more, preferably 50% or more,
More preferably, active energy rays occupying 60% or more are used. If the proportion of energy in the wavelength range of 370 to 450 cm is too small, the internal homogeneity of the cured product and the surface transfer accuracy will deteriorate. Active energy rays with such wavelength characteristics include a so-called metal halide lamp, Fusion System C, in which iodides and chlorides of iron, magnesium, gallium, etc. are sealed together with mercury in a discharge tube.
It can be obtained using an electrodeless lamp of type 2, type D, or the like.

また、通常の高圧水銀ランプ等から発生する活性エネル
ギー線を適当なフィルターを通して波長工ネルギー割合
を所望の割合に調整することによっても得ることが出来
る。この様なフィルターとして、たとえば、JIS B
 7113に規定されているUV34 、UV36、L
−IA、 L−38等が用いられる。又、金属膜や誘電
体多層膜を利用、又は、両者を併用した干渉フィルター
等を用いて調整することもできる。
It can also be obtained by passing active energy rays generated from a normal high-pressure mercury lamp or the like through a suitable filter and adjusting the wavelength modulation energy ratio to a desired ratio. As such a filter, for example, JIS B
UV34, UV36, L specified in 7113
-IA, L-38, etc. are used. Further, adjustment can also be made using a metal film, a dielectric multilayer film, or an interference filter using both.

また本発明に用いられる光硬化性組成物には、前記した
(A) (B)及び(C)成分の他、必要に応じて重合
促進剤・重合調節剤・防曇剤・離型剤その他の添加剤を
配合することができる。
In addition to the components (A), (B), and (C) described above, the photocurable composition used in the present invention may optionally contain a polymerization accelerator, polymerization regulator, antifogging agent, mold release agent, and other components. Additives can be added.

本発明に用いられる光硬化性組成物に活性エネルギー線
を照射する方法としては、所望形状の光学部品成形用モ
ールド(例えば、レンズの場合では、所望のレンズ形状
を構成する2枚のガラスモールドを、エチレン−酢酸ビ
ニル共重合体からなるガスケットを介して固定したモー
ルド等)の空隙部に光硬化性組成物を、不活性ガス雰囲
気中又は空気中にて、注入した後、両面又は片面から活
性エネルギー線を照射する方法があげられる。なお、照
射の際には、モールドを、活性エネルギー線に対して固
定する方法又はコンベア等でモールドを移動させながら
照射する方法のいずれの方法でもよい。
As a method of irradiating the photocurable composition used in the present invention with active energy rays, a mold for forming an optical component of a desired shape (for example, in the case of a lens, two glass molds constituting the desired lens shape) is used. A photocurable composition is injected into the cavity of a mold (such as a mold fixed via a gasket made of ethylene-vinyl acetate copolymer) in an inert gas atmosphere or in air, and then activated from both or one side. One method is to irradiate energy rays. Note that during irradiation, either a method of fixing the mold to the active energy rays or a method of irradiating while moving the mold on a conveyor or the like may be used.

〔実施例〕〔Example〕

以下、実施例により、本発明をより具体的に説明する。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、例中の部は重量部を示す。また、実施例に記載の
硬化物の諸物性は、下記の試験法により測定した。
Note that parts in the examples indicate parts by weight. In addition, various physical properties of the cured products described in the Examples were measured by the following test methods.

(1)光線透過率:あつさ2■の試験片を用いて、50
0n■の光線透過率を測定した。
(1) Light transmittance: 50
The light transmittance at 0n■ was measured.

(2)屈折率及びアツベ数:アツベ屈折計(アタゴ社製
)を用いて25℃にて測定した。
(2) Refractive index and Atsube number: Measured at 25° C. using an Atsube refractometer (manufactured by Atago Corporation).

(3)光学歪:レンズ型を用いて得られた硬化物につい
て東芝歪検査機(東芝硝子社製)にて測定し、光学歪の
無いものを○、有るものを×とした。
(3) Optical distortion: The cured product obtained using the lens mold was measured with a Toshiba distortion tester (manufactured by Toshiba Glass Co., Ltd.), and those with no optical distortion were marked as ○, and those with optical distortion were marked as ×.

また、例中の紫外線エネルギー量は光源及び光源から、
フィルターを通して、モノクロメータ−により分光し、
フォトマルチプライヤ−により、光強度の波長スペクト
ルを測定し、得られたスペクトルを用いて、300〜4
50n−の波長範囲のエネルギーを100%とした時の
、370〜450n−の波長範囲のエネルギーの比率を
求めた。この比率を、以下、エネルギーインデックスと
略す。
In addition, the amount of ultraviolet energy in the example is from the light source and the light source.
Pass through a filter and analyze with a monochromator,
The wavelength spectrum of the light intensity is measured using a photomultiplier, and using the obtained spectrum, 300 to 4
When the energy in the wavelength range of 50n- was taken as 100%, the ratio of the energy in the wavelength range of 370 to 450n- was determined. This ratio is hereinafter abbreviated as energy index.

実施例1 下式で示されるイオウ含有アクリル系化合物(1)CH
l ”−CHg−5−C1bCH*−0−C−C=CHz 
   (1)(以下単量体(1)と略記)100部に、
2.4.6− )リメチルベンゾイルジフェニルフオス
フインオキサイド(以下T?IDPOと略記)0.05
部、2−ヒドロキシ−4−オクトキシベンゾフェノン(
[バイオソープ130」共同薬品社製)0.05部を加
え、重合調節剤としてt−ブチルパーオキシ−2−エチ
ルヘキサノエート0.2部を加え、均一に攪拌混合した
後脱泡し、得られた組成物を鏡面仕上げしたガラス板と
シリコンゴムからなる厚さ6mの鋳型の中へ、アルゴン
ガス雰囲気下で注型した。
Example 1 Sulfur-containing acrylic compound (1) CH represented by the following formula
l ”-CHg-5-C1bCH*-0-C-C=CHz
(1) (hereinafter abbreviated as monomer (1)) to 100 parts,
2.4.6-) Limethylbenzoyldiphenylphosphine oxide (hereinafter abbreviated as T?IDPO) 0.05
part, 2-hydroxy-4-octoxybenzophenone (
Add 0.05 part of [Biosoap 130" manufactured by Kyodo Yakuhin Co., Ltd.), add 0.2 part of t-butylperoxy-2-ethylhexanoate as a polymerization regulator, stir and mix uniformly, and then defoamer. The resulting composition was cast into a 6 m thick mold made of a mirror-finished glass plate and silicone rubber under an argon gas atmosphere.

ついで鋳型のガラス面より高さ4001の距離から、出
力80W/aiのメタルハライドランプ(エネルギーイ
ンデックス=53%)にて8分間(ガラス両面からそれ
ぞれ4分間ずつ)紫外線を照射した。得られた硬化物を
脱型後、エアーオーブン中で100°Cで2時間加熱し
て、無色透明の光学歪の無い硬化樹脂を得た。
Then, from a distance of 4001 cm above the glass surface of the mold, ultraviolet rays were irradiated for 8 minutes (4 minutes each from both sides of the glass) using a metal halide lamp (energy index = 53%) with an output of 80 W/ai. After demolding the obtained cured product, it was heated in an air oven at 100°C for 2 hours to obtain a colorless and transparent cured resin free of optical distortion.

この硬化樹脂を物性測定のため切削研磨して測定サンプ
ルの寸法に加工し、その物性を測定した結果は表−1に
示すとおりであった。
This cured resin was cut and polished to the dimensions of a measurement sample to measure its physical properties, and the results of measuring its physical properties were as shown in Table 1.

また、脱泡後の組成物をガラスモールドとエチレン−酢
酸ビニル共重合体からなるガスケットで構成される直径
80■、中心厚1.5閣のマイナスレンズ用レンズ型に
同様に注型し硬化した。脱型後、同様に加熱し無色透明
な光学歪の無いレンズを得た。
In addition, the defoamed composition was similarly cast into a lens mold for a minus lens with a diameter of 80 cm and a center thickness of 1.5 cm, which was composed of a glass mold and a gasket made of ethylene-vinyl acetate copolymer, and was cured. . After demolding, it was heated in the same manner to obtain a colorless and transparent lens with no optical distortion.

実施例2 実施例1で用いた単量体(1) 100部の代りに下式
(2)で示される、イオウ含有アクリル系化合物(2)
CH。
Example 2 In place of 100 parts of the monomer (1) used in Example 1, a sulfur-containing acrylic compound (2) represented by the following formula (2) was used.
CH.

’−CHz−S−C1(zcHz−0−C−C=CHz
    (2)(以下単量体(2)と略記)100部を
用い、その他は実施例1と同様にして、光学歪の無い無
色透明の硬化物を得た。実施例1と同様に加工し物性を
測定した。結果は表−1に示すとおりであった。
'-CHz-S-C1 (zcHz-0-C-C=CHz
(2) (hereinafter abbreviated as monomer (2)) was used in the same manner as in Example 1 except that 100 parts of monomer (2) was used, to obtain a colorless and transparent cured product with no optical distortion. It was processed in the same manner as in Example 1 and its physical properties were measured. The results were as shown in Table-1.

また、実施例1と同様にレンズ型で硬化し光学歪の無い
無色透明なレンズを得た。
Further, in the same manner as in Example 1, a colorless and transparent lens without optical distortion was obtained by curing in a lens mold.

実施例3 実施例1で用いたTMDPOO,05部をベンゾフェノ
ン0.1部に代える以外は実施例1と同様にして、光学
歪の無い無色透明の硬化物を得た。実施例1と同様に加
工し物性を測定した。結果は表−1に示すとおりであっ
た。
Example 3 A colorless and transparent cured product without optical distortion was obtained in the same manner as in Example 1 except that 0.1 part of benzophenone was used in place of 0.5 parts of TMDPOO used in Example 1. It was processed in the same manner as in Example 1 and its physical properties were measured. The results were as shown in Table-1.

また、実施例1と同様にレンズ型で硬化し光学歪の無い
無色透明なレンズを得た。
Further, in the same manner as in Example 1, a colorless and transparent lens without optical distortion was obtained by curing in a lens mold.

実施例4 実施例1で用いたTMDPOO,05部を1−ヒドロキ
シシクロへキシルフェニルケトン「イルガキュア184
」チバガイギー社品)0.05部に代える以外は実施例
1と同様にして、光学歪の無い無色透明の硬化物を得た
。実施例1と同様に加工し物性を測定した。結果は表−
1に示すとおりであった。
Example 4 05 parts of TMDPOO used in Example 1 was added to 1-hydroxycyclohexylphenyl ketone "Irgacure 184".
A colorless and transparent cured product with no optical distortion was obtained in the same manner as in Example 1 except that 0.05 part of Ciba Geigy Co., Ltd. was used. It was processed in the same manner as in Example 1 and its physical properties were measured. The results are in the table-
It was as shown in 1.

また、実施例1と同様にレンズ型で硬化し光学歪の無い
無色透明なレンズを得た。
Further, in the same manner as in Example 1, a colorless and transparent lens without optical distortion was obtained by curing in a lens mold.

実施例5 実施例1で用いた2−ヒドロキシ−4−オクトキシベン
ゾフェノン0.05部を2−(2’−ヒドロキシ−5′
−メチルフェニル)ベンゾトリアゾール(「バイオソー
ブ520」共同薬品社製)0.05部に、また、紫外線
の照射時間を8分間から10分間(ガラス両面それぞれ
5分間ずつ)に代える以外は実施例1と同様にして、光
学歪の無い無色透明の硬化物を得た。実施例1と同様に
加工し物性を測定した。結果は表−1に示すとおりであ
った。
Example 5 0.05 part of 2-hydroxy-4-octoxybenzophenone used in Example 1 was mixed with 2-(2'-hydroxy-5'
Example 1 except that 0.05 part of -methylphenyl)benzotriazole ("Biosorb 520" manufactured by Kyodo Yakuhin Co., Ltd.) was used and the ultraviolet irradiation time was changed from 8 minutes to 10 minutes (5 minutes on each side of the glass). In the same manner, a colorless and transparent cured product with no optical distortion was obtained. It was processed in the same manner as in Example 1 and its physical properties were measured. The results were as shown in Table-1.

また、実施例1と同様にレンズ型で硬化し光学歪の無い
無色透明なレンズを得た。
Further, in the same manner as in Example 1, a colorless and transparent lens without optical distortion was obtained by curing in a lens mold.

実施例6 実施例1で用いたTMDPOO,05部を1−ヒドロキ
シシクロへキシルフェニルケトン0.05部に、また、
紫外線の光源を80W/cmのメタルハライドランプか
ら80W/cmの高圧水銀ランプに変え、石英ガラスに
金属膜を蒸着させた干渉フィルターを透して照射(エネ
ルギーインデックス=62%)すること以外は実施例1
と同様にして、光学歪の無い無色透明の硬化物を得た。
Example 6 05 parts of TMDPOO used in Example 1 was added to 0.05 part of 1-hydroxycyclohexylphenyl ketone, and
Example except that the ultraviolet light source was changed from an 80 W/cm metal halide lamp to an 80 W/cm high-pressure mercury lamp and irradiated through an interference filter made of quartz glass with a metal film deposited (energy index = 62%). 1
In the same manner as above, a colorless and transparent cured product without optical distortion was obtained.

実施例1と同様に加工し物性を測定した。結果は表−1
に示すとおりであった。
It was processed in the same manner as in Example 1 and its physical properties were measured. The results are in Table-1
It was as shown in .

また、実施例1と同様にレンズ型で硬化し光学歪の無い
無色透明なレンズを得た。
Further, in the same manner as in Example 1, a colorless and transparent lens without optical distortion was obtained by curing in a lens mold.

比較例1 実施例1で用いたTMDPOO,05部をジエチルオキ
サントン0.05部に代える以外は実施例1と同様にし
て、硬化物を得た。得られた硬化物は無色透明にはなら
ず、黄色を呈していた。実施例1と同様に加工し物性を
測定した。結果は表−1に示すとおりであった。
Comparative Example 1 A cured product was obtained in the same manner as in Example 1 except that 0.05 parts of TMDPOO used in Example 1 was replaced with 0.05 parts of diethyloxanthone. The obtained cured product did not become colorless and transparent, but had a yellow color. It was processed in the same manner as in Example 1 and its physical properties were measured. The results were as shown in Table-1.

また、実施例1と同様にレンズ型で硬化したところ、得
られたレンズは黄色であり、やや光学歪があった。
Further, when it was cured in a lens mold in the same manner as in Example 1, the obtained lens was yellow in color and had some optical distortion.

比較例2 実施例1中のTMDPOO量を0.05部から0.5部
に代える以外は実施例1と同様にして、硬化物を得た。
Comparative Example 2 A cured product was obtained in the same manner as in Example 1 except that the amount of TMDPOO in Example 1 was changed from 0.05 part to 0.5 part.

得られた硬化物は、無色透明にはならず、黄色を呈した
。実施例1と同様に加工し物性を測定した。結果は表−
1に示すとおりであった。
The obtained cured product did not become colorless and transparent but had a yellow color. It was processed in the same manner as in Example 1 and its physical properties were measured. The results are in the table-
It was as shown in 1.

また、実施例1と同様にレンズ型で硬化したところ、得
られたレンズは黄色であり、光学歪があった。
Further, when it was cured in a lens mold in the same manner as in Example 1, the obtained lens was yellow and had optical distortion.

比較例3 実施例1中のTMDPOO量を0.05部から0.00
5部に代えて、実施例1と同様に行った。しかし、十分
に硬化しなかったので紫外線の照射時間を20分間(ガ
ラス両面それぞれ10分間)としたが、脱型可能な硬化
物は得られなかった。
Comparative Example 3 The amount of TMDPOO in Example 1 was changed from 0.05 part to 0.00 part.
The same procedure as in Example 1 was carried out except that 5 parts were used. However, it was not sufficiently cured, so the UV irradiation time was increased to 20 minutes (10 minutes on each side of the glass), but a cured product that could be removed from the mold was not obtained.

また、実施例1と同様にレンズ型で硬化したが硬化物は
跪く脱型は不可能だった。
Further, as in Example 1, the cured product was cured in a lens mold, but the cured product was not able to be removed from the mold.

比較例4 実施例3において紫外線の光源として用いた80W/C
Iのメタルハライドランプを80W/CIの高圧水銀ラ
ンプ(エネルギーインデックス=29%)に代える以外
は実施例3と同様にして無色透明の硬化物を得た。実施
例1と同様に加工し物性を測定した。結果は表−1に示
すとおりであった。
Comparative Example 4 80W/C used as an ultraviolet light source in Example 3
A colorless and transparent cured product was obtained in the same manner as in Example 3, except that the metal halide lamp in I was replaced with an 80 W/CI high-pressure mercury lamp (energy index = 29%). It was processed in the same manner as in Example 1 and its physical properties were measured. The results were as shown in Table-1.

また、同様にレンズ型で硬化した。得られたレンズは無
色透明であったが、ガラスモールドからの剥離がみられ
やや光学歪があった。
It was also cured in a lens mold in the same way. The obtained lens was colorless and transparent, but peeling from the glass mold was observed and there was some optical distortion.

比較例5 実施例4において紫外線の光源として用いた80W/C
Iのメタルハライドランプを80W/cIIIの高圧水
銀ランプ(エネルギーインデックス=29%)に代える
以外は実施例4と同様にして無色透明の硬化物を得た。
Comparative Example 5 80W/C used as an ultraviolet light source in Example 4
A colorless and transparent cured product was obtained in the same manner as in Example 4, except that the metal halide lamp in I was replaced with an 80 W/cIII high-pressure mercury lamp (energy index = 29%).

実施例1と同様に加工し物性を測定した。結果は表−1
に示すとおりであった。
It was processed in the same manner as in Example 1 and its physical properties were measured. The results are in Table-1
It was as shown in .

また、同様にレンズ型で硬化した。得られたレンズは無
色透明であったが、ガラスモールドからの剥離がありや
や光学歪があった。
It was also cured in a lens mold in the same way. The obtained lens was colorless and transparent, but it peeled off from the glass mold and had some optical distortion.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)ジエチレン性不飽和単量体100重量部に
対して、 (B)下記一般式〔 I 〕 ▲数式、化学式、表等があります▼〔 I 〕 (式中、Xはメチル基、メトキシ基又は塩素原子を示し
、nは2又は3の数を示し、Rは、フェニル基又はメト
キシ基を示す。) で示される化合物、アセトフェノン系光開始剤及び、ベ
ンゾフェノン系光開始剤から選ばれる少なくとも1種の
光開始剤を、0.01〜0.3重量部、及び (C)ベンゾフェノン系紫外線吸収剤及びベンゾトリア
ゾール系紫外線吸収剤から選ばれる少なくとも1種の紫
外線吸収剤を、0.01〜0.2重量部の割合で含有し
てなる光硬化性組成物に、300〜450nmの波長範
囲のエネルギーを100%としたときに、370〜45
0nmの波長範囲のエネルギーの割合が、40%以上で
ある活性エネルギー線を照射することを特徴とするジエ
チレン性不飽和単量体の硬化方法。
(1) (A) For 100 parts by weight of diethylenically unsaturated monomer, (B) The following general formula [I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼[I] (In the formula, X is a methyl group , represents a methoxy group or a chlorine atom, n represents a number of 2 or 3, and R represents a phenyl group or a methoxy group), an acetophenone-based photoinitiator, and a benzophenone-based photoinitiator. (C) at least one UV absorber selected from benzophenone UV absorbers and benzotriazole UV absorbers; When the energy in the wavelength range of 300 to 450 nm is taken as 100%, the photocurable composition containing 01 to 0.2 parts by weight of 370 to 45
1. A method for curing a diethylenically unsaturated monomer, comprising irradiating active energy rays in which the ratio of energy in the wavelength range of 0 nm is 40% or more.
JP30641090A 1990-11-13 1990-11-13 Method for curing diethylentically unsaturated monomer Pending JPH04178403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30641090A JPH04178403A (en) 1990-11-13 1990-11-13 Method for curing diethylentically unsaturated monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30641090A JPH04178403A (en) 1990-11-13 1990-11-13 Method for curing diethylentically unsaturated monomer

Publications (1)

Publication Number Publication Date
JPH04178403A true JPH04178403A (en) 1992-06-25

Family

ID=17956683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30641090A Pending JPH04178403A (en) 1990-11-13 1990-11-13 Method for curing diethylentically unsaturated monomer

Country Status (1)

Country Link
JP (1) JPH04178403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707781A (en) * 1995-05-05 1998-01-13 Bayer Corporation Photopolymerizable compositions having acyl or diacyl phosphine oxide and a fluorescent optical brightner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707781A (en) * 1995-05-05 1998-01-13 Bayer Corporation Photopolymerizable compositions having acyl or diacyl phosphine oxide and a fluorescent optical brightner

Similar Documents

Publication Publication Date Title
JPH09500981A (en) Method for manufacturing an array of tapered photopolymerized waveguides
AU8912798A (en) Production of photopolymerized polyester high index ophthalmic lenses
US4376800A (en) Optical lenses prepared from crosslinkable acrylic compositions
JPH05287050A (en) High refractive index optical material and its production
JPH0925321A (en) Polymerizable composition mainly comprising thio(meth) acrylate monomer, clear polymer composition obtained therefrom, and use thereof for optical element
JPH09152510A (en) Low-double refractive optical member and its production
JPH04178403A (en) Method for curing diethylentically unsaturated monomer
JP3055068B2 (en) Photocurable composition
JP3940086B2 (en) Fluorine-substituted alicyclic group-containing (meth) acrylic acid ester and cured product thereof
JP3091976B2 (en) Curable composition for optical parts
JP3055067B2 (en) Photocurable composition
JP3868005B2 (en) Polymerizable monomer composition, transparent polymer substrate, and resulting optical and ophthalmic products
JP3120384B2 (en) Photocurable composition
JP3179172B2 (en) Photocurable composition
JP2778988B2 (en) Manufacturing method of optical materials
JPH0741520A (en) Composition for polymerization and resin material
EP0231375B1 (en) Photo-setting composition
JP3335681B2 (en) Resin excipients and their manufacturing method
JPH04159306A (en) Photocurable composition
JPH0725919A (en) Composition for polymerization and resin material
JPH0632843A (en) Production of resin for high refractive index lenses
JP3302456B2 (en) Composition for polymerization and resin material
JPH0725920A (en) Composition for polymerization and resin material
JP3481987B2 (en) Polymerizable composition and use thereof
JPH04159307A (en) Photocurable composition