JPH041780B2 - - Google Patents

Info

Publication number
JPH041780B2
JPH041780B2 JP58219292A JP21929283A JPH041780B2 JP H041780 B2 JPH041780 B2 JP H041780B2 JP 58219292 A JP58219292 A JP 58219292A JP 21929283 A JP21929283 A JP 21929283A JP H041780 B2 JPH041780 B2 JP H041780B2
Authority
JP
Japan
Prior art keywords
ethylene
weight
density
temperature
olefin copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58219292A
Other languages
Japanese (ja)
Other versions
JPS60110739A (en
Inventor
Takashi Inoe
Masaji Sunada
Satoshi Kaneko
Tsutomu Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP21929283A priority Critical patent/JPS60110739A/en
Publication of JPS60110739A publication Critical patent/JPS60110739A/en
Publication of JPH041780B2 publication Critical patent/JPH041780B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐寒性の特に優れた電線・ケーブルの
保護被覆用ポリエチレン組成物に関する。 一般に電線・ケーブルは導体上にプラスチツク
あるいはゴム等の絶縁層を形成し、更に外部環境
から保護するための保護被覆層(シース層)を有
する構造、または該絶縁層の上に外部半導電層お
よび銅箔テープを設けて保護被覆層を形成する構
造となつている。 このシース層は一般的には耐環境応力亀裂性、
耐摩耗性、耐油性、耐薬品性、耐候性、耐寒性等
の諸特性が要求されるが、これら諸特性のうちで
も特に使用目的によつては、環境条件に伴う苛酷
な要求物性が必要とされる。例えば寒冷地等の苛
酷な条件下で使用されるシース層は上記一般的な
諸物性の他に可撓性を保つため、より耐寒性、す
なわち耐低温脆化性のすぐれるシース層が要望さ
れる。 一方、該シース層の形成時の最も重要な問題点
として加工性が挙げられる。この加工性は(1)シー
ス層の表面荒れの防止(外観性)、(2)高速化、(3)
絶縁層の絶縁破壊防止等の諸要素が考慮され、シ
ース層の表面荒れの防止(1)はシース層形成時の表
面状態、すなわち外観に関係し、製品の良否を決
定する。高速化(2)はより生産性を高め、低コスト
化をはかるものである。また、導体と絶縁層の保
全維持の必要上、絶縁層の絶縁破壊防止(3)を行な
うためにはシース層の形成をできる限り低温で行
なうことが望ましい。 従来、シース層形成材料として、ラジカル重合
機構による高圧法ポリエチレンやエチレン−酢酸
ビニル共重合体が用いられているが、高圧法ポリ
エチレンは耐環境応力亀裂性が不十分であり、エ
チレン−酢酸ビニル共重合体は耐寒性、耐摩耗性
が悪いという欠点を有する。 上記欠点を改善するために本発明者らは先に特
開昭56−145607号公報に見られるように気相法に
よるエチレン−α−オレフイン共重合体を主体と
するシース層を提案した。 しかしながら上記エチレン−α−オレフイン共
重合体かやなるシース層は前記諸物性をほぼ満足
させるものではあるが加工性において未だ十分な
配慮がなされていない。 本発明者らは上記の点に鑑み鋭意検討した結
果、特定の範囲のエチレン−α−オレフイン共重
合体をブレンドすることにより加工性の改良はも
ちろんのこと、驚くべきことに耐寒性が大巾に改
良されることを見い出し本発明に至つた。 すなわち本発明は (A) 密度が0.915〜0.96g/c.c.、メルトインデツ
クス0.1〜5g/10分のエチレン−α−オレフ
イン共重合体10〜90重量%と (B) 気相法により、少なくともマグネシウムおよ
びチタンを含有する固体触媒成分と有機アルミ
ニウム化合物からなる触媒の存在下、エチレン
とα−オレフインを共重合させて得られる密度
が0.86〜0.910g/c.c.、示差走査熱量測定法
(DSC)において、その最大ピークの温度
(Tm)が100℃以上、かつ沸騰n−ヘキサン不
溶分が10重量%以上のエチレン−α−オレフイ
ン共重合体からなる軟質ポリマー90〜10重量%
とからなる密度が0.91〜0.94g/c.c.、メルトイ
ンデツクスが0.1〜5g/10分、およびN値が
1.8〜2.5の範囲にある組成物を主成分とする耐
寒性、加工性等にすぐれた電線・ケーブルの保
護被覆用ポリエチレン組成物を提供するもので
ある。 本発明における(A)成分のエチレン−α−オレフ
イン共重合体とはチタンまたはバナジウム等を含
有する固体触媒成分に有機アルミニウム化合物を
組み合わせた通常のチグラー系触媒、クロム系触
媒等の各種の触媒を用いて、中低圧下、または高
圧下において気相法、溶液法、スラリー法等の各
種の重合法によつて得られるエチレンを主成分と
したα−オレフインの共重合体およびそれらの混
合物であつて、好ましくは炭素数が3〜12のα−
オレフイン、さらに好ましくは炭素数4〜10の範
囲のα−オレフインの共重合体が望ましい。 これらα−オレフインとしては、プロピレン、
ブテン−1,4−メチルペンテン−1、ヘキセン
−1、ペンテン−1、オクテン−1、デセン−1
等が挙げられ、エチレン−α−オレフイン共重合
体中のα−オレフイン含量は3〜40モル%である
ことが好ましい。 上記(A)成分の密度は0.915〜0.96g/c.c.、好ま
しくは0.93〜0.95g/c.c.の範囲で選択される。 なお、分子量や分子量分布等については組成物
として要求限定される範囲内に納まれば良く、特
に限定されないが、好ましくはメルトインデツク
ス0.1〜5g/10分、更に好ましくは0.3〜3g/
10分の範囲である。 また本発明における(B)成分である軟性ポリマー
とは密度が0.86〜0.91g/c.c.、好ましくは0.89〜
0.91g/c.c.で、示差走査熱量測定法(DSC)によ
る最大ピークの温度(Tm)が100℃以上、かつ
沸騰n−ヘキサン不溶分が10重量%以上の特殊な
エチレン−α−オレフイン共重合体である。 上記軟質ポリマーは少なくともマグネシウムお
よびチタンを含有する固体触媒成分、たとえば金
属マグネシウム、水酸化マグネシウム、炭酸マグ
ネシウム、酸化マグネシウム、塩化マグネシウム
など、またケイ素、アルミニウム、カルシウムか
ら選ばるれ金属とマグネシウム原子とを含有する
複塩、複酸化物、炭酸塩、塩化物あるいは水酸化
物など、さらにはこれらの無機質固体化合物を含
酸素化合物、含硫黄化合物、芳香族炭化水素、ハ
ロゲン含有物質で処理又は反応させたもの等のマ
グネシウムを含む無機質固体化合物にチタン化合
物を公知の方法により担持させたものに有機アル
ミニウム化合物を組み合わせた触媒の存在下で通
常のチグラー型触媒によるオレフインの重合反応
と同様に重合を行なうことによつて得られる。 すなわち反応はすべて実質的に酸素、水等を絶
つた状態で、気相で行なわれる。上記オレフイン
の重合条件は温度20〜300℃、好ましくは40〜200
℃であり、圧力は常圧ないし70Kg/cm2・g、好ま
しくは2〜60Kg/cm2・gである。分子量の調節は
重合温度、触媒のモル比などの重合条件を変える
ことによつてもある程度調節できるが重合系中に
水素を添加することにより効果的に行なわれる。
また水素濃度、重合温度などの重合条件の異なつ
た2段階ないしそれ以上の多段の重合反応もなん
ら支障なく実施できる。 以上の如くして製造される特殊な軟質性エチレ
ン−α−オレフイン共重合体は現状で市販されて
いるバナジウムを含有する固体触媒成分に有機ア
ルミニウム化合物を組み合わせた触媒で製造され
る軟質性エチレン−α−オレフイン共重合体と明
確に区別されるものである。 すなわち、従来のバナジウムを含有する触媒系
によるエチレン−α−オレフイン共重合体はほと
んど結晶性を有しておえらず、沸騰n−ヘキサン
不溶分は存在しないか、存在しても極めて微量で
あり、DSCによる最大ピーク温度(Tm)も100
℃には満たない。このことは本発明で要求される
耐摩耗性、耐熱性、耐油性等の諸物性を満足させ
ることができないことを示すものである。さらに
触媒残残渣として共重合体中に存在するバナジウ
ムはチタンとは異なり毒性が問題となるため、触
媒除去工程が不可欠であるのに対し、本発明のご
とくチタンを使用する場合には触媒残渣の毒性問
題は生ぜず、マグネシウム担体と組み合わせた高
活性触媒を使用する本発明の共重合体では触媒除
去工程が不要となるので極めて経済的である。 上記、示差走査熱量測定法(DSC)による最
大ピーク温度(Tm)とは結晶形態と相関する値
であつて、約5mgの試料を精秤ち、それをDSC
にセツトし、170℃に昇温してその温度で15分間
保持した後2.5℃/minの速度で0℃まで冷却す
る。次に、この状態から10℃/minの速度で170
℃まで昇温して測定を終える。最大ピーク温度
(Tm)は0℃から170℃に昇温する間に現われた
ピークの最大ピークの頂点の位置の温度をもつて
表わす。 また沸騰n−ヘキサン不溶分とは非晶質部分の
割合および低分子量成分の含有率の目安となるも
ので、熱プレスを用いて厚さ200μのシートを成
形し、そこから縦横それぞれ20mm×30mmのシート
を3枚切り取り、それを2重管式ソツクスレーを
用いて沸騰n−ヘキサンで5時間抽出を行つたの
ち、n−ヘキサン不溶分を取り出し、次いでそれ
を真空乾燥(7時間、真空下、50℃)し、その後
秤量し、次式により沸騰n−ヘキサン不溶分を算
出した。 (沸とうn−ヘキサン不溶分)=(未抽出シ
ート重量)−(抽出済シート重量)/(未抽出シート重
量)×100(%) 本発明の組成物は前記の(A)成分を10〜90重量%
と(B)成分を90〜10重量%を混合してなる密度が
0.91〜0.94g/c.c.、好ましくは0.90〜0.93g/c.c.、
メルトインデツクス(以下単にMIと称す)が0.1
〜5g/10分、好ましくは0.5〜3g/10分の範
囲で、かつN値が1.8〜2.5、好ましくは2.0〜2.3
の範囲において、すぐれた諸特性を有する。 上記組成物の(A)成分が10重量%未満においては
押出加工性か耐熱性、耐摩耗性等の諸特性が劣
り、90重量%を超える場合においては低温特性の
改良効果が小さい。 また上記組成物の密度、MIおよびN値が本発
明の特定範囲外においては、電線・ケーブルの表
面平滑性を表わす外観性の良否、押出加工性、低
温脆性、耐熱性、耐摩耗性等の諸要求物性のいず
れかを満足させることができない。 ここで「N値」(非ニユートン流動性値)とは
ポリエチレンの分子量分布にほぼ相関し流動性の
尺度となるもので、本発明では、島津製作所製、
高化式フローテスター(HB−I型)を用い、ダ
イ:2mmφ×40mm、170℃において150Kg及び20Kg
の荷重をかけた時のポリエチレンの流出量を測定
し、次の式に従つて算出したものをいう。 N値=log(γ150/γ20)/log(τ150/τ
20) ここで、 γ:せん断速度(Sec-1) τ:せん断応力(dyn/cm2) なお、本発明における(A)成分と(B)成分を混合す
る方法は押出機、バンバリーミキサー、ロールミ
ル等のいかなる方法でも良く、時に限定されな
い。本発明においては本発明の特性を損なわない
限りにおいて、多のポリオレフイン類、例えば高
圧法ポリエチレン、エチレン−酢酸ビニル共重合
体、中低圧法ポリエチレン、ポリプロリレン等の
少なくとも1種を少量混合しても良い。また必要
により、顔料、カーボンブラツク等の充填剤、分
散剤、酸化防止剤、紫外線吸収剤等の通常の添加
物を適宜配合することはなんら差支えない。 上述のように本発明の通例のエチレン−α−オ
レフイン共重合体と特殊なエチレン−α−オレフ
イン共重合体からなる軟質ポリマーを混合した特
定範囲のポリエチレン組成物とすることにより、
驚く程低温特性が優れ、耐摩耗性、押出加工性等
の改良された電線・ケーブルの保護被覆層とな
る。 以上本発明を実施例により更に詳述するが、本
発明はその要旨を逸脱しない限りにおいて、以下
の実施例に限定されるものではない。 なお、軟質性樹脂の製造および試験法は以下の
通りである。 (軟質性樹脂の製造) (1) 軟質性樹脂(A)の製造 (a) 固体触媒成分の製造 1/2インチ直径を有するステンレススチー
ル製ボール25コ入つた内容積400mlのステン
レススチール製ポツトに市販の無水塩化マグ
ネシウム10g、アルニニウムトリエトキシド
4.2gを入れ窒素雰囲気下、室温で16時間ボ
ールミリングを行ない反応生成物を得た。撹
拌後、および還流冷却器をつけた3ツ口フラ
スコを窒素置換し、この3ツ口フラスコに上
記反応生成物5gおよび600℃で焼成した
SiO2(富士デビソン、#952)5gを入れ、
次いでテトラヒドロフラン100mlを加えて、
60℃で2時間反応させたのち、120℃で減圧
乾燥を行ない、テトリヒドロフランを除去し
た。次に、四塩化チタンを30ml加えて四塩化
チタン還流下で2時間反応後、精製ヘキサン
で洗浄液中に遊離の四塩化チタンが検出され
なくなるまで洗浄した。洗浄後、乾燥し固体
触媒成分を得た。得られた固体触媒成分1g
中のチタンの含量は42mgであつた。 (b) 気相重合 気相重合装置としてはステンレス製オート
クレーブを用い、ブロワー、流量調節器およ
び乾式サイクロンでループをつくり、オート
クレーブはジヤケツト温水に流すことにより
温度を調節した。 70℃に調節したオートクレーブに上記固体
物質を250mg/hr、およびトリエチルアルミ
ニウムを50mmol/hrの速度で供給し、ま
た、オートクレーブ気相中のブテン−1/エ
チレン比(モル比)を0.48に、さらに水素を
全圧の7%となるよう調整しながら各々のガ
スを供給し、かつブロワーにより系内のガス
を循環させて10時間重合を行なつた。生成し
たエチレン共重合体は11.76Kgでかさ比重
0.43、メルトインデツクス(MI)0.3g/10
分、密度が0.890g/c.c.で150μ以下の粒子の
ない平均粒径790μの粉末であつた。 また同様の重合を行ないメルトインデツク
ス0.5g/10分の軟質性樹脂(A′)も製造し
た。 (2) 軟質性樹脂(B)の製造 軟質性樹脂(A)の製造において、オートクレー
ブ気相中ブデン−1/エチレン比(モル比)を
0.30に、水素を全圧の10%となるよう調整する
ことを除いては、軟質性樹脂(A)と同様の重合を
行なつた。生成したエチレン共重合体は11.45
Kgでかさ比重0.41、メルトインデツクス(MI)
0.5g/10分、密度が0.900g/c.c.で、150μ以下
の粒子のない平均粒径700μの粉末であつた。 また同様の重合を行ないメルトインデツクス
1.0g/10分の軟質性樹脂(B′)も製造した。 (3) 軟質性樹脂(C)の製造 軟質性樹脂(A)の製造において、オートクレー
ブ気相中ブデン−1/エチレン比(モル比)を
0.20に、水素を全圧の15%となるよう調整する
ことを除いては、軟質性樹脂(A)と同様の重合を
行なつた。生成したエチレン共重合体は10.5Kg
でかさ比重0.40、メルトインデツクス(MI)
0.5g/10分、密度が0.910g/c.c.で150μ以下の
粒子のない平均粒径850μの粉末であつた。 (試験法) 1 ESCR 「リポノツクス」10%濃度溶液(商品名リポ
ノツクスNEI、ライオン(株)社製)に浸漬したノ
ツチ入り厚さ2m/mシートの試験片に10本中
の5本が割れた時の時間で示した。 2 低温脆性試験(JIS K−7216に準拠) 長さ40m/m、幅6m/m、厚さ2m/mシ
ートに幅方向に深さ0.3m/mのノツチを入れ
たものを試験片とし、5本中の1本が破壊した
時の温度を示した。 (試験装置) 東洋精機社製低温脆性試験装置 3 摩耗試験 直径121m/mφ、厚さ1m/mの円板を試
験片とし、1000回転後の摩耗量(g)を示し
た。 (試験条件) 荷重 1.0Kg 摩耗輪 C−22 摩耗回数 1000回 (試験装置) 東洋精機社製テーバー式ロータリーアブレツ
サー 4 プラストグラフトクル試験 ハーケ社製電熱式プラストグラフを使い、試
料45g、設定温度180℃、ローター回転数
60rpmで行ない安定したところのトルク値、お
よび樹脂温度を示した。 5 外観性 25m/mφブロー成形機から設定温度190℃、
スクリユー回転数40rpmで押出したパリソンの
外観を目視判定した。 ◎…非常に滑らかである。 ○…滑らかである。 ×…シヤークスキンが生じる。 実施例 1〜3 (A)成分として密度の異なる各種のエチレン−ブ
テン−1共重合体樹脂(日本石油化学(株)製)と、
(B)成分としての前記軟質性樹脂(A)とを第1表に示
した割合で200℃に設定された50m/mφ押出機
で混練し、本発明の範囲内の混合物を得、該混合
物について各種の特性を測定して第1表に表示し
た。 実施例 4〜5 (B)成分として軟質性樹脂(B)を用いて各種のエチ
レン−ブテン−1共重合体樹脂と混合して実施例
1と同様に混合物を作成し、各種の特性を測定し
て第1表に表示した。 実施例 6〜8 (B)成分として軟質性樹脂(C)(実施例6)、軟質
性樹脂(A′)(実施例7)、軟質性樹脂(B′)(実
施例8)を用いて各種のエチレン−α−オレフイ
ン共重合体樹脂を混合し、実施例1と同様にして
混合物を作成し、各種の特性を測定して第1表に
表示した。 比較例 1〜2 密度とN値の異なるエチレン−ブテン−1共重
合体樹脂のみについて実施例1と同様の評価を行
つた結果を第1表に示した。 比較例 3 市販のシースグレード(高圧法ポリエチレン、
商品名:DFDJ−0588、日本ユニカー(株)製)につ
いて実施例1と同様に評価してその結果を第1表
に示した。 比較例 4〜8 軟質性樹脂(B)(比較例4〜5)、軟質性樹脂(A)
(比較例6)、および軟質性樹脂(C)(比較例7〜
8)を用いて各種エチレン−ブテン−1共重合体
樹脂と混合し、本発明の範囲外の混合物を作成し
て実施例1と同様の評価を行ないその結果を第1
表に示した。 比較例 9 実施例2において用いたエチレン−ブテン−1
共重合体に、軟質性樹脂として市販品(商品名:
タフマーP−0480、MI1.0g/10分、密度0.88
g/c.c.三井石油化学(株)製)を用いて実施例2と同
様に評価し、その結果を第1表に示した。
The present invention relates to a polyethylene composition for use as a protective coating for electric wires and cables, which has particularly excellent cold resistance. Generally, electric wires and cables have a structure in which an insulating layer such as plastic or rubber is formed on a conductor, and a protective coating layer (sheath layer) for protection from the external environment, or an external semiconducting layer and The structure is such that a copper foil tape is provided to form a protective coating layer. This sheath layer is typically environmental stress crack resistant,
Various properties are required such as abrasion resistance, oil resistance, chemical resistance, weather resistance, and cold resistance, but among these properties, depending on the purpose of use, severe physical properties are required depending on the environmental conditions. It is said that For example, in order to maintain flexibility in addition to the general physical properties mentioned above, the sheath layer used under harsh conditions such as in cold regions requires a sheath layer that is more cold resistant, that is, has excellent low-temperature embrittlement resistance. Ru. On the other hand, the most important problem when forming the sheath layer is processability. This processability is (1) prevention of surface roughness of the sheath layer (appearance), (2) high speed, (3)
Various factors such as prevention of dielectric breakdown of the insulating layer are taken into consideration, and prevention of surface roughness of the sheath layer (1) is related to the surface condition when the sheath layer is formed, that is, the appearance, and determines the quality of the product. Speed increase (2) aims to further increase productivity and reduce costs. Furthermore, in order to maintain the integrity of the conductor and the insulating layer, and to prevent dielectric breakdown of the insulating layer (3), it is desirable to form the sheath layer at as low a temperature as possible. Conventionally, high-pressure polyethylene and ethylene-vinyl acetate copolymer with a radical polymerization mechanism have been used as materials for forming the sheath layer, but high-pressure polyethylene has insufficient environmental stress cracking resistance, and ethylene-vinyl acetate copolymer Polymers have the disadvantage of poor cold resistance and abrasion resistance. In order to improve the above-mentioned drawbacks, the present inventors previously proposed a sheath layer mainly composed of an ethylene-.alpha.-olefin copolymer produced by a gas phase method, as seen in Japanese Patent Application Laid-Open No. 145607/1983. However, although the sheath layer made of the ethylene-α-olefin copolymer satisfies most of the above-mentioned physical properties, sufficient consideration has not yet been given to processability. The inventors of the present invention conducted extensive studies in view of the above points, and found that by blending a specific range of ethylene-α-olefin copolymers, not only processability was improved, but surprisingly, cold resistance was greatly improved. The present inventors have discovered that this can be improved, leading to the present invention. That is, the present invention provides (A) 10 to 90% by weight of an ethylene-α-olefin copolymer having a density of 0.915 to 0.96 g/cc and a melt index of 0.1 to 5 g/10 minutes, and (B) at least magnesium And in the presence of a catalyst consisting of a solid catalyst component containing titanium and an organoaluminium compound, the density obtained by copolymerizing ethylene and α-olefin is 0.86 to 0.910 g / cc, in differential scanning calorimetry (DSC), 90 to 10% by weight of a soft polymer consisting of an ethylene-α-olefin copolymer whose maximum peak temperature (Tm) is 100°C or higher and a boiling n-hexane insoluble content of 10% or higher
The density consisting of is 0.91~0.94g/cc, the melt index is 0.1~5g/10min, and the N value is
The present invention provides a polyethylene composition for protective coating of electric wires and cables, which has excellent cold resistance, workability, etc., and has a composition having a molecular weight in the range of 1.8 to 2.5 as a main component. The ethylene-α-olefin copolymer as component (A) in the present invention refers to various catalysts such as ordinary Ziegler-based catalysts, chromium-based catalysts, etc., which are combinations of organic aluminum compounds with solid catalyst components containing titanium or vanadium, etc. Copolymers of α-olefins containing ethylene as a main component obtained by various polymerization methods such as gas phase method, solution method, and slurry method under medium-low pressure or high pressure, and mixtures thereof. α-, preferably having 3 to 12 carbon atoms
Copolymers of olefins, more preferably α-olefins having 4 to 10 carbon atoms, are desirable. These α-olefins include propylene,
Butene-1,4-methylpentene-1, hexene-1, pentene-1, octene-1, decene-1
The α-olefin content in the ethylene-α-olefin copolymer is preferably 3 to 40 mol%. The density of the component (A) is selected within the range of 0.915 to 0.96 g/cc, preferably 0.93 to 0.95 g/cc. Note that the molecular weight, molecular weight distribution, etc. may be within the range required for the composition and are not particularly limited, but preferably the melt index is 0.1 to 5 g/10 minutes, more preferably 0.3 to 3 g/10 minutes.
It is in the range of 10 minutes. In addition, the soft polymer that is component (B) in the present invention has a density of 0.86 to 0.91 g/cc, preferably 0.89 to
A special ethylene-α-olefin copolymer with a maximum peak temperature (Tm) of 100°C or more by differential scanning calorimetry (DSC) at 0.91 g/cc, and a boiling n-hexane insoluble content of 10% by weight or more. It is. The soft polymer contains at least a solid catalyst component containing magnesium and titanium, such as magnesium metal, magnesium hydroxide, magnesium carbonate, magnesium oxide, magnesium chloride, etc., and a metal selected from silicon, aluminum, and calcium and magnesium atoms. double salts, double oxides, carbonates, chlorides, or hydroxides, as well as those obtained by treating or reacting these inorganic solid compounds with oxygen-containing compounds, sulfur-containing compounds, aromatic hydrocarbons, and halogen-containing substances. In the presence of a catalyst in which a titanium compound is supported on an inorganic solid compound containing magnesium by a known method, and an organoaluminum compound is combined, the polymerization is carried out in the same manner as the polymerization reaction of olefin using a normal Ziegler type catalyst. You can get it by twisting it. That is, all reactions are carried out in the gas phase in a state where oxygen, water, etc. are substantially excluded. The polymerization conditions for the above olefin are at a temperature of 20 to 300℃, preferably 40 to 200℃.
℃, and the pressure is normal pressure to 70 kg/cm 2 ·g, preferably 2 to 60 kg/cm 2 ·g. Although the molecular weight can be adjusted to some extent by changing polymerization conditions such as polymerization temperature and catalyst molar ratio, it is effectively carried out by adding hydrogen to the polymerization system.
Furthermore, two or more stages of polymerization reactions with different polymerization conditions such as hydrogen concentration and polymerization temperature can be carried out without any problem. The special flexible ethylene-α-olefin copolymer produced as described above is a flexible ethylene-α-olefin copolymer produced using a catalyst in which an organic aluminum compound is combined with a vanadium-containing solid catalyst component that is currently commercially available. It is clearly distinguishable from α-olefin copolymers. In other words, the ethylene-α-olefin copolymer prepared using a conventional vanadium-containing catalyst system has almost no crystallinity, and there is no content insoluble in boiling n-hexane, or even if it exists, it is extremely small. , the maximum peak temperature (Tm) by DSC is also 100
Less than ℃. This indicates that the various physical properties required by the present invention, such as abrasion resistance, heat resistance, and oil resistance, cannot be satisfied. Furthermore, unlike titanium, vanadium present in the copolymer as a catalyst residue poses a toxicity problem, so a catalyst removal process is essential, whereas when titanium is used as in the present invention, the catalyst residue is No toxicity problems arise and the copolymers of the present invention, which use a highly active catalyst in combination with a magnesium support, are extremely economical as no catalyst removal step is required. The maximum peak temperature (Tm) measured by differential scanning calorimetry (DSC) mentioned above is a value that correlates with the crystal form.
The temperature was raised to 170°C, held at that temperature for 15 minutes, and then cooled to 0°C at a rate of 2.5°C/min. Next, from this state, 170°C at a rate of 10°C/min.
The measurement is completed by raising the temperature to ℃. The maximum peak temperature (Tm) is expressed by the temperature at the top of the maximum peak that appears during the temperature increase from 0°C to 170°C. In addition, the boiling n-hexane insoluble content is a guideline for the proportion of amorphous parts and the content of low molecular weight components.A sheet with a thickness of 200μ is formed using a heat press, and from it a sheet of 20mm x 30mm in length and width is formed. After cutting out three sheets and extracting them with boiling n-hexane for 5 hours using a double-tube Soxhlet, extracting the n-hexane insoluble matter, it was then vacuum-dried (7 hours under vacuum, 50°C), and then weighed, and the boiling n-hexane insoluble content was calculated using the following formula. (Boiling n-hexane insoluble matter) = (Unextracted sheet weight) - (Extracted sheet weight) / (Unextracted sheet weight) x 100 (%) The composition of the present invention contains the above component (A) from 10 to 10%. 90% by weight
The density obtained by mixing 90 to 10% by weight of component (B) and
0.91-0.94g/cc, preferably 0.90-0.93g/cc,
Melt index (hereinafter simply referred to as MI) is 0.1
~5g/10min, preferably 0.5~3g/10min, and N value 1.8~2.5, preferably 2.0~2.3
It has excellent properties within the range of . When component (A) in the composition is less than 10% by weight, various properties such as extrusion processability, heat resistance, and abrasion resistance are poor, and when it exceeds 90% by weight, the effect of improving low-temperature properties is small. Furthermore, if the density, MI and N value of the above composition are outside the specified ranges of the present invention, the quality of appearance, extrusion processability, low temperature brittleness, heat resistance, abrasion resistance, etc. Unable to satisfy any of the required physical properties. Here, the "N value" (non-Newtonian fluidity value) is approximately correlated with the molecular weight distribution of polyethylene and serves as a measure of fluidity.
Using Koka type flow tester (HB-I type), die: 2mmφ x 40mm, 150Kg and 20Kg at 170℃
The amount of polyethylene flowing out when a load is applied is measured and calculated according to the following formula. N value = log(γ150/γ20)/log(τ150/τ
20) Here, γ: shear rate (Sec -1 ) τ: shear stress (dyn/ cm2 ) In addition, the method of mixing components (A) and (B) in the present invention is an extruder, Banbury mixer, or roll mill. Any method such as the above may be used, and the time is not limited. In the present invention, a small amount of at least one of various polyolefins such as high-pressure polyethylene, ethylene-vinyl acetate copolymer, medium-low pressure polyethylene, and polyprolylene may be mixed as long as the characteristics of the present invention are not impaired. . Further, if necessary, ordinary additives such as pigments, fillers such as carbon black, dispersants, antioxidants, and ultraviolet absorbers may be appropriately blended. As mentioned above, by making a polyethylene composition in a specific range by mixing a soft polymer consisting of a common ethylene-α-olefin copolymer and a special ethylene-α-olefin copolymer of the present invention,
It has surprisingly excellent low-temperature properties and can be used as a protective coating layer for electric wires and cables with improved wear resistance and extrusion processability. The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples as long as it does not depart from the gist thereof. The manufacturing and testing methods for the flexible resin are as follows. (Manufacture of soft resin) (1) Manufacture of soft resin (A) (a) Manufacture of solid catalyst component In a stainless steel pot with an internal volume of 400 ml containing 25 stainless steel balls each having a diameter of 1/2 inch. 10 g of commercially available anhydrous magnesium chloride, aluminium triethoxide
4.2 g was added and ball milling was performed at room temperature under a nitrogen atmosphere for 16 hours to obtain a reaction product. After stirring, a 3-necked flask equipped with a reflux condenser was purged with nitrogen, and 5 g of the above reaction product was added to the 3-necked flask and calcined at 600°C.
Add 5g of SiO 2 (Fuji Davison, #952),
Then add 100ml of tetrahydrofuran,
After reacting at 60°C for 2 hours, the mixture was dried under reduced pressure at 120°C to remove tetrahydrofuran. Next, 30 ml of titanium tetrachloride was added and the mixture was reacted for 2 hours under reflux of titanium tetrachloride, followed by washing with purified hexane until free titanium tetrachloride was no longer detected in the washing solution. After washing, it was dried to obtain a solid catalyst component. 1 g of the obtained solid catalyst component
The titanium content inside was 42 mg. (b) Gas-phase polymerization A stainless steel autoclave was used as the gas-phase polymerization apparatus, a loop was created with a blower, a flow rate controller, and a dry cyclone, and the temperature of the autoclave was adjusted by flowing hot water into a jacket. The above solid substance was fed at a rate of 250 mg/hr and triethylaluminum at a rate of 50 mmol/hr to an autoclave adjusted to 70°C, and the butene-1/ethylene ratio (molar ratio) in the gas phase of the autoclave was adjusted to 0.48. Each gas was supplied while adjusting the hydrogen pressure to 7% of the total pressure, and the gases in the system were circulated using a blower to carry out polymerization for 10 hours. The produced ethylene copolymer has a bulk specific gravity of 11.76Kg.
0.43, melt index (MI) 0.3g/10
The powder had a density of 0.890g/cc and an average particle size of 790μ with no particles smaller than 150μ. A soft resin (A') having a melt index of 0.5 g/10 minutes was also produced by carrying out similar polymerization. (2) Production of flexible resin (B) In the production of flexible resin (A), the buden-1/ethylene ratio (molar ratio) in the gas phase of the autoclave was
0.30 and hydrogen was adjusted to 10% of the total pressure, but polymerization was carried out in the same manner as for the flexible resin (A). The ethylene copolymer produced is 11.45
Kg, bulk specific gravity 0.41, melt index (MI)
0.5g/10 minutes, density was 0.900g/cc, and the powder had an average particle size of 700μ with no particles smaller than 150μ. In addition, similar polymerization is performed to obtain a melt index.
A soft resin (B') of 1.0 g/10 min was also produced. (3) Production of flexible resin (C) In the production of flexible resin (A), the buden-1/ethylene ratio (molar ratio) in the gas phase of the autoclave was
Polymerization was carried out in the same manner as for the flexible resin (A), except that the hydrogen pressure was adjusted to 15% of the total pressure. The produced ethylene copolymer weighs 10.5Kg
Bulk specific gravity 0.40, melt index (MI)
The powder had a density of 0.910 g/cc and an average particle size of 850 μm with no particles smaller than 150 μm. (Test method) 1 ESCR 5 out of 10 test pieces of a 2 m/m thick sheet with notches immersed in a 10% solution of ESCR "Liponox" (trade name: Liponox NEI, manufactured by Lion Co., Ltd.) were broken. Shown in hours. 2 Low-temperature brittleness test (based on JIS K-7216) The test piece was a sheet with a length of 40 m/m, a width of 6 m/m, and a thickness of 2 m/m with a notch of 0.3 m/m deep in the width direction. The temperature at which one of the five pieces broke was shown. (Test device) Low-temperature brittleness test device 3 manufactured by Toyo Seiki Co., Ltd. Wear test A disk with a diameter of 121 m/mφ and a thickness of 1 m/m was used as a test piece, and the amount of wear (g) after 1000 rotations was shown. (Test conditions) Load: 1.0Kg Wear wheel C-22 Number of wear: 1000 times (Test equipment) Toyo Seiki Taber type rotary abrasser 4 Plastograft torque test Using Haake's electric heating type Plastograph, sample 45g, set temperature 180℃, rotor rotation speed
The stable torque value and resin temperature are shown at 60 rpm. 5 Appearance Set temperature 190℃ from 25m/mφ blow molding machine,
The appearance of the parison extruded at a screw rotation speed of 40 rpm was visually judged. ◎...Very smooth. ○...Smooth. ×...Shark skin occurs. Examples 1 to 3 Various ethylene-butene-1 copolymer resins (manufactured by Nippon Petrochemical Co., Ltd.) with different densities as component (A),
The above-mentioned soft resin (A) as component (B) is kneaded in the proportions shown in Table 1 in a 50 m/mφ extruder set at 200°C to obtain a mixture within the scope of the present invention. Various properties were measured and shown in Table 1. Examples 4 to 5 A mixture was prepared in the same manner as in Example 1 by mixing the flexible resin (B) with various ethylene-butene-1 copolymer resins as the component (B), and various properties were measured. The results are shown in Table 1. Examples 6 to 8 Using soft resin (C) (Example 6), soft resin (A') (Example 7), and soft resin (B') (Example 8) as component (B) Various ethylene-α-olefin copolymer resins were mixed to prepare a mixture in the same manner as in Example 1, and various properties were measured and shown in Table 1. Comparative Examples 1 and 2 Table 1 shows the results of the same evaluation as in Example 1 performed only on ethylene-butene-1 copolymer resins having different densities and N values. Comparative Example 3 Commercially available sheath grade (high pressure polyethylene,
Product name: DFDJ-0588 (manufactured by Nippon Unicar Co., Ltd.) was evaluated in the same manner as in Example 1, and the results are shown in Table 1. Comparative Examples 4-8 Soft resin (B) (Comparative Examples 4-5), Soft resin (A)
(Comparative Example 6), and soft resin (C) (Comparative Example 7 to
8) and mixed with various ethylene-butene-1 copolymer resins to prepare a mixture outside the scope of the present invention, and evaluated in the same manner as in Example 1.
Shown in the table. Comparative Example 9 Ethylene-butene-1 used in Example 2
A commercially available product (product name:
Tafmar P-0480, MI1.0g/10min, density 0.88
The results are shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) 密度が0.915〜0.96g/c.c.、メルトイン
デツクス0.1〜5g/10分のエチレン−α−オ
レフイン共重合体10〜90重量%と (B) 気相法により、少なくともマグネシウムおよ
びチタンを含有する固体触媒成分と有機アルミ
ニウム化合物からなる触媒の存在下、エチレン
とα−オレフインを共重合させて得られる密度
が0.86〜0.910g/c.c.、示差走査熱量測定法
(DSC)において、その最大ピークの温度
(Tm)が100℃以上、かつ沸騰n−ヘキサン不
溶分が10重量%以上のエチレン−α−オレフイ
ン共重合体からなる軟質ポリマー90〜10重量%
とからなる密度が0.91〜0.94g/c.c.、メルトイ
ンデツクスが0.1〜5g/10分、およびN値が
1.8〜2.5の範囲にある組成物を主成分とする電
線・ケーブルの保護被覆用ポリエチレン組成
物。
[Scope of Claims] 1 (A) 10 to 90% by weight of an ethylene-α-olefin copolymer having a density of 0.915 to 0.96 g/cc and a melt index of 0.1 to 5 g/10 minutes; and (B) by a gas phase method. , the density obtained by copolymerizing ethylene and α-olefin in the presence of a catalyst consisting of a solid catalyst component containing at least magnesium and titanium and an organoaluminum compound is 0.86 to 0.910 g/cc, and differential scanning calorimetry (DSC) ), 90 to 10% by weight of a soft polymer consisting of an ethylene-α-olefin copolymer whose maximum peak temperature (Tm) is 100°C or higher and the boiling n-hexane insoluble content is 10% by weight or higher.
The density consisting of is 0.91~0.94g/cc, the melt index is 0.1~5g/10min, and the N value is
A polyethylene composition for protective coating of electric wires and cables, the main component of which is a composition in the range of 1.8 to 2.5.
JP21929283A 1983-11-21 1983-11-21 Polyethylene composition for protective coating of wire and cable Granted JPS60110739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21929283A JPS60110739A (en) 1983-11-21 1983-11-21 Polyethylene composition for protective coating of wire and cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21929283A JPS60110739A (en) 1983-11-21 1983-11-21 Polyethylene composition for protective coating of wire and cable

Publications (2)

Publication Number Publication Date
JPS60110739A JPS60110739A (en) 1985-06-17
JPH041780B2 true JPH041780B2 (en) 1992-01-14

Family

ID=16733211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21929283A Granted JPS60110739A (en) 1983-11-21 1983-11-21 Polyethylene composition for protective coating of wire and cable

Country Status (1)

Country Link
JP (1) JPS60110739A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130847A (en) * 1985-12-03 1987-06-13 日本石油化学株式会社 Inner bag for bag-in-box

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759943A (en) * 1980-09-29 1982-04-10 Showa Denko Kk Ethylene copolymer composition
JPS57165436A (en) * 1981-04-07 1982-10-12 Toa Nenryo Kogyo Kk Polyethylene composition
JPS582339A (en) * 1981-06-30 1983-01-07 Showa Denko Kk Ethylene copolymer composition
JPS5893741A (en) * 1981-11-30 1983-06-03 Dainippon Printing Co Ltd Extrusion-coating resin composition
JPS59133238A (en) * 1983-01-21 1984-07-31 Mitsui Petrochem Ind Ltd Ethylene/alpha-olefin copolymer composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759943A (en) * 1980-09-29 1982-04-10 Showa Denko Kk Ethylene copolymer composition
JPS57165436A (en) * 1981-04-07 1982-10-12 Toa Nenryo Kogyo Kk Polyethylene composition
JPS582339A (en) * 1981-06-30 1983-01-07 Showa Denko Kk Ethylene copolymer composition
JPS5893741A (en) * 1981-11-30 1983-06-03 Dainippon Printing Co Ltd Extrusion-coating resin composition
JPS59133238A (en) * 1983-01-21 1984-07-31 Mitsui Petrochem Ind Ltd Ethylene/alpha-olefin copolymer composition

Also Published As

Publication number Publication date
JPS60110739A (en) 1985-06-17

Similar Documents

Publication Publication Date Title
US5455303A (en) Linear low density polyethylene based compositions with improved optics
US4335224A (en) Polymer compositions comprising ethylene polymer blends
JPS62112644A (en) Non-rigid polyolefin composition
CA1276349C (en) Crosslinked resin composition
JPH0571050B2 (en)
JPS648657B2 (en)
US4742106A (en) Polyolefin compositions having high rigidity and high impact resistance
US4587039A (en) Electrically-conductive resin composition
JP3460666B2 (en) Flame retardant polyolefin resin composition
JPH0112780B2 (en)
JPH0366341B2 (en)
JPH041780B2 (en)
JP3372074B2 (en) Polyethylene composition
JPH0315645B2 (en)
JPS63265940A (en) Thermoplastic elastomer composition
JPH0144209B2 (en)
JPH0569132B2 (en)
JPH0112779B2 (en)
JP3146449B2 (en) Matte film and method for producing the same
JPS61243842A (en) Polypropylene composition
JPS5922946A (en) Ethylene-alpha-olefin copolymer type resin composition of high quality for casting film and preparation thereof
CN115516017B (en) Highly filled and flexible polyolefin compositions
JP2687503B2 (en) Polypropylene composition
JPH0652719A (en) Polyethylene composite for protective coating of wire and cable
JP2736041B2 (en) Method for producing masterbatch pellets for thermoplastic resin modification