JPH04177810A - Manufacture of thin film capacitor - Google Patents

Manufacture of thin film capacitor

Info

Publication number
JPH04177810A
JPH04177810A JP30745490A JP30745490A JPH04177810A JP H04177810 A JPH04177810 A JP H04177810A JP 30745490 A JP30745490 A JP 30745490A JP 30745490 A JP30745490 A JP 30745490A JP H04177810 A JPH04177810 A JP H04177810A
Authority
JP
Japan
Prior art keywords
thin film
electrodes
plasma
film capacitor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30745490A
Other languages
Japanese (ja)
Other versions
JP3007676B2 (en
Inventor
Atsushi Katsube
淳 勝部
Junji Kojima
淳司 小島
Zenichi Yoshida
善一 吉田
Mikio Haga
羽賀 幹夫
Masayuki Iijima
正行 飯島
Yoshikazu Takahashi
善和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Panasonic Holdings Corp
Original Assignee
Ulvac Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Matsushita Electric Industrial Co Ltd filed Critical Ulvac Inc
Priority to JP2307454A priority Critical patent/JP3007676B2/en
Publication of JPH04177810A publication Critical patent/JPH04177810A/en
Application granted granted Critical
Publication of JP3007676B2 publication Critical patent/JP3007676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To make it possible to obtain a high-performance and high--reliability thin film capacitor while a humidity resistance is ensured and low-cost aliminium electrodes are used by a method wherein the aluminium electrodes are used and plasma emission is performed on the surfaces of the electrodes. CONSTITUTION:Internal electrodes 2 and a thin film dielectrode film 3 are alternately stacked on an insulating substrate 1 to support an element thereon and a protective film 4 is formed on the electrode 2. These electrodes 2 respectively include a part which is not covered with the film 4 and external electrodes 5 are respectively formed on the extension of the electrodes 2 formed on both end parts of the substrate 1. After aluminium electrodes which are used as the electrodes 2 and formed, plasma is emitted on the aluminium electrodes and the surfaces of the aluminium electrodes are made to react to the plasma gas to modify into surfaces having a humidity resistance. Thereby, while the low-cost aluminium electrodes are used, a thin film capacitor, which is superior in humidity resistance, is high in performance and is highly reliable, is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高性能で高信頼性の薄膜コンデンサの製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing high performance and reliable thin film capacitors.

従来の技術 近年、電子機器の急速な小型化、高性能化にともない電
子部品においても小型化、高性能化および低コスト化の
要請が強まってきている。特に、電子機器の使用環境は
厳しくなり、電子部品に求められる信頼性は高くなって
きている。このような状況にあり、コンデンサ業界にお
いてもより信頼性の高いコンデンサの開発が取り組まれ
ている。
BACKGROUND OF THE INVENTION In recent years, with the rapid downsizing and increasing performance of electronic devices, there has been a growing demand for electronic components to be downsized, have higher performance, and lower costs. In particular, the environment in which electronic devices are used has become harsher, and the reliability required of electronic components has become higher. Under these circumstances, the capacitor industry is also working to develop more reliable capacitors.

従来の薄膜コンデンサは、内部電極と誘電体からなる素
子部と、素子部を指示する基板と、素子部と接続された
外部電極と、素子を保護する膜から構成されている。従
来よりこのような薄膜コンデンサの電極材料として検討
されているアルミ電極では、耐湿性を確保することが十
分にはできていない。そこで耐湿性を確保する手段とし
て、(1)  電極材料として耐食性の強い金属(貴金
属等)を使用する。
A conventional thin film capacitor is composed of an element part made of an internal electrode and a dielectric, a substrate that directs the element part, an external electrode connected to the element part, and a film that protects the element. Aluminum electrodes, which have been considered as electrode materials for such thin film capacitors, have not been able to sufficiently ensure moisture resistance. Therefore, as a means to ensure moisture resistance, (1) a metal with strong corrosion resistance (such as a noble metal) is used as the electrode material.

(2)  外装を行い素子部への水の侵入を防ぐ。(2) Prevent water from entering the element by providing an exterior cover.

以上の2点が従来より行われてきている。The above two points have been conventionally performed.

発明が解決しようとする課題 しかしながら、電極材料としてNi、NiCrなどの耐
湿性の強い金属を使用した場合、このような金属は表面
抵抗が高く、コンデンサとしての誘電損失(tanδ)
を増加させるだけでなく、わずかな水の侵入により絶縁
抵抗が低下することが知られている。また貴金属などを
使用することにより、耐湿性を向上させることは可能で
あるが、低コスト化の大きな阻害要因となってしまう。
Problems to be Solved by the Invention However, when a metal with strong moisture resistance such as Ni or NiCr is used as an electrode material, such metal has a high surface resistance and a dielectric loss (tan δ) as a capacitor.
It is known that in addition to increasing the insulation resistance, even a small amount of water intrusion can lower the insulation resistance. Furthermore, although it is possible to improve moisture resistance by using a noble metal or the like, this becomes a major impediment to cost reduction.

また素子部への水の侵入を防ぐため一般的に外装として
樹脂を用いるが、樹脂自身の吸湿の問題があり、封止性
が不十分であり、高信頼性が得られていない。また内部
電極と外部電極との接続部分では保護膜によって封止さ
れていないため、アルミ電極では吸湿に弱く高信頼性の
薄膜コンデンサが作り出されていない。
In addition, resin is generally used as the exterior to prevent water from entering the element portion, but there is a problem that the resin itself absorbs moisture, resulting in insufficient sealing performance and high reliability. Furthermore, since the connection between the internal and external electrodes is not sealed with a protective film, aluminum electrodes are susceptible to moisture absorption, making it impossible to create highly reliable thin film capacitors.

本発明は、安価なアルミ電極を使用し、かつ耐湿性に優
れた高性能で高信頼性の薄膜コンデンサの製造法を実現
することを目的とする。
An object of the present invention is to realize a method for manufacturing a high-performance, highly reliable thin film capacitor that uses inexpensive aluminum electrodes and has excellent moisture resistance.

課題を解決するための手段 上記目的を達成するために、本発明では、ドライプロセ
スを用いて薄膜誘電体とアルミ電極とを交互に積み重ね
る薄膜コンデンサの製造法において、アルミ電極を形成
した後、その度ごとにアルミ電極にプラズマを照射する
ようにしたものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a method for manufacturing a thin film capacitor in which thin film dielectrics and aluminum electrodes are alternately stacked using a dry process. The aluminum electrode is irradiated with plasma every time.

作用 アルミ電極は通常薄膜形成時に表面にごくわずか自然酸
化膜が形成されているが、それだけでは耐湿性を確保で
きない。そこでアルミ電極を形成後にアルミ電極にプラ
ズマを照射することにより、アルミ電極の表面はプラズ
マガスと反応し耐湿性のある表面に改質する。すなわち
、プラズマ発生ガスが窒素の場合は表面は窒化され、酸
素の場合は酸化される。いずれの場合もアルミ電極の表
面上に耐湿性を確保するために十分な不動態組織を形成
する。
Working aluminum electrodes usually have a very small amount of natural oxide film formed on their surface when forming a thin film, but this alone cannot ensure moisture resistance. Therefore, by irradiating the aluminum electrode with plasma after forming the aluminum electrode, the surface of the aluminum electrode reacts with the plasma gas and is modified into a moisture-resistant surface. That is, when the plasma generating gas is nitrogen, the surface is nitrided, and when the plasma generating gas is oxygen, it is oxidized. In either case, a sufficient passive structure is formed on the surface of the aluminum electrode to ensure moisture resistance.

本発明では電極材料として使用するアルミは、電子部品
の内部電極として利用されている電気伝導性がよいもの
である。したがってアルミ電極を用いた高信頼性の薄膜
コンデンサを得ることができる。プラズマ発生に関して
は、高周波放電、直流放電いずれの場合でも得られる効
果は同じである。
In the present invention, aluminum used as an electrode material has good electrical conductivity and is used as an internal electrode of electronic components. Therefore, a highly reliable thin film capacitor using aluminum electrodes can be obtained. Regarding plasma generation, the effect obtained is the same whether high frequency discharge or direct current discharge is used.

実施例 以下本発明の薄膜コンデンサの一実施例について、図面
を参照しながら説明する。
EXAMPLE Hereinafter, an example of the thin film capacitor of the present invention will be described with reference to the drawings.

第1図は一般的な薄膜コンデンサの断面図の構成例であ
る。この図において、素子を支持する絶縁基板1の上に
内部電極2と薄膜誘電体3とが交互に積み重ねられ、さ
らにその上に保護膜4が形成されている。また内部電極
2は、保護膜4に覆われていない部分を含んでおり、絶
縁基板1の両端部に形成された内部電極2の延長部上に
外部電極5が形成されている。ここで絶縁基板1として
は、表面実装時の高温に耐え、かつ安価なものであれば
アルミナ等の無機系の材料を使用できる。
FIG. 1 is an example of the configuration of a cross-sectional view of a general thin film capacitor. In this figure, internal electrodes 2 and thin film dielectrics 3 are alternately stacked on an insulating substrate 1 that supports an element, and a protective film 4 is further formed thereon. Further, the internal electrode 2 includes a portion not covered with the protective film 4, and the external electrode 5 is formed on an extension of the internal electrode 2 formed at both ends of the insulating substrate 1. Here, as the insulating substrate 1, an inorganic material such as alumina can be used as long as it can withstand high temperatures during surface mounting and is inexpensive.

内部電極2を形成するドライプロセスとして、真空蒸着
法、スパッタリング法等の利用が可能である。また薄膜
誘電体3を形成するドライプロセスとして、蒸着重合法
、プラズマCVD法、スパッタリング法等の使用が可能
である。薄膜誘電体3に使用される材料としては、無機
系、有機系のいずれの材料でも応用可能である。例えば
、蒸着重合法で形成可能な材料としては、ポリイミド、
ポリアミド、ポリュリア、ポリウレタンなどがある。プ
ラズマCVD法で形成可能な材料としては、シリコン、
チタンなどの酸化物、窒化物、酸化窒化物があげられる
。また保護膜4の形成には、プラズマCVD法等が使用
され、シリコンの酸化物、窒化物、酸化窒化物が形成さ
れる。
As a dry process for forming the internal electrodes 2, a vacuum evaporation method, a sputtering method, etc. can be used. Further, as a dry process for forming the thin film dielectric 3, it is possible to use a vapor deposition polymerization method, a plasma CVD method, a sputtering method, or the like. As the material used for the thin film dielectric 3, either inorganic or organic materials can be used. For example, materials that can be formed by vapor deposition polymerization include polyimide,
Examples include polyamide, polyurea, and polyurethane. Materials that can be formed using the plasma CVD method include silicon,
Examples include oxides such as titanium, nitrides, and oxynitrides. Further, a plasma CVD method or the like is used to form the protective film 4, and silicon oxide, nitride, or oxynitride is formed.

次に本発明をより明確にするために、以下製造上の諸条
件を変えて行った6種類の具体的製造法と、比較例とし
て従来の製造法によって薄膜コンデンサを製造し、緒特
性の経時的比較試験を実施した。
Next, in order to clarify the present invention, six types of specific manufacturing methods were carried out by changing various manufacturing conditions, and as a comparative example, thin film capacitors were manufactured using a conventional manufacturing method, and the characteristics of the capacitors were measured over time. A comparative study was conducted.

以下、本発明に基づく6種類の具体的実施例と従来例に
ついて説明する。
Six specific embodiments based on the present invention and conventional examples will be described below.

実施例1 基板表面のうち両端部を除く部分に膜厚20μmのガラ
スを被覆したアルミナ基板上に内部電極として電子ビー
ム法にて膜厚0.1μmのアルミを形成後、プラズマ照
射を行った。プラズマ発生ガスには窒素を使用し、プラ
ズマ発生は周波数13.56M Hzで行い、プラズマ
発生圧力は0.1torrとした。プラズマ照射後、薄
膜誘電体として蒸着重合法により膜厚0.2μmの芳香
族ボリュリア膜を形成した。その後、アルミ電極と薄膜
誘電体を交互に10層積み重ねた。なお前述のプラズマ
照射はアルミ電極を形成したあとその度ごとに行った。
Example 1 After forming aluminum with a thickness of 0.1 μm as internal electrodes by an electron beam method on an alumina substrate whose surface of the substrate except for both ends was covered with glass with a thickness of 20 μm, plasma irradiation was performed. Nitrogen was used as the plasma generation gas, plasma generation was performed at a frequency of 13.56 MHz, and the plasma generation pressure was 0.1 torr. After plasma irradiation, an aromatic voluria film with a thickness of 0.2 μm was formed as a thin film dielectric by vapor deposition polymerization. Thereafter, 10 layers of aluminum electrodes and thin film dielectrics were stacked alternately. Note that the plasma irradiation described above was performed each time after forming the aluminum electrode.

次に保護膜としてプラズマCVD法により膜厚2μmの
窒化シリコン膜を形成した。さらに減圧プラズマ溶射法
によって銅合金からなる外部電極を形成し、薄膜コンデ
ンサを得た。
Next, a silicon nitride film having a thickness of 2 μm was formed as a protective film by plasma CVD. Furthermore, an external electrode made of a copper alloy was formed using a low-pressure plasma spraying method to obtain a thin film capacitor.

実施例2 実施例1と同一のアルミナ基板上に、実施例1と同様に
アルミ電極を形成した後、プラズマ照射を行った。プラ
ズマ発生ガスには窒素を使用し、プラズマ発生は周波数
2.45GHzで行い、プラズマ発生圧力は0.2to
rrとした。薄膜誘電体。
Example 2 After forming an aluminum electrode in the same manner as in Example 1 on the same alumina substrate as in Example 1, plasma irradiation was performed. Nitrogen is used as the plasma generation gas, plasma generation is performed at a frequency of 2.45 GHz, and the plasma generation pressure is 0.2 to
It was set as rr. Thin film dielectric.

保護膜、外部電極を実施例1と同様に形成し、薄膜コン
デンサを得た。
A protective film and external electrodes were formed in the same manner as in Example 1 to obtain a thin film capacitor.

実施例3 実施例1と同一のアルミナ基板上に、実施例1と同様に
アルミ電極を形成した後、プラズマ照射を行った。プラ
ズマ発生ガスには窒素を使用し、プラズマ発生は周波数
400KHzで行い、プラズマ発生圧力は0.3tor
rとした。薄膜誘電体、保護膜、外部電極を実施例1と
同様に形成し、薄膜コンデンサを得た。
Example 3 After forming an aluminum electrode in the same manner as in Example 1 on the same alumina substrate as in Example 1, plasma irradiation was performed. Nitrogen is used as the plasma generation gas, plasma generation is performed at a frequency of 400KHz, and the plasma generation pressure is 0.3torr.
It was set as r. A thin film dielectric, a protective film, and an external electrode were formed in the same manner as in Example 1 to obtain a thin film capacitor.

実施例4 実施例1と同一のアルミナ基板上に、実施例1と同様に
アルミ電極を形成した後、プラズマ照射を行った。プラ
ズマ発生ガスには窒素を使用し、プラズマ発生は直流放
電で行い、プラズマ発生圧力は0.1torrとした。
Example 4 After forming an aluminum electrode in the same manner as in Example 1 on the same alumina substrate as in Example 1, plasma irradiation was performed. Nitrogen was used as the plasma generation gas, plasma generation was performed by direct current discharge, and the plasma generation pressure was 0.1 torr.

薄膜誘電体、保護膜、外部電極を実施例1と同様に形成
し、薄膜コンデンサを得た。
A thin film dielectric, a protective film, and an external electrode were formed in the same manner as in Example 1 to obtain a thin film capacitor.

実施例5 実施例1と同一のアルミナ基板上に、実施例1と同様に
アルミ電極を形成した後、プラズマ照射を行った。プラ
ズマ発生ガスには酸素を使用し、プラズマ発生は周波数
13 、56 M Hzで行い、プラズマ発生圧力はQ
、1torrとした。薄膜誘電体、保護膜、外部電極を
実施例1と同様に形成し、薄膜コンデンサを得た。
Example 5 After forming an aluminum electrode in the same manner as in Example 1 on the same alumina substrate as in Example 1, plasma irradiation was performed. Oxygen was used as the plasma generation gas, plasma generation was performed at a frequency of 13, 56 MHz, and the plasma generation pressure was Q.
, 1 torr. A thin film dielectric, a protective film, and an external electrode were formed in the same manner as in Example 1 to obtain a thin film capacitor.

実施例6 実施例1と同一のアルミナ基板上に、実施例1と同様に
アルミ電極を形成した後、プラズマ照射を行った。プラ
ズマ発生ガスには窒素と酸素の混成比が4:1の混合ガ
スを使用し、プラズマ発生は周波数13.56MHzで
行い、プラズマ発生圧力は0 、2 torrとした。
Example 6 After forming an aluminum electrode in the same manner as in Example 1 on the same alumina substrate as in Example 1, plasma irradiation was performed. A mixed gas of nitrogen and oxygen with a mixture ratio of 4:1 was used as the plasma generating gas, plasma generation was performed at a frequency of 13.56 MHz, and the plasma generation pressure was 0.2 Torr.

薄膜誘電体、保護膜、外部電極を実施例1と同様に形成
し、薄膜コンデンサを得た。
A thin film dielectric, a protective film, and an external electrode were formed in the same manner as in Example 1 to obtain a thin film capacitor.

比較例1 実施例1と同一のアルミナ基板上に、実施例1と同様に
アルミ電極を形成した後、プラズマ照射を行わずに、薄
膜誘電体と交互に積み重ねた。薄膜誘電体、保護膜、外
部電極を実施例1と同様に形成し、薄膜コンデンサを得
た。
Comparative Example 1 After aluminum electrodes were formed in the same manner as in Example 1 on the same alumina substrate as in Example 1, they were stacked alternately with thin film dielectrics without plasma irradiation. A thin film dielectric, a protective film, and an external electrode were formed in the same manner as in Example 1 to obtain a thin film capacitor.

上記実施例1〜6および比較例1の薄膜コンデンサにつ
いて、耐湿試験(温度=60℃、湿度9 : 5%RH
,印加電圧:25VDC,試験時間:1000h)を行
った。その結果を第2図に示す。
The thin film capacitors of Examples 1 to 6 and Comparative Example 1 were subjected to a humidity test (temperature = 60°C, humidity 9:5%RH).
, applied voltage: 25 VDC, test time: 1000 h). The results are shown in FIG.

比較例1の薄膜コンデンサにおいては、100hでアル
ミ電極表面のうち保護膜で被覆されていない部分から腐
食が発生し、誘電損失の劣化が生じた。さらに時間の経
過に伴い腐食は素子対向部まで進行し、オーブン不良が
発生した。実施例1〜6については、試験前のコンデン
サの特性(容量。
In the thin film capacitor of Comparative Example 1, corrosion occurred from the portion of the aluminum electrode surface not covered with the protective film after 100 hours, resulting in deterioration of dielectric loss. Furthermore, as time progressed, the corrosion progressed to the element facing portion, resulting in oven failure. For Examples 1 to 6, the characteristics (capacitance) of the capacitor before the test.

誘電損失、絶縁抵抗)を維持することができた。dielectric loss, insulation resistance).

すなわち、照射するプラズマが高周波放電、直流放電い
ずれの場合でも耐湿性は向上する。またプラズマ発生ガ
スに関しても窒素、酸素またはその混合ガスのいずれの
場合でも得られる効果は同じである。
That is, the moisture resistance is improved regardless of whether the irradiated plasma is a high frequency discharge or a direct current discharge. Regarding the plasma generating gas, the same effect can be obtained whether nitrogen, oxygen or a mixture thereof is used.

発明の効果 以上の説明からも明らかなように、本発明によれば、ア
ルミ電極を使用しプラズマ照射を電極表面に行うことに
より、耐湿性を確保することが可能となり、安価なアル
ミ電極を使用しながら高性能でかつ高信頼性の薄膜コン
デンサを得ることができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, by using an aluminum electrode and irradiating the electrode surface with plasma, it is possible to ensure moisture resistance, and it is possible to use an inexpensive aluminum electrode. However, it is possible to obtain a thin film capacitor with high performance and high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な薄膜コンデンサの断面図、第2図は本
発明の製造法によって製造した薄膜コンデンサと従来の
製造法によって製造した薄膜コンデンサの経時的特性図
である。 1・・・・・・絶縁基板、2・・・・・・内部電極、3
・・・・・・薄膜誘電体、4・・・・・・保護膜、5・
・・・・・外部電極。 代理人の氏名 弁理士小蝦治明 ほか2名/ −−−2
縁暮探 2−m−内部@抽 3−*M誘電永 4 ・−保護 臓 5−−一 外部電2樟 第1図
FIG. 1 is a cross-sectional view of a general thin film capacitor, and FIG. 2 is a graph of characteristics over time of a thin film capacitor manufactured by the manufacturing method of the present invention and a thin film capacitor manufactured by a conventional manufacturing method. 1...Insulating substrate, 2...Internal electrode, 3
... Thin film dielectric, 4... Protective film, 5.
...External electrode. Name of agent: Patent attorney Haruaki Koebi and 2 others / ---2
Matchmaking search 2-m-internal @drawing 3-*M diden Ei 4 ・-protection organ 5--1 external electric 2 camphor 1st figure

Claims (4)

【特許請求の範囲】[Claims] (1)ドライプロセスを用いて薄膜誘電体とアルミ電極
とを交互に積み重ねる薄膜コンデンサの製造法において
、アルミ電極を形成した後、その度ごとにアルミ電極に
プラズマ照射することを特徴とする薄膜コンデンサの製
造法。
(1) A thin film capacitor manufacturing method in which thin film dielectrics and aluminum electrodes are alternately stacked using a dry process, which is characterized in that the aluminum electrodes are irradiated with plasma each time after forming the aluminum electrodes. manufacturing method.
(2)プラズマの発生ガスが、窒素、酸素またはその混
合ガスであることを特徴とする請求項(1)記載の薄膜
コンデンサの製造法。
(2) The method for manufacturing a thin film capacitor according to claim (1), wherein the plasma generating gas is nitrogen, oxygen, or a mixed gas thereof.
(3)プラズマの発生を高周波放電で行うことを特徴と
する請求項(1)または(2)記載の薄膜コンデンサの
製造法。
(3) The method for manufacturing a thin film capacitor according to claim (1) or (2), wherein the plasma is generated by high-frequency discharge.
(4)プラズマの発生を直流放電で行うことを特徴とす
る請求項(1)または(2)記載の薄膜コンデンサの製
造法。
(4) The method for manufacturing a thin film capacitor according to claim (1) or (2), wherein the plasma is generated by direct current discharge.
JP2307454A 1990-11-13 1990-11-13 Manufacturing method of thin film capacitor Expired - Lifetime JP3007676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2307454A JP3007676B2 (en) 1990-11-13 1990-11-13 Manufacturing method of thin film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2307454A JP3007676B2 (en) 1990-11-13 1990-11-13 Manufacturing method of thin film capacitor

Publications (2)

Publication Number Publication Date
JPH04177810A true JPH04177810A (en) 1992-06-25
JP3007676B2 JP3007676B2 (en) 2000-02-07

Family

ID=17969259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2307454A Expired - Lifetime JP3007676B2 (en) 1990-11-13 1990-11-13 Manufacturing method of thin film capacitor

Country Status (1)

Country Link
JP (1) JP3007676B2 (en)

Also Published As

Publication number Publication date
JP3007676B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
JP3966208B2 (en) Thin film capacitor and manufacturing method thereof
KR100344649B1 (en) Electronic component
US4938995A (en) Fluoropolymer thin film coatings and method of preparation by plasma polymerization
WO2011010638A1 (en) Dielectric thin film element and process for production thereof
KR100273014B1 (en) High performance passivation for semiconductor device
JP5027992B2 (en) Glass materials for high frequency applications
US5088003A (en) Laminated silicon oxide film capacitors and method for their production
JP5299158B2 (en) Dielectric thin film element
WO2002082644A1 (en) Acoustic wave device and method of manufacture thereof
DE2401613A1 (en) SEMI-CONDUCTOR DEVICE
JPH04177810A (en) Manufacture of thin film capacitor
JP2008235088A (en) Dielectric thin film, dielectric thin film capacitor, and manufacturing method of dielectric thin film capacitor
JPH11312682A (en) Metallic wiring structure using fluorine-containing dielectric and manufacture thereof
JP2007281046A (en) Thin film capacitor
JPH0429319A (en) Semiconductor element and its manufacture
JPS63296326A (en) Manufacture of metallized plastic film capacitor
JPH05190159A (en) Lithium battery equipped with terminal and manufacture thereof
JP3049819B2 (en) Film capacitor and manufacturing method thereof
JPH0437106A (en) Thin film capacitor
JPH0276231A (en) Chemical semiconductor device and manufacture thereof
JP2003282373A (en) Electrolytic capacitor sealing body and electrolytic capacitor using the sealing body
JP3006191B2 (en) Method for producing metallized film for capacitor
JP2005026402A (en) Capacitor and its fabricating method
JP2900751B2 (en) Film capacitor and manufacturing method thereof
JPS62122152A (en) Manufacture of substrate for semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

EXPY Cancellation because of completion of term