JPH04177775A - Solid-state switch - Google Patents
Solid-state switchInfo
- Publication number
- JPH04177775A JPH04177775A JP30520590A JP30520590A JPH04177775A JP H04177775 A JPH04177775 A JP H04177775A JP 30520590 A JP30520590 A JP 30520590A JP 30520590 A JP30520590 A JP 30520590A JP H04177775 A JPH04177775 A JP H04177775A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- switching elements
- state switching
- heat
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 13
- 239000007787 solid Substances 0.000 claims description 23
- 230000015556 catabolic process Effects 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000003990 capacitor Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Lasers (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
この発明は放電励起レーザ装置等に適用される固体スイ
ッチに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a solid-state switch applied to discharge-excited laser devices and the like.
[従来の技術]
第2図は例えば特願平1163228号に示された従来
の放電励起レーザ装置の構成図であり、図において、I
A、IBはスイッチング時間が500ns以下の固体ス
イッチング素子、2A。[Prior Art] FIG. 2 is a block diagram of a conventional discharge excitation laser device disclosed in, for example, Japanese Patent Application No. 1163228.
A, IB are solid state switching elements with a switching time of 500 ns or less, 2A.
2Bは固体スイッチング素子IA、 IBを冷却する
放熱板、3A、3B、6.7A及び7Bは大電流通電用
の導電板、4は充電用コンデンサ、5はレーザ筐体、8
はピーキングコンデンサ、9は放電電極である。また、
第4図は上記放電部の構造を電気回路図で表わしたもの
である。図において、10は高電圧電源、1.1.12
は充電用リアクトルである。2B is a heat sink for cooling the solid state switching elements IA and IB, 3A, 3B, 6.7A and 7B are conductive plates for carrying large currents, 4 is a charging capacitor, 5 is a laser housing, 8
is a peaking capacitor, and 9 is a discharge electrode. Also,
FIG. 4 shows the structure of the discharge section in the form of an electrical circuit diagram. In the figure, 10 is a high voltage power supply, 1.1.12
is a charging reactor.
次に動作について説明する。第4図において、高電圧電
源10から充電用リアクトル11−充電用コンデンサ4
−充電用リアクトル12のルートにより充電用コンデン
サ4に電荷が蓄積される。Next, the operation will be explained. In FIG. 4, from the high voltage power supply 10 to the charging reactor 11 - the charging capacitor 4
- Charge is accumulated in the charging capacitor 4 through the route of the charging reactor 12.
次いで、固体スイッチング素子IAが閉じられると充電
用コンデンサ4一固体スイツチング素子IA−ピーキン
グコンデンサ8−充電用コンデンサ4の移行ループを経
て、充電用コンデンサ4の電荷がピーキングコンデンサ
8へ移行される。これに伴って、放電電極9間の電圧が
急速に上昇し、やがて放電空間がブレイクダウンしてピ
ーキングコンデンサ8のエネルギが放電場に投入される
。Next, when the solid state switching element IA is closed, the electric charge of the charging capacitor 4 is transferred to the peaking capacitor 8 through a transfer loop of the charging capacitor 4, the solid state switching element IA, the peaking capacitor 8, and the charging capacitor 4. Along with this, the voltage between the discharge electrodes 9 increases rapidly, and eventually the discharge space breaks down and the energy of the peaking capacitor 8 is input into the discharge field.
これにより、放電空間のガスが励起され、誘導放出によ
りレーザ光か取り出される。ここで固体スイッチング素
子IA、IBは、耐電圧を増すために多段に積まれてお
り、また電流容量を増やすために、光軸方向に沿って多
数並列に設置されており、光軸に直行する断面を見ると
当該スイッチング素子群が放電電極を両断するように引
かれる仮怨線に対して画側に設置されている。この時、
放電エネルギーの移行ループとしては充電用コンデレザ
4−導電板6−導電板7A−固体スイツチング素子IA
−導電板3A−導電板6−充電用コンデンザ4の反時計
回りのループと、充電用コンデンサ4−導電板6−導電
板7B−固体スイッヂング素子IB−導電板3B−導電
板6−充電用コンデンサ4の時計回りのループが形成さ
れる。2つのループは電流の流れが逆方向であるため、
お互いにインダクタンスを打ち消し合うように働(。As a result, gas in the discharge space is excited, and laser light is extracted by stimulated emission. Here, the solid state switching elements IA and IB are stacked in multiple stages to increase the withstand voltage, and in order to increase the current capacity, a large number of solid state switching elements IA and IB are installed in parallel along the optical axis direction. When looking at the cross section, the switching element group is installed on the image side with respect to the temporary line drawn to bisect the discharge electrode. At this time,
The discharging energy transfer loop includes charging conduit laser 4 - conductive plate 6 - conductive plate 7A - solid state switching element IA.
- Conductive plate 3A - Conductive plate 6 - Counterclockwise loop of charging capacitor 4 and charging capacitor 4 - Conductive plate 6 - Conductive plate 7B - Solid state switching element IB - Conductive plate 3B - Conductive plate 6 - Charging capacitor 4 clockwise loops are formed. Since the current flows in the two loops in opposite directions,
They work to cancel each other's inductances (.
また、固体スイッチング素子]、A、1Bは光軸方向に
分散して設置されるので、スイッチにザイラトロンを用
いた場合のように一旦、電流が集束するということかな
い。こわらの結果として移行ループのインダクタンスを
きわめて小さくすることができ、高いd v / d
tを得て放電を安定化、均一化することができる。例え
ば、スイッチング時間が40nsの固体スイッチング素
子IA。Furthermore, since the solid-state switching elements A and 1B are installed in a dispersed manner in the optical axis direction, the current does not once converge as in the case of using a Zyratron for the switch. As a result of the stiffening, the inductance of the transition loop can be made very small, resulting in high d v/d
By obtaining t, the discharge can be stabilized and made uniform. For example, a solid state switching element IA with a switching time of 40 ns.
IBを用いたときに、全体でインダクタンスは100n
H以下となる。When using IB, the total inductance is 100n
It becomes H or less.
[発明が解決しようとする課題〕
従来の固体スイッチは以上のように構成されているので
、放熱板に近い部分は冷却されるが、内部や場所によっ
て冷却効率か悪い。この結果、固体スイッチング素子(
FET、IGBT、SITもしくは、これらと同程度の
スイッチング時間(オン動作)を有するスイッチ)毎、
あるいは複数個の該素子を組込んだモジュール毎に温度
むらが生じ、スイッチング特性のバラツキからオンして
いない素子に過電圧か加わり、ついに番j素子の破壊を
引起す等の課題かあった。この発明は上記のような課題
を解消するためになされたもので、複数の固体スイッチ
ング素子間の熱不均衡を避けると共に、冷却効率を高め
た高信頼度の固体スイッチを得ることを目的とする。[Problems to be Solved by the Invention] Since the conventional solid-state switch is configured as described above, the portion near the heat sink is cooled, but the cooling efficiency is poor depending on the interior and location. As a result, solid state switching elements (
FET, IGBT, SIT, or a switch with a similar switching time (on operation))
Alternatively, temperature unevenness may occur in each module incorporating a plurality of such elements, and due to variations in switching characteristics, overvoltage may be applied to elements that are not turned on, eventually causing destruction of the number J element. This invention was made to solve the above-mentioned problems, and aims to avoid heat imbalance between a plurality of solid-state switching elements and to obtain a highly reliable solid-state switch with improved cooling efficiency. .
この発明に係る固体スイッチは、複数の固体スイッチン
グ素子、あるいは複数個の固体スイッチング素子を組み
込んだスイッチモジュールを直並列に接続したスイッチ
モジュール群と、前記固体スイッチング素子、もしくは
スイッチモジュールを金属プレート上に並べてサンドイ
ッチ構造に多段積みし、該金属プレートを低熱抵抗の吸
熱部とした時、他端に冷却用の放熱板を設けたヒートパ
イプを備えて構成したものである。The solid-state switch according to the present invention includes a switch module group in which a plurality of solid-state switching elements or switch modules incorporating a plurality of solid-state switching elements are connected in series and parallel, and the solid-state switching elements or switch modules are arranged on a metal plate. When the metal plates are stacked side by side in a sandwich structure and the metal plates are used as a heat absorbing part with low thermal resistance, a heat pipe is provided with a heat sink for cooling at the other end.
この発明におけるスイッチは、固体スイッチング素子、
又はスイッチモジュールをヒートパイプの金属プレート
でサンドイッチ状に多段積みし、該ヒートパイプの他端
に冷却用の放熱板を設けて構成したので、固体スイッチ
ング素子間の熱不均衡が基でスイッヂ遅れが生じスイッ
チの過電圧破壊に至る危険から防止する。The switch in this invention includes a solid state switching element,
Alternatively, the switch module is constructed by stacking the metal plates of the heat pipe in multiple layers in a sandwich-like manner and providing a cooling heat sink at the other end of the heat pipe, so that the switch delay occurs due to thermal imbalance between the solid-state switching elements. This prevents the risk of overvoltage damage to the switch.
[発明の実施例]
以下、この発明の一実施例を図について説明する。図中
、第2図〜第4図と同一の部分は同一の符号をもって図
示した第1図において、20は一端に放熱板2を設け、
他端の金属プレート20A。[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the same parts as in FIGS. 2 to 4 are designated by the same reference numerals. In FIG.
Metal plate 20A at the other end.
20B上に固体スイッチング素子1をサントイ・ンヂ状
に密着した多段積したヒートパイプ、21は固体スイッ
チング素子1あるいは複数個の固体スイッチング素子1
を組み込んだスイッチモジュールを例えば、FETモジ
ュール等で構成した場合、前記金属プレート20Bに低
い熱抵抗をもって接合したトレイン、22は金属プレー
ト2OAに同時に密着して接合したソースで、これら2
1゜22を総称してスイ・ンチモジクーール君羊30と
いう。20B is a multi-layered heat pipe in which solid state switching elements 1 are closely attached in a sand-like shape; 21 is a solid state switching element 1 or a plurality of solid state switching elements 1;
For example, when a switch module incorporating a FET module is constructed, a train is connected to the metal plate 20B with low thermal resistance, and 22 is a source that is closely connected to the metal plate 2OA at the same time.
1°22 is collectively called Sui Nchimojikuru Kimitsu 30.
23は冷却ファン、24はスイッチモジュール群30に
流れる電流である。23 is a cooling fan, and 24 is a current flowing through the switch module group 30.
次に動作について説明する。一般にヒートパイプ20は
構造が簡単で機種的な動作部分がなく、しかも小温度差
で比較的多量の潜熱を放出できるという特徴を有してい
る。構造、機能は以下の如くである。ヒートパイプ20
の内壁面にはウィックと呼ばれる多孔質物質(たとえば
、スクリーン)か内張すされており、その容器を真空に
した後、液体(作動流体という)を適量封入する。真空
に保たれた容器内の作動流体は蒸発し、ヒートパイプ内
の空間は、その時の温度の飽和蒸気圧と等しい蒸気で満
たされる。この時、一端を固体スイッチング素子1の発
熱により加熱したとすると他端は冷却ファン23で冷却
されているため温度差が発生する。加熱部ではウィック
内の液体が蒸発し、その発生した蒸気がわずかな圧力差
によって内部の蒸気通路を通り移動して放熱板2を設け
た冷却部に到達する。移動した蒸気はここで凝縮され多
量の潜熱を放出する。Next, the operation will be explained. In general, the heat pipe 20 has a simple structure, has no operating parts, and is characterized in that it can emit a relatively large amount of latent heat with a small temperature difference. The structure and functions are as follows. heat pipe 20
The inner wall surface of the container is lined with a porous material (for example, a screen) called a wick, and after the container is evacuated, an appropriate amount of liquid (called a working fluid) is sealed. The working fluid in the vacuum-kept container evaporates, and the space inside the heat pipe is filled with steam equal to the saturated vapor pressure at the current temperature. At this time, if one end is heated by the heat generated by the solid state switching element 1, a temperature difference occurs because the other end is cooled by the cooling fan 23. In the heating section, the liquid in the wick evaporates, and the generated steam moves through the internal steam passage due to a slight pressure difference and reaches the cooling section provided with the heat sink 2. The transferred steam is condensed here and releases a large amount of latent heat.
この動作によって固体スイッチング素子間は熱バランス
が保たれ、スイッチングのタイミングを+1秒で揃える
必要があるスイッチモジュール群30にとって、オンタ
イムの不均衡がなくなって過電圧印加の心配も除去され
る。This operation maintains a thermal balance between the solid-state switching elements, and for the switch module group 30, which requires switching timings to be aligned within +1 second, there is no imbalance in on-time and the worry of overvoltage application is eliminated.
以上のようにこの発明によれば、固体スイッチング素子
または固体スイッチング素子を複数個組み込んだスイッ
チモジュールを直並列に接続したスイ・ソヂモジュール
君羊をヒートパイプの金属フ。As described above, according to the present invention, a switch module in which a solid state switching element or a switch module incorporating a plurality of solid state switching elements is connected in series and parallel is connected to a metal pipe of a heat pipe.
レートでサンドイッチ状に多段積みし、ヒートパイプの
他端に冷却用の放熱板を設りて構成したので、固体スイ
ッチング素子間の熱不均衡が基でスイッチングに遅れか
生じ過電圧破壊に至る危険から防止すると共に、固体ス
イッチが高密度化され低インダクタンスとなるので更に
高速応答が可能となる効果がある。The heat pipe is stacked in multiple layers in a sandwich-like manner, and a cooling heat sink is installed at the other end of the heat pipe to prevent switching delays due to thermal imbalance between the solid-state switching elements, which may lead to overvoltage breakdown. In addition to preventing this, the solid-state switch has a high density and low inductance, which has the effect of enabling even faster response.
第1図はこの発明の一実施例による固体スイッチの構成
図、第2図及び第3図は従来の固体スイッチの構成図、
第4図は従来の放電励起レーザ装置の回路図である。
図において、1は固体スイッチング素子、2は放熱板、
20はピー1〜パイプ、2OA、20Bは金属プレート
、30はスイッチモジュール群である。
なお、図中、同一符号は同一、又は相当部分を示す。FIG. 1 is a block diagram of a solid state switch according to an embodiment of the present invention, FIGS. 2 and 3 are block diagrams of a conventional solid state switch,
FIG. 4 is a circuit diagram of a conventional discharge excitation laser device. In the figure, 1 is a solid state switching element, 2 is a heat sink,
20 is a pipe, 2OA, 20B is a metal plate, and 30 is a switch module group. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.
Claims (1)
イッチング素子を組み込んだスイッチモジュールを直並
列に接続したスイッチモジュール群と、前記固体スイッ
チング素子、もしくはスイッチモジュールを金属プレー
ト上に並べてサンドイッチ構造に多段積みし、該金属プ
レートを低熱抵抗の吸熱部とした時、他端に冷却用の放
熱板を設けたヒートパイプとを備えた固体スイッチ。A switch module group in which a plurality of solid state switching elements or switch modules incorporating a plurality of solid state switching elements are connected in series and parallel, and the solid state switching elements or switch modules are arranged on a metal plate and stacked in multiple stages in a sandwich structure. A solid-state switch that has a metal plate as a heat absorbing part with low thermal resistance, and a heat pipe with a heat sink for cooling at the other end.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30520590A JPH04177775A (en) | 1990-11-09 | 1990-11-09 | Solid-state switch |
US07/757,419 US5305338A (en) | 1990-09-25 | 1991-09-10 | Switch device for laser |
GB9119426A GB2250131B (en) | 1990-09-25 | 1991-09-11 | Switch device for laser |
DE4131949A DE4131949C2 (en) | 1990-09-25 | 1991-09-25 | Switching devices for a discharge-excited pulse laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30520590A JPH04177775A (en) | 1990-11-09 | 1990-11-09 | Solid-state switch |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04177775A true JPH04177775A (en) | 1992-06-24 |
Family
ID=17942318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30520590A Pending JPH04177775A (en) | 1990-09-25 | 1990-11-09 | Solid-state switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04177775A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009231672A (en) * | 2008-03-25 | 2009-10-08 | Mitsubishi Electric Corp | Power semiconductor apparatus |
JP2011009767A (en) * | 2010-08-17 | 2011-01-13 | Renesas Electronics Corp | Semiconductor device |
-
1990
- 1990-11-09 JP JP30520590A patent/JPH04177775A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009231672A (en) * | 2008-03-25 | 2009-10-08 | Mitsubishi Electric Corp | Power semiconductor apparatus |
JP2011009767A (en) * | 2010-08-17 | 2011-01-13 | Renesas Electronics Corp | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3173032A (en) | Means for close placement of electrode plates in a thermionic converter | |
KR101108191B1 (en) | Battery Pack | |
US4011104A (en) | Thermoelectric system | |
US20150188019A1 (en) | Device, System and Method For Converting Solar Thermal Energy To Electricity By Thermoelectric Means | |
EP0348838A2 (en) | Bellows heat pipe for thermal control of electronic components | |
US11482744B2 (en) | Multi-functional structure for thermal management and prevention of failure propagation | |
US5228922A (en) | High voltage alkali metal thermal electric conversion device | |
US5492570A (en) | Hybrid thermal electric generator | |
US11569537B2 (en) | Multi-functional structure for thermal management and prevention of failure propagation | |
US2979551A (en) | Thermoelectric generator | |
US5305338A (en) | Switch device for laser | |
JPH08222280A (en) | Cooling structure of na-s battery module | |
US4260014A (en) | Ebullient cooled power devices | |
JPH1084668A (en) | Converter circuit device | |
US3460524A (en) | Thermionic power and heat source | |
JP2020526931A (en) | Bypass thyristor device with gas expansion cavity in contact plate | |
JPH04177775A (en) | Solid-state switch | |
JP4687305B2 (en) | Thermoelectric generator | |
JPH09298070A (en) | Module type secondary battery, and module type secondary battery unit | |
JP3453159B2 (en) | Thermoelectric generator | |
JP4147299B2 (en) | Combined power generation element and combined power generation system comprising thermoelectric power generation element and alkali metal thermoelectric conversion element | |
US3018430A (en) | Thermoelectric generator with feedback for increasing efficiency | |
CN112909377A (en) | Battery pack | |
JPH03231446A (en) | Semiconductor element for power use | |
JP6696407B2 (en) | Switching module |