JPH0417755A - Exhaust gas recirculation device of supercharged internal lean-burn engine - Google Patents

Exhaust gas recirculation device of supercharged internal lean-burn engine

Info

Publication number
JPH0417755A
JPH0417755A JP2116827A JP11682790A JPH0417755A JP H0417755 A JPH0417755 A JP H0417755A JP 2116827 A JP2116827 A JP 2116827A JP 11682790 A JP11682790 A JP 11682790A JP H0417755 A JPH0417755 A JP H0417755A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust gas
valve
supercharging pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2116827A
Other languages
Japanese (ja)
Other versions
JP2797646B2 (en
Inventor
Taiichi Mori
泰一 森
Hiromichi Yanagihara
弘道 柳原
Shinobu Ishiyama
忍 石山
Toshiyuki Maehara
利之 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2116827A priority Critical patent/JP2797646B2/en
Publication of JPH0417755A publication Critical patent/JPH0417755A/en
Application granted granted Critical
Publication of JP2797646B2 publication Critical patent/JP2797646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/59Systems for actuating EGR valves using positive pressure actuators; Check valves therefor
    • F02M26/60Systems for actuating EGR valves using positive pressure actuators; Check valves therefor in response to air intake pressure

Abstract

PURPOSE:To rapidly realize switching from theoritical to lean air-fuel ratio wihtout reducing torque by controlling an exhaust gas recirculation control valve when supercharging pressure is detected as being increased so that the amount of reflow exhaust gas allowed to pass through an exhaust gas recirculating passage is increased. CONSTITUTION:When a lean air-fuel ratio control area identifying means D identifies the area where air-fuel ratio is to be set to the lean side, a supercharging pressure increasing means E increases supercharging pressure generated by a supercharger A. When the supercharging pressure detecting means F detects the supercharging pressure as being increased, an exhaust gas recirculation control means G controls an exhaust gas recirculation control valve C so that the amount of reflow exhaust gas allowed to pass through an exhaust gas recirculating passage B is increased. In the area of the shift from theoritical to lean air-fuel ratio, the exhaust gas is recirculated at the same time that the supercharging pressure is increased, whereby generation of nitrogen oxides is restrained while preventing torque from being reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は過給希薄燃焼内燃機関における排気ガス再循
環装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to an exhaust gas recirculation device in a supercharged lean-burn internal combustion engine.

〔従来技術〕[Prior art]

特願平1−156685号はガソリンを燃料とする内燃
機関において、大型ターボチャージャによって強力な過
給を行い、空気密度を上げることにより高負荷運転時に
希薄燃焼を実現する方式(以下高密度過給希薄燃焼)を
提案している。過給を高密度に行うことにより空燃比と
しては理論空燃比より希薄側であっても単位体積当たり
の燃料の量は維持されるため安定な燃焼を確保しつつ希
薄燃焼を実現し、燃料消費効率を改善することができる
Japanese Patent Application No. 1-156685 proposes a method (hereinafter referred to as high-density supercharging) for internal combustion engines that use gasoline as fuel, to perform strong supercharging with a large turbocharger and increase air density to achieve lean combustion during high-load operation. lean burn). By performing high-density supercharging, the amount of fuel per unit volume is maintained even if the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, ensuring stable combustion while achieving lean combustion and reducing fuel consumption. Efficiency can be improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

高密度過給希薄燃焼方式では過給機により充分な過給効
果が得られない低回転・低負荷側では空燃比は理論空燃
比に設定され、高回転・高負荷側で空燃比が希薄に設定
される。理論空燃比域から希薄空燃比域への切替におい
て理想的には空燃比は理論空燃比(14,5)から19
.0といったようにステップ的に切替えすることが好ま
しい。このような中間的な空燃比(例えば16.0)で
は排気ガス中の窒素酸化物成分の排出量が増えるからで
ある。しかしながら、ステップ的な空燃比の設定の変化
によりエンジンのトルクが急変するため実際は空燃比は
理論空燃比から目標の希薄空燃比まで連続的に変化させ
る設定となっている。そのため、排気ガス中の窒素酸化
物成分の排出量が増大する問題点がある。
In the high-density supercharging lean burn system, the air-fuel ratio is set to the stoichiometric air-fuel ratio at low speeds and low loads, where the turbocharger does not provide sufficient supercharging effect, and at high speeds and high loads, the air-fuel ratio becomes lean. Set. When switching from the stoichiometric air-fuel ratio range to the lean air-fuel ratio range, ideally the air-fuel ratio should be from the stoichiometric air-fuel ratio (14,5) to 19.
.. It is preferable to switch in steps such as 0. This is because at such an intermediate air-fuel ratio (for example, 16.0), the amount of nitrogen oxide components discharged from the exhaust gas increases. However, since the engine torque changes suddenly due to a stepwise change in the air-fuel ratio setting, the air-fuel ratio is actually set to be continuously changed from the stoichiometric air-fuel ratio to the target lean air-fuel ratio. Therefore, there is a problem that the amount of nitrogen oxide components discharged from the exhaust gas increases.

この発明は理論空燃比から希薄空燃比への切替えをトル
クダウンすることなく迅速にしかも窒素酸化物成分の排
出量を増やすことなく実現させることを目的とする。
The object of the present invention is to quickly switch from a stoichiometric air-fuel ratio to a lean air-fuel ratio without reducing torque and without increasing the amount of nitrogen oxide component emissions.

〔課題を解決するための手段〕[Means to solve the problem]

この発明によれば、第1図において、過給機Aが過給効
果を達成する運転時に空燃比を希薄側に制御し、かつ排
気系と吸気系とを接続する排気ガス再循環通路Bに排気
ガス再循環制御弁Cを具備した内燃機関において、空燃
比を希薄側に制御するべき運転域を判別する手段りと、
希薄空燃比制御域と判別した時に過給機による過給圧を
増大する手段Eと、過給圧の増大を検出する手段Fと、
過給圧増大と検出した場合に排気ガス再循環通路Bを通
過する還流排気ガスの量が増大するように排気ガス再循
環制御弁Cを制御する手段Gとを備える過給希薄内燃機
関の排気カス再循環装置が提供される。
According to this invention, in FIG. 1, the air-fuel ratio is controlled to the lean side during operation when the supercharger A achieves the supercharging effect, and the exhaust gas recirculation passage B is connected to the exhaust gas recirculation passage B that connects the exhaust system and the intake system. In an internal combustion engine equipped with an exhaust gas recirculation control valve C, means for determining an operating range in which the air-fuel ratio should be controlled to the lean side;
means E for increasing supercharging pressure by the supercharger when it is determined that the lean air-fuel ratio control region is reached; and means F for detecting an increase in supercharging pressure;
and means G for controlling an exhaust gas recirculation control valve C so that the amount of recirculated exhaust gas passing through an exhaust gas recirculation passage B increases when an increase in boost pressure is detected. A waste recirculation device is provided.

〔作用〕[Effect]

希薄空燃比制御域判別手段りが空燃比を希薄に設定する
べき領域を判別したときは過給圧増大手段Eは過給機A
による過給圧を増大させる。
When the lean air-fuel ratio control region determining means determines the region in which the air-fuel ratio should be set lean, the supercharging pressure increasing means E controls the turbocharger A.
Increase boost pressure due to

過給圧検出手段Fが過給圧増大と検出した場合に排気カ
ス再循環制御手段Gは排気ガス再循環通路Bを通過する
還流排気ガスの量が増大するように排気ガス再循環制御
弁Cを制御する。
When the boost pressure detection means F detects that the boost pressure has increased, the exhaust gas recirculation control means G controls the exhaust gas recirculation control valve C so that the amount of recirculated exhaust gas passing through the exhaust gas recirculation passage B increases. control.

〔実施例〕〔Example〕

第2図はこの発明の高密度過給ガソリン内燃機関の全体
を示しており、1oはエンジン本体であり、吸気管12
と排気管14とが接続される。実施例の内燃機関では各
吸気ボート1o−1は二つの部分に別れていてその一方
の部分にスワール制御弁10−2を備えており、制御弁
10−2の閉鎖時は他方の部分のみから混合気がシリン
ダに導入され、シリンダ内において混合気はスワールを
形成し、−力制御弁10−2の開放時は吸気ポートの双
方の部分より混合気が導入され、スワールは消失される
。スワールによって理論空燃比より希薄な混合気の燃焼
を良好に行うことを意図している。
FIG. 2 shows the entire high-density supercharged gasoline internal combustion engine of the present invention, where 1o is the engine body, the intake pipe 12
and the exhaust pipe 14 are connected. In the internal combustion engine of the embodiment, each intake boat 1o-1 is divided into two parts, one of which is equipped with a swirl control valve 10-2, and when the control valve 10-2 is closed, air is supplied only from the other part. The air-fuel mixture is introduced into the cylinder and forms a swirl within the cylinder, and when the force control valve 10-2 is opened, the air-fuel mixture is introduced from both portions of the intake port and the swirl is eliminated. The swirl is intended to improve the combustion of an air-fuel mixture that is leaner than the stoichiometric air-fuel ratio.

大型ターボチャージ17と小型ターボチャージャI8と
が直列に配置される。大型ターボチャージャ17はコン
プレッサ20と、タービン22と、回転軸24とから構
成される。小型ターボチャージャ18はコンプレッサ2
6と、タービン28と、回転軸25とから構成される。
A large turbocharger 17 and a small turbocharger I8 are arranged in series. The large turbocharger 17 includes a compressor 20, a turbine 22, and a rotating shaft 24. The small turbocharger 18 is the compressor 2
6, a turbine 28, and a rotating shaft 25.

吸気管12において吸入空気の流れ方向に、大型ターボ
チャージャ17のコンプレッサ20、小型ターボチャー
ジャI8のコンプレッサ26の順で配置され、その下流
にインタクーラ29が配置される。排気管において排気
ガスの流れ方向に、小型ターボチャージャ18のタービ
ン28、大型ターボチャージャ17のタービン22の順
で配置される。
In the intake pipe 12, the compressor 20 of the large turbocharger 17 and the compressor 26 of the small turbocharger I8 are arranged in this order in the flow direction of intake air, and an intercooler 29 is arranged downstream thereof. In the exhaust pipe, the turbine 28 of the small turbocharger 18 and the turbine 22 of the large turbocharger 17 are arranged in this order in the flow direction of exhaust gas.

大型ターボチャージャ17のタービンを迂回して第1の
排気バイパス通路30が排気管に接続され、第1の排気
バイパス通路30にスイングドア型弁であるウェイスト
ゲート弁32が配置される。
A first exhaust bypass passage 30 is connected to the exhaust pipe, bypassing the turbine of the large turbocharger 17, and a wastegate valve 32, which is a swing door type valve, is arranged in the first exhaust bypass passage 30.

ウェイストゲート弁32はダイヤフラムアクチュエータ
34に連結され、そのダイヤフラム34aはバイパス弁
32に連結される。バイパス弁32はスプリング34b
によって通常は閉鎖するべく付勢されるが、ダイヤフラ
ム34aに加わる正圧によってスプリング34bに抗し
てウェイストゲート弁32の開弁が行われる。
Wastegate valve 32 is connected to a diaphragm actuator 34 whose diaphragm 34 a is connected to bypass valve 32 . Bypass valve 32 has spring 34b
Normally, the wastegate valve 32 is biased to close, but the positive pressure applied to the diaphragm 34a causes the wastegate valve 32 to open against the spring 34b.

小型ターボチャージャ18のタービン28を迂回して第
2の排気バイパス通路36が設けられ、この第2のバイ
パス通路36に蝶型弁としての排気切替弁38が設けら
れる。排気切替弁38はそのアクチュエータ40に連結
され、アクチュエータ40は2段ダイヤフラム機構とし
て構成される。
A second exhaust bypass passage 36 is provided to bypass the turbine 28 of the small turbocharger 18, and an exhaust switching valve 38 as a butterfly valve is provided in the second bypass passage 36. The exhaust switching valve 38 is connected to its actuator 40, and the actuator 40 is configured as a two-stage diaphragm mechanism.

このアクチュエータ40は、後述のように、大型ターボ
チャージャ17が全過給能力を発揮するまでは排気切替
弁38を閉鎖し、大型ターボチャージャ17がその全過
給能力を発揮するに至ると排気切替弁38を急速に開放
せしめる特性を持っている。アクチュエータ40はダイ
ヤフラム40a。
As will be described later, this actuator 40 closes the exhaust switching valve 38 until the large turbocharger 17 exerts its full supercharging capacity, and switches the exhaust switching valve 38 when the large turbocharger 17 reaches its full supercharging capacity. It has the property of causing the valve 38 to open rapidly. The actuator 40 is a diaphragm 40a.

40bと、スプリング40c、 40dを供え、一方の
ダイヤフラム40aはロッド4.Oeを介して排気切替
弁38に連結され、もう一つのダイヤフラム40bはロ
ッド40fに連結される。ダイヤフラム40aに過給圧
を作用させるか、ダイヤフラム40bに過給圧を作用さ
せるか、で排気切替弁38のステップ的な開放特性が得
られる。即ち、ダイヤフラム40bに過給圧を作用させ
た場合、スプリング40cの力と、スプリング40dと
合力に抗して排気切替弁38を開弁させるため、開弁は
緩慢に行われる。ダイヤフラム40aに過給圧が作用し
た場合はスプリング40cの力のみに抗して排気切替弁
38の開弁が行われるため、その間弁作動は迅速となる
40b and springs 40c and 40d, one diaphragm 40a is connected to the rod 4. The other diaphragm 40b is connected to a rod 40f. The step-like opening characteristic of the exhaust gas switching valve 38 can be obtained by applying supercharging pressure to the diaphragm 40a or by applying supercharging pressure to the diaphragm 40b. That is, when supercharging pressure is applied to the diaphragm 40b, the exhaust switching valve 38 is opened against the force of the spring 40c and the combined force of the spring 40d, so that the valve is opened slowly. When supercharging pressure acts on the diaphragm 40a, the exhaust switching valve 38 is opened against only the force of the spring 40c, so that the valve operation is quick during that time.

小型ターボチャージャ18のコンプレッサ26を迂回す
る吸気バイパス通路44が設けられ、この吸気バイパス
通路44に吸気バイパス弁46が配置される。切替弁4
6はダイヤフラムアクチュエータ48に連結され、その
ダイヤフラム48aに加わる圧力により吸気バイパス弁
46の作動が制御される。この吸気バイパス弁46は大
型ターボチャージャ17の立ち上がりが完了しない小型
ターボチャージャ18の作動域では吸気バイパス通路4
4を閉鎖するも、その完了の後は過給圧がダイヤフラム
48aに下側から作用し、吸気バイパス弁46の開弁が
行われる。
An intake bypass passage 44 that bypasses the compressor 26 of the small turbocharger 18 is provided, and an intake bypass valve 46 is disposed in the intake bypass passage 44. Switching valve 4
6 is connected to a diaphragm actuator 48, and the operation of the intake bypass valve 46 is controlled by the pressure applied to the diaphragm 48a. This intake bypass valve 46 is connected to the intake bypass passage 4 in the operating range of the small turbocharger 18 where the startup of the large turbocharger 17 is not completed.
4 is closed, but after that is completed, supercharging pressure acts on the diaphragm 48a from below, and the intake bypass valve 46 is opened.

内燃機関は排気ガス再循環(EGR)装置を供え、この
EGR装置は排気ガス再循環通路(EGR通路)50と
、EGR通路50上の排気ガス再循環制御弁(EGR弁
)52とから成り、EGR弁52はダイヤフラム52a
と弁体52b とを供え、ダイヤフラム52aに加わる
圧力に応じて弁体52bの開弁、閉弁が制御される。そ
して、EGR通路50はその上流端(排気ガス取出口)
50Aは小型ターボチャージャ18のタービン28の上
流の排気管14に接続され、下流端(排気ガス注入口5
0B)はインタクーラ29の下流における吸気管に接続
される。
The internal combustion engine is provided with an exhaust gas recirculation (EGR) device, which comprises an exhaust gas recirculation passage (EGR passage) 50 and an exhaust gas recirculation control valve (EGR valve) 52 on the EGR passage 50; The EGR valve 52 is a diaphragm 52a
and a valve body 52b, and the opening and closing of the valve body 52b is controlled according to the pressure applied to the diaphragm 52a. The EGR passage 50 is located at its upstream end (exhaust gas outlet).
50A is connected to the exhaust pipe 14 upstream of the turbine 28 of the small turbocharger 18, and is connected to the downstream end (exhaust gas inlet 5
0B) is connected to the intake pipe downstream of the intercooler 29.

ウェイストゲート弁32のアクチュエータ34への圧力
制御のため3方電磁弁(VSVI) 54が設けられ、
この電磁弁54はダイヤフラム34aに大気圧を導入す
る位置と、小型ターボチャージャ26の下流で、インタ
クーラ29の上流の位置56の過給圧を導入する位置と
で切り替わる。大気圧導入時に、スプリング34bによ
ってウェイストゲート弁32は閉鎖駆動され、過給圧導
入時にスプリング34bに抗してウェイストゲート弁3
2の開弁が行われる。
A three-way solenoid valve (VSVI) 54 is provided for pressure control to the actuator 34 of the wastegate valve 32;
This solenoid valve 54 is switched between a position where atmospheric pressure is introduced into the diaphragm 34a and a position where supercharging pressure is introduced at a position 56 downstream of the small turbocharger 26 and upstream of the intercooler 29. When atmospheric pressure is introduced, the wastegate valve 32 is driven to close by the spring 34b, and when supercharging pressure is introduced, the wastegate valve 32 is driven to close against the spring 34b.
2 valve opening is performed.

3方電磁弁(VSV2) 58は排気切替弁38のアク
チュエータ40のダイヤフラム40aへの圧力制御のた
め設けられ、この電磁弁58はダイヤフラム40aに大
気圧を導入する位置と、小型ターボチャージャ26の出
口60の過給圧を導入する位置とで切り替わる。また、
ダイヤフラム40bには小型ターボチャージャ出口60
の圧力が常時導入されている。
A three-way solenoid valve (VSV2) 58 is provided to control the pressure on the diaphragm 40a of the actuator 40 of the exhaust switching valve 38. 60 and the position where supercharging pressure is introduced. Also,
The diaphragm 40b has a small turbocharger outlet 60.
pressure is constantly applied.

吸気バイパス弁46のアクチュエータ48への圧力制御
のため二つの3万電磁弁64.66が設けられる。3方
電磁弁(VSV3) 64は吸気バイパス弁46のアク
チュエータ48のダイヤフラム48aの上側へ圧力制御
のため設けられ、この電磁弁64はダイヤフラム48a
の上側に大気圧を導入する位置と、小型ターボチャージ
ャ18のコンプレッサ出口60の過給圧を導入する位置
とで切り替わる。また、3方電磁弁(VSV4) 66
は吸気バイパス弁46のアクチュエータ48のダイヤフ
ラム48aの下側への圧力制御のため設けられ、この電
磁弁66はスロットル弁I6の下流の負圧ボート68の
負圧を導入する位置と、大型ターボチャージャ66のコ
ンプレッサ出口の過給圧を導入する位置とで切り替わる
Two 30,000 solenoid valves 64,66 are provided for pressure control to the actuator 48 of the intake bypass valve 46. A three-way solenoid valve (VSV3) 64 is provided above the diaphragm 48a of the actuator 48 of the intake bypass valve 46 for pressure control;
The position is switched between a position where atmospheric pressure is introduced to the upper side of the compressor and a position where supercharging pressure from the compressor outlet 60 of the small turbocharger 18 is introduced. In addition, 3-way solenoid valve (VSV4) 66
is provided to control the pressure below the diaphragm 48a of the actuator 48 of the intake bypass valve 46, and this solenoid valve 66 is located at a position where the negative pressure of the negative pressure boat 68 downstream of the throttle valve I6 is introduced, and at a position where the negative pressure is introduced into the large turbocharger. The position is changed depending on the position at which the supercharging pressure is introduced at the outlet of the compressor 66.

3方電磁弁(VSV5) 70 ハEGR弁52の作動
制御のため設けられ、この電磁弁70はダイヤフラム5
2aに大気圧を導入する位置と、スロットル弁16の下
流の負圧ポート68の負圧を導入する位置とで切り替わ
る。電磁弁70はパルス信号によって駆動され、そのデ
ユーティ比を制御することによって任意のEGR量に制
御することができる。
Three-way solenoid valve (VSV5) 70 is provided to control the operation of the EGR valve 52, and this solenoid valve 70 is connected to the diaphragm 5.
The position is switched between a position where atmospheric pressure is introduced into 2a and a position where negative pressure from the negative pressure port 68 downstream of the throttle valve 16 is introduced. The electromagnetic valve 70 is driven by a pulse signal, and can be controlled to a desired EGR amount by controlling its duty ratio.

電磁弁71 (VSV6)は空燃比を理論空燃比設定か
ら希薄空燃比設定に切り換える時点で排気切替弁38を
閉鎖することにより過給圧を急増させるため設けられる
。この電磁弁71はダイヤフラム40aのスプリング4
0cの側に大気圧を導入する位置と、スロットル弁16
の下流の負圧ボート68の負圧を導入する位置とで切り
替わる。
The solenoid valve 71 (VSV6) is provided to rapidly increase the supercharging pressure by closing the exhaust switching valve 38 when the air-fuel ratio is switched from the stoichiometric air-fuel ratio setting to the lean air-fuel ratio setting. This solenoid valve 71 is connected to the spring 4 of the diaphragm 40a.
The position where atmospheric pressure is introduced to the 0c side and the throttle valve 16
The position of the negative pressure boat 68 downstream of the negative pressure boat 68 is switched.

制御回路72はこの発明における過給制御のたメ設ケラ
レ、各電磁弁54 (VSVI )、 58 (VSV
2) 、 64 (VSV3)、66(VSV4)、7
0(VSV5)、71(VSV6) ノ駆動信号を発生
する。また、点火時期を制御するためイグナイタ74及
びディストリビュータ76を介して図示しない点火栓を
制御する。制御回路72にはこの発明に従った制御を実
行するため各種のセンサに接続される。まず、大型ター
ボチャージャ17のコンプレッサ20の出口圧力P1を
検出するため第1の圧力センサ78が設けられ、また小
型ターボチャージャ18のコンプレッサ26の出口圧力
P2を検出するため第2の圧力センサ80が設けられる
。空燃比センサ82は空燃比に応じた信号を発生する。
The control circuit 72 is a supercharging control vignetting system in the present invention, each solenoid valve 54 (VSVI), 58 (VSV
2), 64 (VSV3), 66 (VSV4), 7
0 (VSV5), 71 (VSV6) drive signals are generated. Further, in order to control the ignition timing, an ignition plug (not shown) is controlled via an igniter 74 and a distributor 76. The control circuit 72 is connected to various sensors in order to execute control according to the present invention. First, a first pressure sensor 78 is provided to detect the outlet pressure P1 of the compressor 20 of the large turbocharger 17, and a second pressure sensor 80 is provided to detect the outlet pressure P2 of the compressor 26 of the small turbocharger 18. provided. The air-fuel ratio sensor 82 generates a signal according to the air-fuel ratio.

また、図示しないがエンジンへの吸入空気量Qを検出す
るためのセンサ、クランク軸が30°及び720°回転
した毎にパルス信号を発生するクランク角度センサが設
けられる。
Although not shown, a sensor for detecting the intake air amount Q to the engine and a crank angle sensor that generates a pulse signal every time the crankshaft rotates 30 degrees and 720 degrees are provided.

以下制御回路72の作動を第3図〜第6図のフローチャ
ートによって説明する。第3図は過給制御ルーチンであ
る。ステップ100では吸入空気量−エンジン回転数比
Q/NEが所定値Xより大きいか否か判別される。この
所定値Xは空燃比を理論空燃比から希薄空燃比に切り換
えるときの基準となる吸入空気量−エンジン回転数比の
値である。理論空燃比から希薄空燃比への切替点は実施
例のように吸入空気量−エンジン回転数比により切り換
える代わりに吸気マニホルド圧力やその外の因子であっ
てもよい。Q/NE≦Xのとき、即ち、空燃比を理論空
燃比に設定すべきときはステップ102に進み、電磁弁
71(VSV6)がONされ、そのためスロットル弁1
6の下流の負圧ポート68の負圧がダイヤフラム40a
のスプリング40cの側に導入され、ダイヤフラム40
aはスプリング40cに抗して左行し、排気切替弁38
は開弁される。
The operation of the control circuit 72 will be explained below with reference to flowcharts shown in FIGS. 3 to 6. FIG. 3 shows a supercharging control routine. In step 100, it is determined whether the intake air amount--engine speed ratio Q/NE is greater than a predetermined value X. This predetermined value X is a value of the intake air amount--engine rotation speed ratio that serves as a reference when switching the air-fuel ratio from the stoichiometric air-fuel ratio to the lean air-fuel ratio. The switching point from the stoichiometric air-fuel ratio to the lean air-fuel ratio may be based on the intake manifold pressure or other factors instead of switching based on the intake air amount-engine speed ratio as in the embodiment. When Q/NE ≦
The negative pressure of the negative pressure port 68 downstream of the diaphragm 40a
The diaphragm 40 is introduced into the spring 40c side of the
a moves to the left against the spring 40c, and the exhaust switching valve 38
is opened.

ステップ100でQ/NE > Xと判別されたとき、
即ち、゛空燃比を希薄側に制御するべきときはステップ
104に進み、電磁弁71(VSV6)がOFF サれ
、ソノため大気圧がダイヤフラム40aのスプリング4
0cの側に導入され、ダイヤフラム40aはスプリング
40cに抗して右行付勢され、排気切替弁38は閉弁付
勢される。空燃比の理論空燃比設定から希薄設定への切
換点において排気切替弁38は開から閉に切換制御する
のは、過給圧を急増し空燃比の希薄化によるトルクダウ
ン傾向を打ち消すためである。
When it is determined in step 100 that Q/NE > X,
That is, if the air-fuel ratio should be controlled to the lean side, the process proceeds to step 104, where the solenoid valve 71 (VSV6) is turned off and the atmospheric pressure is applied to the spring 4 of the diaphragm 40a.
0c side, the diaphragm 40a is urged rightward against the spring 40c, and the exhaust gas switching valve 38 is urged to close. The reason why the exhaust switching valve 38 is controlled to switch from open to closed at the switching point from the stoichiometric air-fuel ratio setting to the lean air-fuel ratio setting is to rapidly increase the boost pressure and counteract the tendency for torque reduction due to the lean air-fuel ratio. .

ステップ106では吸入空気量−エンジン回転数比Q/
NE > Yか否か判別される。この所定値Y(>X)
は排気切替弁38の開から閉への切換による実際の過給
圧の上昇を検出している。Q/NE≦Yのときは過給圧
が未だ上昇していないと見なし、ステップ108に進み
フラグFがクリヤされる。F・0により後述の空燃比制
御ルーチンにより空燃比の希薄化が禁止され、空燃比は
理論空燃比に設定される。
In step 106, the intake air amount-engine speed ratio Q/
It is determined whether NE>Y. This predetermined value Y (>X)
detects an actual increase in supercharging pressure due to switching of the exhaust switching valve 38 from open to closed. When Q/NE≦Y, it is assumed that the supercharging pressure has not increased yet, and the process proceeds to step 108, where flag F is cleared. Due to F.0, dilution of the air-fuel ratio is prohibited by an air-fuel ratio control routine to be described later, and the air-fuel ratio is set to the stoichiometric air-fuel ratio.

次にステップ110に進み、EGR率補正係数K・1.
0とされる。Kは空燃比の理論空燃比から希薄空燃比へ
の切換領域でEGR率をマツプ値より多くなるべく補正
する係数であり、K=1.0とすることによりEGR率
はマツプ値となる。
Next, the process proceeds to step 110, where the EGR rate correction coefficient K.1.
It is set to 0. K is a coefficient that corrects the EGR rate to be as much as possible than the map value in the air-fuel ratio switching range from the stoichiometric air-fuel ratio to the lean air-fuel ratio, and by setting K=1.0, the EGR rate becomes the map value.

ステップ106でQ/NE > Yと判別したとき、即
ち過給圧が増大したと見なされるときはステップ111
 に進み、フラグFがセットされる。F=1により後述
の空燃比制御ルーチンにより空燃比の希薄化が許可され
る。ステップ112ではEGR率補正係数Kか算出され
る。EGR率補正係数には理論空燃比から希薄空燃比へ
の移行時にEGR率を通常値より高くなるように補正し
、空燃比の移行時に多く発生する窒素酸化物成分の排出
を抑制するためのものである。ステップ114では吸入
空気量−エンジン回転数比Q/NE >所定値Zより大
きいか否か判別される。この所定値Z(>Y)は理論空
燃比から希薄空燃比への切換域におけるEGR率の上昇
を行う領域の上限境界の閾値となる。Q/NE≦Zのと
きはステップ110を抜ける。そのため、EGR率が増
加が行われる。Q/NE>Zのときは理論空燃比から希
薄空燃比への切換における窒素酸化物の上昇領域を過ぎ
たと判断され、ステップ110に進み、EGR率補正係
数K・1.0とされ、EGR率は本来のマップ値とされ
る。
When it is determined in step 106 that Q/NE > Y, that is, when it is considered that the boost pressure has increased, the process proceeds to step 111.
Then, flag F is set. When F=1, leanening of the air-fuel ratio is permitted by an air-fuel ratio control routine to be described later. In step 112, an EGR rate correction coefficient K is calculated. The EGR rate correction coefficient is used to correct the EGR rate to be higher than the normal value when transitioning from the stoichiometric air-fuel ratio to the lean air-fuel ratio, and to suppress the emission of nitrogen oxide components that are often generated when the air-fuel ratio changes. It is. In step 114, it is determined whether the intake air amount-engine rotation speed ratio Q/NE is greater than a predetermined value Z. This predetermined value Z (>Y) becomes the threshold value of the upper limit boundary of the region in which the EGR rate is increased in the switching region from the stoichiometric air-fuel ratio to the lean air-fuel ratio. When Q/NE≦Z, step 110 is exited. Therefore, the EGR rate is increased. When Q/NE>Z, it is determined that the nitrogen oxide increase range in switching from the stoichiometric air-fuel ratio to the lean air-fuel ratio has been passed, and the process proceeds to step 110, where the EGR rate correction coefficient is set to K.1.0, and the EGR rate is is considered to be the original map value.

ステップ120以下の処理は2段過給から1段過給への
切換のためのルーチンである。ステ・ツブ120では小
型ターボチャージャ18のコンプレ・yす出口圧力P2
>大型ターボチャージャ17のコンプレッサ出口圧力P
1が成立するか否か判別される。第7図はスロットル弁
16の開度を一定に固定した場合におけるエンジン回転
数NEと過給圧(ターボチャージャ出口圧力)との関係
を示しており、小型ターボチャージャ出口圧力P2の立
ち上がりが大型ターボチャージャ出口圧力P1の立ち上
がりより早くなっている。したがって、エンジンの回転
がまだ上がっていない状態ではP2>Plが成立し、ス
テップ122以下に進む。ステ・。
The processing from step 120 onwards is a routine for switching from two-stage supercharging to one-stage supercharging. In the step tube 120, the compressor y outlet pressure P2 of the small turbocharger 18
>Compressor outlet pressure P of large turbocharger 17
It is determined whether or not 1 holds true. FIG. 7 shows the relationship between the engine speed NE and supercharging pressure (turbocharger outlet pressure) when the opening degree of the throttle valve 16 is fixed constant, and the rise of the small turbocharger outlet pressure P2 is the same as that of the large turbocharger. This is faster than the rise of charger outlet pressure P1. Therefore, in a state where the engine speed has not yet increased, P2>Pl holds true, and the process proceeds to step 122 and subsequent steps. Ste.

プ122で電磁弁54(VSVI)がOFFされ、ダイ
ヤフラム34aに大気圧が導入され、スプリング34b
によってウェイストゲート弁32は閉鎖される。ステッ
プ124でアクチュータ40を制御する電磁弁5B (
VSV2)がOFFされる。そのため、アクチュエータ
40のダイヤフラム40aに大気圧が作用する。
At step 122, the solenoid valve 54 (VSVI) is turned off, atmospheric pressure is introduced into the diaphragm 34a, and the spring 34b is turned off.
The wastegate valve 32 is closed. Solenoid valve 5B (
VSV2) is turned off. Therefore, atmospheric pressure acts on the diaphragm 40a of the actuator 40.

一方、ダイヤフラム40bには小型ターボチャージャ1
8のコンプレッサ出口圧力が常に導入されているため、
スプリング40c、 40dの合力に応じたスプリング
力に対抗する小型ターボチャージャ18のコンプレッサ
出口圧力によって排気切替弁38の作動が制御される。
On the other hand, a small turbocharger 1 is attached to the diaphragm 40b.
Since the compressor outlet pressure of 8 is always introduced,
The operation of the exhaust switching valve 38 is controlled by the compressor outlet pressure of the small turbocharger 18 that opposes the spring force corresponding to the resultant force of the springs 40c and 40d.

即ち、スプリング力が過給圧P2に優勢であるかぎりは
、排気切替弁38は全閉を維持するが、過給圧P2が所
定値P SETに到達する回転数(第7図のNET)ま
では排気切替弁38は全閉を維持し、P2=所定値P 
setに到達した時点で排気切替弁38はスプリング4
0c、 40dの合力である閉鎖付勢力に抗して徐々に
開弁を開始することになる。尚、P2 <PIでも吸入
空気量−エンジン回転数比Q/NE≦Xの場合(ステッ
プ100でYes )はダイヤフラム40aへの負圧の
導入により排気切替弁38は開放されるので、排気切替
弁38の実際の閉鎖はQ/NE>X(ステップ100で
No)となった後に起こる。低回転時の吸気バイパス弁
46の作動についていうと、ステップ126で電磁弁6
4 (VSV3)はONとなりターボチャージャ20の
コンプレッサ出口圧P、がダイヤフラム48aの上側に
作用するため吸気バイパス弁46は閉鎖される。また、
ステップ128では電磁弁66(VSV4)かOFFさ
れるため負圧ポンプ67からの負圧がダイヤフラム48
aの下側に作用するため、ダイヤフラム48aは下側に
引っ張られ、吸気バイパス弁46の閉鎖力を上げ、その
確実な閉弁を確保している。
That is, as long as the spring force is dominant over the supercharging pressure P2, the exhaust switching valve 38 remains fully closed, but until the rotation speed at which the supercharging pressure P2 reaches the predetermined value PSET (NET in FIG. 7) is reached. The exhaust switching valve 38 is kept fully closed, and P2=predetermined value P
When the exhaust switching valve 38 reaches the spring 4
The valve gradually starts to open against the closing biasing force which is the resultant force of 0c and 40d. Note that even if P2 < PI, if the intake air amount-engine speed ratio Q/NE≦X (Yes in step 100), the exhaust switching valve 38 is opened by introducing negative pressure to the diaphragm 40a, so the exhaust switching valve 38 is opened. The actual closure of 38 occurs after Q/NE>X (No at step 100). Regarding the operation of the intake bypass valve 46 at low engine speeds, in step 126 the solenoid valve 6
4 (VSV3) is turned on and the compressor outlet pressure P of the turbocharger 20 acts on the upper side of the diaphragm 48a, so the intake bypass valve 46 is closed. Also,
In step 128, the solenoid valve 66 (VSV4) is turned off, so the negative pressure from the negative pressure pump 67 is applied to the diaphragm 48.
a, the diaphragm 48a is pulled downward, increasing the closing force of the intake bypass valve 46 and ensuring its reliable closing.

加速状態において、エンジンの回転数NEがNH3まで
上昇し、大型ターボチャージャ17のコンプレッサ出口
圧力P、の立ち上がりが小型ターボチャージャI8のコ
ンプレッサ出口圧力P2に追いつき、P2=P、となる
とステップ120よりステップ130ニ進み、電磁弁5
4(VSVI)がONされると、ダイヤフラム34aに
位置56からの過給圧が導入され、スプリング34bに
抗してウェイストゲート弁32は開放方向に付勢される
。ステップ132で排気切替弁38の作動用電磁弁58
(VSV2)がONされる。そのため、ダイヤフラム4
0aに過給圧が作用するため、過給圧に対抗する排気切
替弁38を閉じる力にスプリング40dは関与しなくな
り、スプリング40cの弱い付勢力のみが閉じる力に関
与する。そのため、アクチュエータ40は排気切替弁3
8を一気に開弁に至らしめる。ステップ134では電磁
弁64(VSV3)がOFFされるため大気圧がダイヤ
フラム48aの上側に作用し、ステップ136で電磁弁
66(VSV4)がONされ、過給圧がダイヤフラム4
8bの下側に作用するため、ダイヤフラム48aは上方
に押圧され、吸気バイパス弁46は一気に開弁される。
In the acceleration state, the engine speed NE increases to NH3, and the rise of the compressor outlet pressure P of the large turbocharger 17 catches up with the compressor outlet pressure P2 of the small turbocharger I8, and when P2=P, the step starts from step 120. 130 steps forward, solenoid valve 5
4 (VSVI) is turned on, supercharging pressure from position 56 is introduced into the diaphragm 34a, and the wastegate valve 32 is urged in the opening direction against the spring 34b. In step 132, the solenoid valve 58 for operating the exhaust switching valve 38
(VSV2) is turned on. Therefore, diaphragm 4
Since the supercharging pressure acts on 0a, the spring 40d does not participate in the force to close the exhaust switching valve 38 that opposes the supercharging pressure, and only the weak biasing force of the spring 40c participates in the closing force. Therefore, the actuator 40 is connected to the exhaust switching valve 3.
8 to open the valve at once. In step 134, the solenoid valve 64 (VSV3) is turned off, so that atmospheric pressure acts on the upper side of the diaphragm 48a, and in step 136, the solenoid valve 66 (VSV4) is turned on, and the supercharging pressure is applied to the diaphragm 48a.
8b, the diaphragm 48a is pressed upward, and the intake bypass valve 46 is opened all at once.

第4図は排気カス再循環制御ルーチンであり、ステップ
140では排気ガス再循環を行う運転域か否か判別され
る。高回転、高負荷運転時にはEGRが停止され、ステ
ップ142に進みEGR弁52の駆動用の電磁弁70(
VSV5)の駆動信号におけるデユーティ比DUTY・
0と設定される。そのため、電磁弁70(VSV5)は
連続的にOFFされ、ダイヤフラム52aに大気圧が導
入されるためEGR弁52は閉鎖される。
FIG. 4 shows an exhaust gas recirculation control routine, and in step 140, it is determined whether or not the operating range is for exhaust gas recirculation. During high rotation and high load operation, EGR is stopped, and the process proceeds to step 142, where the solenoid valve 70 for driving the EGR valve 52 (
Duty ratio DUTY in drive signal of VSV5)
Set to 0. Therefore, the solenoid valve 70 (VSV5) is continuously turned off, and atmospheric pressure is introduced into the diaphragm 52a, so the EGR valve 52 is closed.

ステップ140でEGR領域と判別されたときはステッ
プ】44に進み、通常状態におけるEGR率に相当する
電磁弁70(VSV5)の駆動信号におけるデューティ
比DUTYがマツプMAPより算出される。このマツプ
はそのときの負荷(例えば吸入空気量−エンジン回転数
比Q/NE)に応じた最適のEGR率に応じたデユーテ
ィ比DUTYの値を持っており、補間演算によって現在
の運転条件に適したEGR率に対応するデユーティ比D
IRTYの算出が行われる。ステップ146ではデユー
ティ比DUTYに補正係数Kを掛算したものがDUTY
とされる。第9図はスロットル弁開度一定に保持したと
きの回転数及び空燃比A/Fに対するEGR率補正補正
係数マツプを模式的に示している。K=1のラインが2
段過給から1段過給への切替えにおけるEGR率の補正
の実行をの境界領域を示し、窒素酸化物排出量がピーク
を呈する空燃比(AF=AF0)において補正係数が大
きくなる設定となっている。また、回転数の増大と共に
補正係数は小さくされる。ステップ148はデユーティ
比信号の出力を示しており、そのため電磁弁70(VS
V5)はそのデユーティ比で作動され、計算通りのEG
R率を得ることができる。
When the EGR region is determined in step 140, the process proceeds to step 44, where the duty ratio DUTY in the drive signal of the solenoid valve 70 (VSV5) corresponding to the EGR rate in the normal state is calculated from the map MAP. This map has a duty ratio DUTY value that corresponds to the optimum EGR rate according to the load at that time (for example, intake air amount - engine speed ratio Q/NE), and it is determined by interpolation to match the duty ratio DUTY to the current operating condition. Duty ratio D corresponding to the EGR rate
A calculation of IRTY is performed. In step 146, the duty ratio DUTY multiplied by the correction coefficient K is DUTY.
It is said that FIG. 9 schematically shows an EGR rate correction coefficient map for the rotational speed and air-fuel ratio A/F when the throttle valve opening is held constant. The line of K=1 is 2
This indicates the boundary area for EGR rate correction when switching from stage supercharging to first stage supercharging, and the correction coefficient is set to be large at the air-fuel ratio (AF = AF0) where nitrogen oxide emissions peak. ing. Further, as the rotational speed increases, the correction coefficient becomes smaller. Step 148 shows the output of the duty ratio signal, so that the solenoid valve 70 (VS
V5) is operated at that duty ratio, and the calculated EG
R rate can be obtained.

第7図においてステップ144(第4図)で設定される
のEGR率マツプを等高線によって模式的に示す。Q/
NE=YとQ/NE=Zの間の斜線領域が窒素酸化物の
排出量が多くなる中間空燃比の領域であり、EGR率補
正係数Kにより第9図のマツプに準じてEGR率が増加
される。
In FIG. 7, the EGR rate map set in step 144 (FIG. 4) is schematically shown by contour lines. Q/
The shaded area between NE=Y and Q/NE=Z is the intermediate air-fuel ratio area where the amount of nitrogen oxide emissions increases, and the EGR rate increases according to the map in Figure 9 by the EGR rate correction coefficient K. be done.

第5図は燃料噴射ルーチンであり、その気筒の燃料噴射
タイミングをクランク角度センサからの30°CA、7
20’ CA倍信号よって判断して実行される。
Figure 5 shows a fuel injection routine, in which the fuel injection timing for that cylinder is determined by the crank angle sensor at 30°CA, 7°C.
This is executed based on the 20' CA multiplied signal.

ステップ150では基本燃料噴射量Tpが算出される。In step 150, the basic fuel injection amount Tp is calculated.

基本燃料噴射量はその負荷、回転数において空燃比を理
論空燃比とする標準的な値である。ステップ152では
空燃比制御フラグF=1か否か判別される。F・0のと
き、即ち、空燃比を理論空燃比に制御するべきときはス
テップ152よりステップ154に進み、空燃比補正係
数KLEAN・1.0、フィードバックフラグFB=1
に設定される。KLEANは空燃比を理論空燃比より希
薄側に補正する係数であるが、KLEAN=1. Oと
することにより空燃比の設定は理論空燃比となる。フィ
ードバックフラグFB=1とすることにより空燃比のフ
ィードバック制御が実行される。ステップ156では空
燃比補正係数FAFがそのままFAFに入れられる。F
AFは空燃比のフィードバック中に空燃比を理論空燃比
となるように修正する係数である。
The basic fuel injection amount is a standard value that makes the air-fuel ratio the stoichiometric air-fuel ratio at that load and rotation speed. In step 152, it is determined whether the air-fuel ratio control flag F=1. When F.0, that is, when the air-fuel ratio should be controlled to the stoichiometric air-fuel ratio, the process proceeds from step 152 to step 154, where the air-fuel ratio correction coefficient KLEAN.1.0 and the feedback flag FB=1.
is set to KLEAN is a coefficient that corrects the air-fuel ratio to be leaner than the stoichiometric air-fuel ratio, and KLEAN=1. By setting the air-fuel ratio to O, the air-fuel ratio is set to the stoichiometric air-fuel ratio. By setting the feedback flag FB=1, feedback control of the air-fuel ratio is executed. In step 156, the air-fuel ratio correction coefficient FAF is directly entered into FAF. F
AF is a coefficient that corrects the air-fuel ratio during feedback of the air-fuel ratio so that it becomes the stoichiometric air-fuel ratio.

F=1のとき、即ち、空燃比を希薄空燃比に制御するべ
きときはステップ152よりステップ158に進み、空
燃比補正係数KLEANがマツプより算出される。空燃
比は燃料消費率からはなるべく希薄側に制御し、出力か
らは希薄の程度を抑えたい要求があり、その調和におい
て適当に設定される。運転条件に適したKLEANの値
を得るため周知の補間演算が実行される。ステップ16
0ではフィードバック補正係数FAF・1.0と設定さ
れる。即ち、希薄空燃比制御時は空燃比のフィードバッ
ク制御は行才)れない。
When F=1, that is, when the air-fuel ratio should be controlled to a lean air-fuel ratio, the process proceeds from step 152 to step 158, where the air-fuel ratio correction coefficient KLEAN is calculated from the map. The air-fuel ratio is controlled to be as lean as possible in terms of fuel consumption rate, and there is a requirement to suppress the degree of leanness in terms of output, so it is set appropriately in harmony with these requirements. A well-known interpolation operation is performed to obtain a value of KLEAN suitable for the operating conditions. Step 16
At 0, the feedback correction coefficient FAF·1.0 is set. That is, during lean air-fuel ratio control, feedback control of the air-fuel ratio is not performed.

ステップ162では最終的な燃料噴射量がTAU=Tp
 x KLEAN x FAFにより算出される。
In step 162, the final fuel injection amount is TAU=Tp
Calculated by x KLEAN x FAF.

ステップ164はステップ162で算出される量の燃料
噴射が行われるようにインジェクタ15への燃料噴射信
号の出力を示す。
Step 164 shows the output of a fuel injection signal to the injector 15 so that the amount of fuel calculated in step 162 is injected.

第6図は空燃比のフィードバック制御ルーチンを概略的
に示している。ステップ170ではフィードバックフラ
グFB・1か否か判別され、FB=0、即ち非フイード
バツク時はステップ171に進み、FAFloとされる
。FB=1、即ち空燃比フィードバックを行うときはス
テップ170よりステップ172に進み空燃比センサ8
2に信号が入力され、ステップ174では空燃比センサ
の信号より空燃比か理論空燃比よりリーン側か否か判別
され、リーン側と判別されたときはステップ176に進
み、フィードバック補正係数FAFが増加され、リッチ
側と判別されたときはステップ178に進みフィードバ
ック補正係数が減少される。
FIG. 6 schematically shows the air-fuel ratio feedback control routine. In step 170, it is determined whether the feedback flag FB is 1. If FB=0, that is, when there is no feedback, the process proceeds to step 171, where FAFlo is set. When FB=1, that is, when performing air-fuel ratio feedback, the process proceeds from step 170 to step 172, and the air-fuel ratio sensor 8
A signal is input to step 2, and in step 174, it is determined from the signal of the air-fuel ratio sensor whether the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, and if it is determined to be lean, the process proceeds to step 176, where the feedback correction coefficient FAF is increased. If it is determined to be on the rich side, the process proceeds to step 178 and the feedback correction coefficient is decreased.

第8図はこの発明の実施例の作動を模式的に説明するタ
イミング図である。(イ)はEGR率、(ロ)は窒素酸
化物(NOx)の排出量、(ハ)は燃料量Gf、(ニ)
は排気切替弁38の動作、(ホ〉 は吸入空気量エンジ
ン回転数比Q/NE、(ト)は空燃比A/Fを示す。時
刻t。が理論空燃比から希薄空燃比への移行域の開始の
タイミング(第3図のステップ100でYes)とする
と、同時に排気切替弁38が開から閉に切り換える信号
が発生される。吸入空気量エンジン回転数比Q/NEが
増加するのを検出しく第3図ステップ106) t 、
の点でEGR率補正係数が設定され(第3図のステップ
112)、EGR率(イ)は急増され、また空燃比は目
標の希薄空燃比に向かって徐々に増大される(へ)。E
GR率の増大によって空燃比の移行域における窒素酸化
物成分の排出量を抑制することができる(口)。(0)
の破線は従来(EGRを増やさない場合)のNOxの排
出を示す。
FIG. 8 is a timing chart schematically explaining the operation of the embodiment of the present invention. (a) is the EGR rate, (b) is the nitrogen oxide (NOx) emission amount, (c) is the fuel amount Gf, (d)
indicates the operation of the exhaust switching valve 38, (E) indicates the intake air amount engine speed ratio Q/NE, and (G) indicates the air-fuel ratio A/F. Time t indicates the transition region from the stoichiometric air-fuel ratio to the lean air-fuel ratio. At the start timing (Yes in step 100 of FIG. 3), a signal for switching the exhaust switching valve 38 from open to closed is generated at the same time. An increase in the intake air amount engine speed ratio Q/NE is detected. Step 106 in Figure 3) t,
At this point, the EGR rate correction coefficient is set (step 112 in FIG. 3), the EGR rate (a) is rapidly increased, and the air-fuel ratio is gradually increased toward the target lean air-fuel ratio (step 112). E
By increasing the GR rate, it is possible to suppress the amount of nitrogen oxide component emissions in the air-fuel ratio transition region. (0)
The broken line indicates the NOx emission in the conventional case (when EGR is not increased).

移行域を過ぎたt2の時点でEGR率の増加は停止され
マツプ値(第4図のステップ144)に戻る(イ)。
At time t2, when the transition region has been passed, the increase in the EGR rate is stopped and the EGR rate returns to the map value (step 144 in FIG. 4) (A).

以上の実施例では理論空燃比運転から希薄空燃比運転へ
の移行時にEGR率を通常のマツプ値より増やす制御と
しているが、通常の制御としてEGRを行わないエンジ
ンでは窒素酸化物成分の排出量が問題となる理論空燃比
運転から希薄空燃比運転への移行時にだけEGRを行う
ような制御(実施例のkのみによる制御)とすることが
できる。
In the above embodiment, the EGR rate is controlled to be increased from the normal map value when transitioning from stoichiometric air-fuel ratio operation to lean air-fuel ratio operation, but in an engine that does not perform EGR as a normal control, the amount of nitrogen oxide component emissions increases. It is possible to perform control (control based only on k in the embodiment) such that EGR is performed only at the time of transition from the problematic stoichiometric air-fuel ratio operation to lean air-fuel ratio operation.

また、スワール制御弁10−2をEGR率を増加する中
間空燃比領域において閉鎖させ、シリンダ内に吸気スワ
ールを発生させ、EGR率増加域での燃焼性の改善を図
ることができる。
Further, the swirl control valve 10-2 is closed in an intermediate air-fuel ratio region where the EGR rate increases, thereby generating an intake swirl in the cylinder, thereby improving combustibility in the EGR rate increasing region.

〔効果〕〔effect〕

この発明によれば、理論空燃比から希薄空燃比運転への
移行域において、過給圧を増大せしめると同時に排気ガ
ス再循環を行うことにより、トルク低下を抑えつつ窒素
酸化物の発生を抑制することができる。
According to this invention, in the transition region from stoichiometric air-fuel ratio to lean air-fuel ratio operation, by increasing boost pressure and simultaneously recirculating exhaust gas, it is possible to suppress the generation of nitrogen oxides while suppressing a decrease in torque. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の機能構成を示す図。 第2図はこの発明の実施例の構成を示す図。 第3図から第6図は制御回路の作動を説明するフローチ
ャート。 第7図はエンジン回転数に対する過給圧の変化を示すグ
ラフ。 第8図は制御回路の作動を模式的に説明するタイミング
図。 第9図はEGR率補正係数のマツプを模式的に説明する
図。 0・・・エンジン本体、12・・・吸気管、4・・・排
気管、17・・・大型ターホチャーシャ、8・・小型タ
ーボチャージャ、 0・・・第1排気バイパス通路、 2・・・ウェイストゲート弁、 6・・第2排気バイパス通路、 8・・・排気切替弁、44・・・吸気バイパス通路、0
・・・EGR通路、52・・・EGR弁、58、64.
66、70−電磁弁(VSV)、80・・・圧力センサ
。 第1図 第 図 第 図 第 図 Q、/NE Y、′)ライン 第 図 第 図 第 図
FIG. 1 is a diagram showing the functional configuration of the present invention. FIG. 2 is a diagram showing the configuration of an embodiment of the invention. 3 to 6 are flowcharts illustrating the operation of the control circuit. FIG. 7 is a graph showing changes in supercharging pressure with respect to engine speed. FIG. 8 is a timing diagram schematically explaining the operation of the control circuit. FIG. 9 is a diagram schematically explaining a map of EGR rate correction coefficients. 0... Engine body, 12... Intake pipe, 4... Exhaust pipe, 17... Large turbocharger, 8... Small turbocharger, 0... First exhaust bypass passage, 2... Waste Gate valve, 6... Second exhaust bypass passage, 8... Exhaust switching valve, 44... Intake bypass passage, 0
...EGR passage, 52...EGR valve, 58, 64.
66, 70-Solenoid valve (VSV), 80...pressure sensor. Figure 1 Figure Figure Figure Q, /NE Y,') Line Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims]  過給機が過給効果を達成する運転時に空燃比を希薄側
に制御し、かつ排気系と吸気系とを接続する排気ガス再
循環通路に排気ガス再循環制御弁を具備した内燃機関に
おいて、空燃比を希薄側に制御するべき運転域を判別す
る手段と、希薄空燃比制御域と判別した時に過給機によ
る過給圧を増大する手段と、過給圧の増大を検出する手
段と、過給圧増大と検出した場合に排気ガス再循環通路
を通過する還流排気ガスの量が増大するように排気ガス
再循環制御弁を制御する手段とを備える過給希薄内燃機
関の排気ガス再循環装置。
In an internal combustion engine that controls the air-fuel ratio to a lean side during operation in which a supercharger achieves a supercharging effect, and is equipped with an exhaust gas recirculation control valve in an exhaust gas recirculation passage connecting an exhaust system and an intake system, means for determining an operating range in which the air-fuel ratio should be controlled to the lean side; means for increasing supercharging pressure by a supercharger when it is determined that the air-fuel ratio is in the lean air-fuel ratio control range; and means for detecting an increase in supercharging pressure. and means for controlling an exhaust gas recirculation control valve to increase the amount of recirculated exhaust gas passing through an exhaust gas recirculation passage when an increase in boost pressure is detected. Device.
JP2116827A 1990-05-08 1990-05-08 Exhaust gas recirculation system for a supercharged lean internal combustion engine Expired - Fee Related JP2797646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2116827A JP2797646B2 (en) 1990-05-08 1990-05-08 Exhaust gas recirculation system for a supercharged lean internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2116827A JP2797646B2 (en) 1990-05-08 1990-05-08 Exhaust gas recirculation system for a supercharged lean internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0417755A true JPH0417755A (en) 1992-01-22
JP2797646B2 JP2797646B2 (en) 1998-09-17

Family

ID=14696608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2116827A Expired - Fee Related JP2797646B2 (en) 1990-05-08 1990-05-08 Exhaust gas recirculation system for a supercharged lean internal combustion engine

Country Status (1)

Country Link
JP (1) JP2797646B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291210A (en) * 2004-03-31 2005-10-20 Inst Fr Petrole Method of controlling recirculation of exhaust gas of internal combustion supercharged engine and engine using such method
JP2007315173A (en) * 2006-05-23 2007-12-06 Nissan Motor Co Ltd Exhaust system of internal combustion engine
JP2009185768A (en) * 2008-02-08 2009-08-20 Mazda Motor Corp Supercharger of engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291210A (en) * 2004-03-31 2005-10-20 Inst Fr Petrole Method of controlling recirculation of exhaust gas of internal combustion supercharged engine and engine using such method
JP2007315173A (en) * 2006-05-23 2007-12-06 Nissan Motor Co Ltd Exhaust system of internal combustion engine
JP4654973B2 (en) * 2006-05-23 2011-03-23 日産自動車株式会社 Exhaust device for internal combustion engine
JP2009185768A (en) * 2008-02-08 2009-08-20 Mazda Motor Corp Supercharger of engine

Also Published As

Publication number Publication date
JP2797646B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US8495865B2 (en) Control unit for turbocharged internal combustion engine
US8117840B2 (en) Abnormality-determining device and method for turbo-supercharger, and engine control unit
WO2013077155A1 (en) Control device for internal combustion engine
JP5169439B2 (en) Internal combustion engine control device and internal combustion engine control system
JP4048656B2 (en) Engine supercharging pressure control device
JP2583361B2 (en) Exhaust recirculation system for a turbocharged diesel engine
JP2006161569A (en) Egr control device for internal combustion engine
JPH1182183A (en) Exhaust gas circulation control device of engine
JP6593385B2 (en) Engine exhaust purification system
JP2000073776A (en) Control device for engine with turbo-supercharger
JPH0417755A (en) Exhaust gas recirculation device of supercharged internal lean-burn engine
JP2009191660A (en) Control device of internal combustion engine
JP2007303355A (en) Egr control device for internal combustion engine
JP2002188522A (en) Egr control device for engine with turbocharger
JP6589939B2 (en) Engine exhaust purification system
JP2001073788A (en) Supercharging pressure control system of engine
JP6575562B2 (en) Engine exhaust purification system
JPH03294623A (en) Supercharge control device for two-stage supercharged gasoline internal combustion engine
JP2855764B2 (en) Exhaust gas purification system for a supercharged lean burn gasoline internal combustion engine
JP2001073786A (en) Control system for negative pressure actuator
JPH0441957A (en) Air-fuel ratio control device for supercharge lean-burn gasoline internal combustion engine
JPH045444A (en) Air-fuel ratio control device for supercharged lean combustion gasoline internal combustion engine
JP6579151B2 (en) Engine exhaust purification system
JPH0417742A (en) Air-fuel ratio controller of lean-burn gasoline supercharged internal combustion engine
JP4405275B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees