JPH04177169A - Apparatus for automatically analyzing metal in body fluid - Google Patents

Apparatus for automatically analyzing metal in body fluid

Info

Publication number
JPH04177169A
JPH04177169A JP30249190A JP30249190A JPH04177169A JP H04177169 A JPH04177169 A JP H04177169A JP 30249190 A JP30249190 A JP 30249190A JP 30249190 A JP30249190 A JP 30249190A JP H04177169 A JPH04177169 A JP H04177169A
Authority
JP
Japan
Prior art keywords
sample
protein
membrane
analysis
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30249190A
Other languages
Japanese (ja)
Inventor
Yutaka Hayashibe
豊 林部
Minoru Takeya
竹谷 実
Yasumasa Sayama
佐山 恭正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP30249190A priority Critical patent/JPH04177169A/en
Publication of JPH04177169A publication Critical patent/JPH04177169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To accurately and rapidly quantity the metal element in a body fluid by using an extremely small amount of a sample by mounting the first reaction part releasing protein in the sample and a membrane separation part removing released protein. CONSTITUTION:A flow path is formed in an apparatus by a fine tube 10 and a liquid supply pump 11. As the fine tube 10, for example, a Teflon tube with an inner diameter of about 1mm or less is used. The flow passage in the fine tube 10 is connected to the front part of a sample introducing part 5 and a reaction part 6 is provided in succession to the introducing part 5 and a membrane separation part 7 is provided in succession to the reaction part 6. In the dissociation of protein, for example, a trichloroacetic acid-acidic reagent is used. When a solubilizing reagent is not used, a molecular sieve membrane is used as a separation membrane to remove protein. When solubilization is performed, an org. phase is separated by a phase separation membrane. In order to detect an element to be analyzed after the removal of protein, necessary pretreatment is performed. A sample solution is introduced into a spectropho tometer having a flow cell to detect the signal from the element to be analyzed and the obtained signal is compared with that obtained using a control solution to calculate the conc. of the element in the sample.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生体液中の金属自動分析装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an automatic metal analyzer in biological fluids.

〔従来技術とその問題点〕[Prior art and its problems]

生体液中の金属元素の定量分析は、臨床医学あるいは臨
床検査の分野で、近年、ますます重要性を増してきてい
る。たとえば、亜鉛は正常時には血清中に0.9〜1 
、 lppm程度存在するが、肝硬変や急性肝炎、白血
病、心筋梗塞等の疾患にともなって減少するので、血清
中の存在量の定量は、これらの疾患の早期発見に役立つ
。こうした分析は、生体液を採取した医療機関ですみや
かに行なわれることが望ましいが、処理に熟練を要する
等の理由で、一般には、生体液試料を分析専門機関に持
ち込むことにより行なわれている。
Quantitative analysis of metal elements in biological fluids has become increasingly important in the field of clinical medicine or clinical testing in recent years. For example, zinc is normally present in serum at 0.9-1
, lppm, but it decreases with diseases such as liver cirrhosis, acute hepatitis, leukemia, and myocardial infarction, so quantifying the amount present in serum is useful for early detection of these diseases. Although it is desirable that such an analysis be carried out promptly at the medical institution where the biological fluid was collected, it is generally performed by bringing the biological fluid sample to an institution specializing in analysis, for reasons such as the need for skill in processing.

分析専門機関では、通常、各生体液試料について、トリ
クロロ酢酸の酸性溶液を添加してタンパク質を遊離し、
これを遠心分離してタンパク質を除去し、さらに、必要
に応じて分析対象元素に応じた前処理を行ない、試料を
検査装置(原子吸光分析装置など)に導入することによ
り分析を行なっている。
For each biological fluid sample, specialized analytical laboratories typically add an acidic solution of trichloroacetic acid to release the proteins.
This is centrifuged to remove proteins, and if necessary, pretreatment is performed depending on the element to be analyzed, and the sample is introduced into an inspection device (such as an atomic absorption spectrometer) for analysis.

しかし、上記の方法には以下のような問題がある。However, the above method has the following problems.

(1)分析に必要とされる試料の量が多い(0,2〜0
.5m1以上)。
(1) The amount of sample required for analysis is large (0.2-0
.. 5m1 or more).

(2)  除タンパク、前処理および検出を逐次回分式
で行なうため、試料の採取から検査結果が得られるまで
に長時間を要する。
(2) Since protein removal, pretreatment, and detection are performed in sequential batches, it takes a long time from sample collection to obtaining test results.

(3)分析操作が開放系で行なわれるため、操作中に試
料が汚染される危険がある。
(3) Since the analysis operation is performed in an open system, there is a risk that the sample will be contaminated during the operation.

(4)分析操作が複雑なため、熟練した分析技術者が必
要である。
(4) Since the analytical operations are complex, a skilled analytical engineer is required.

(5)手作業の分析であるため測定誤差が大きい。(5) Since the analysis is done manually, the measurement error is large.

一方、試料の必要量を抑えて連続的かつ簡単に精度の高
い分析を可能とする分析法として、いわゆる「フローイ
ンジェクション法」が知られている。フローインジェク
ション法とは、適当な送液システム(無脈流定量ポンプ
など)を利用して、内径0.5〜1m+++程度のテフ
ロンチューブなどの細管の中に試薬溶液を送液しておき
、この流れの中に一定量の試料溶液を注入して、試薬溶
液と試料溶液とを細管内において混合・反応させ、反応
液を検出装置に導入して分析を行なうものであり、分析
速度が速く、すべての化学反応、混合、希釈、試薬の添
加等の操作を細管内で行なうため操作中における試料の
汚染の危険が極めて小さい。また、系の幾何学的・流体
力学的条件を調節して試料の分散を制御することが可能
なので、物理的・化学的条件を変化させて検出信号の時
間変化を解析する高度な分析手法にも対応する。しかも
、装置は廉価に作製でき、ランニングコストも安価であ
る。
On the other hand, the so-called "flow injection method" is known as an analysis method that suppresses the amount of sample required and enables continuous, simple, and highly accurate analysis. The flow injection method uses an appropriate liquid delivery system (such as a non-pulsating flow metering pump) to send a reagent solution into a thin tube such as a Teflon tube with an inner diameter of about 0.5 to 1 m +++. A fixed amount of sample solution is injected into the flow, the reagent solution and sample solution are mixed and reacted in a thin tube, and the reaction solution is introduced into the detection device for analysis.The analysis speed is fast. All chemical reactions, mixing, dilution, addition of reagents, etc. are performed within the tube, so the risk of contamination of the sample during the operation is extremely small. In addition, it is possible to control the dispersion of the sample by adjusting the geometrical and hydrodynamic conditions of the system, making it possible to use advanced analysis methods that analyze time changes in the detection signal by changing the physical and chemical conditions. Also corresponds. Furthermore, the device can be manufactured at low cost and the running cost is low.

しかし、生体液中金属元素の定量については、分析の際
の妨害を避ける等の理由でタンパク質の除去が必須であ
り、フローインジェクション法による生体液中金属の分
析は提案されていなかった。
However, for the determination of metal elements in biological fluids, it is essential to remove proteins in order to avoid interference during analysis, and analysis of metals in biological fluids using the flow injection method has not been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、極少量(数十μL程度)の試料を使用して正
確かつ迅速に生体液中金属元素の定量を行なう廉価な自
動分析システムを提供することを目的とする。
An object of the present invention is to provide an inexpensive automatic analysis system that accurately and quickly quantifies metal elements in biological fluids using a very small amount of sample (on the order of tens of microliters).

〔問題解決に至る知見〕[Knowledge that leads to problem solving]

本発明者らは、上記問題を解決する方法を検討した結果
、フローインジェクション法を応用して、体液中のタン
パク質の遊離を管系内においてまず行ない、さらに遊離
タンパク質を管系内において膜分離し、その後に分析試
薬を系内に導入して分析を行なうことにより、生体液中
金属元素の分析が高精度で一括的に行なえることを見出
した。
As a result of studying methods to solve the above problems, the present inventors applied a flow injection method to first release proteins from body fluids within a tubular system, and then separated the free proteins with a membrane within the tubular system. They discovered that by subsequently introducing analytical reagents into the system and conducting the analysis, it was possible to analyze metal elements in biological fluids all at once with high precision.

〔発明の構成〕[Structure of the invention]

本発明は試料中のタンパク質を遊離する第−反応部と該
遊離したタンパク質を除去する膜分離部とを有すること
を特徴とする、フローインジェクション法による生体液
中の金属自動分析装置を提供する。
The present invention provides an automatic metal analyzer in a biological fluid using a flow injection method, which is characterized by having a first reaction section that releases proteins in a sample and a membrane separation section that removes the released proteins.

本発明の装置の基本部分は、フローインジェクション分
析法に通常用いられる材料、部品等を使用して構成する
ことができる。管系には、内径1ml11以下のテフロ
ンチューブを用いるのが好適である。試料の分散を制御
するために部分的に管径を変化させてもよい。反応部は
上記のチューブをコイル状に巻くことにより形成できる
。管の各部および管と他の部分との接合には密着可能な
コネクターを用い、必要ならば、各部分を取り替え可能
なものにすることが望ましい。送液ポンプには、ダブル
プランジャー型ポンプなどの無脈流定量ポンプを用いる
The basic parts of the apparatus of the present invention can be constructed using materials, parts, etc. commonly used in flow injection analysis methods. For the tubing system, it is preferable to use a Teflon tube with an inner diameter of 1 ml or less. The tube diameter may be partially varied to control sample dispersion. The reaction section can be formed by winding the above tube into a coil. It is desirable to use connectors that can be tightly attached to each part of the pipe and to connect the pipe to other parts, and to make each part replaceable if necessary. A pulseless metering pump such as a double plunger pump is used as the liquid pump.

タンパク質の遊離に用いられる試薬としてはトリクロロ
酢酸−酸性溶液などがある。トリクロロ酢酸溶液ととも
に有機溶媒または界面活性剤水溶液を試薬溶液として用
い、遊離タンパク質を可溶化してもよい。可溶化試薬を
用いない場合には、分離膜に分子ふるい膜を使用して分
子量により分画してタンパク質を除去する。可溶化を行
なった場合には、相分離膜により、有機相(タンパク質
含有相)と水相とを分離する。これらの分子ふるい膜や
相分離膜は市販の製品でよい。相分離そのものはフロー
インジェクション法において既知の技術であり、既成の
分相器を使用してもよい。フローインジェクション法で
は、再現性の高い分散と滞留時間が得られるので、試料
溶液が管内にて再現性良く一定の割合で試薬溶液に拡散
していくため、常に化学反応が一定の割合で進するため
、たとえ除タンパクが100%進行していなくても、一
定時間に、ある一定の割合で除タンパクが進行していれ
ば、その後の測定になんら支障はない。
Reagents used for protein release include trichloroacetic acid-acidic solution. Free protein may be solubilized using an organic solvent or an aqueous surfactant solution as a reagent solution along with a trichloroacetic acid solution. When a solubilizing reagent is not used, proteins are removed by fractionation based on molecular weight using a molecular sieve membrane as a separation membrane. When solubilization is performed, an organic phase (protein-containing phase) and an aqueous phase are separated using a phase separation membrane. These molecular sieve membranes and phase separation membranes may be commercially available products. Phase separation itself is a known technique in the flow injection method, and a ready-made phase splitter may be used. The flow injection method provides highly reproducible dispersion and residence time, so the sample solution diffuses into the reagent solution in the tube at a constant rate with good reproducibility, so the chemical reaction always proceeds at a constant rate. Therefore, even if protein removal has not progressed 100%, as long as protein removal has progressed at a certain rate over a certain period of time, there will be no problem in subsequent measurements.

除タンパク後の分析対象元素検出のため、除タンパクの
後に必要な前処理を行なう。分析手段が誘導結合プラズ
マ発光分析法である場合には、第二反応部では、試料溶
液の希釈が行なわれる。分析手段が吸光光度法や蛍光光
度法である場合には、検出に必要な試薬を前処理試薬と
して添加する。
In order to detect the target element after protein removal, necessary pretreatment is performed after protein removal. When the analysis means is inductively coupled plasma emission spectrometry, the sample solution is diluted in the second reaction section. When the analysis means is spectrophotometry or fluorescence photometry, reagents necessary for detection are added as pretreatment reagents.

前処理試薬や第二反応部は単一のものである必要はなく
、必要に応じて、複数の前処理を行なうこともできる。
It is not necessary that the pretreatment reagent or the second reaction part be a single one, and a plurality of pretreatments can be performed as necessary.

分析手段としては吸光光度法が簡便で好ましい。As the analytical means, spectrophotometry is simple and preferred.

試料溶液をフローセルを有する分光光度計に導入して対
象元素からの信号を検出する。得られた信号は、適宜コ
ンピュータにより処理して、分析対象元素の標準溶液に
よって得た信号と比較することにより、試料中の濃度を
算出し表示する。一連の分析システムもコンピュータに
より制御することができる。
A sample solution is introduced into a spectrophotometer with a flow cell to detect signals from the target element. The obtained signal is appropriately processed by a computer and compared with the signal obtained from a standard solution of the element to be analyzed, thereby calculating and displaying the concentration in the sample. A series of analysis systems can also be controlled by a computer.

〔発明の具体的開示〕[Specific disclosure of the invention]

以下、本発明をヒト血清中の全亜鉛の分析を例として説
明する。
The present invention will be explained below using the analysis of total zinc in human serum as an example.

1煮M 以下の実験により、タンパク質の遊離および遊離したタ
ンパク質の分離を確認した。
Boiled for 1M The following experiment confirmed protein release and separation of the released protein.

ヒト血清試料0.5+mlに0.5Mトリクロロ酢酸−
0,1M塩酸溶液を添加した。溶液は白濁してタンパク
質が遊離しているのが確認された。この溶液を孔径0.
45μ朧のPTFE膜を通したところ、除タンパクされ
た清浄な血清が得られた。また、膜として、孔径0.2
0μmのセルロースアセテート膜、0.45μ閣のセル
ロースナイトレート膜および分画分子量的20.000
の芳香族ポリアミド膜でも同様に清浄な除タンパクされ
た血清が得られた。
0.5M trichloroacetic acid in 0.5+ml of human serum sample
A 0.1M hydrochloric acid solution was added. The solution became cloudy and it was confirmed that the protein was liberated. This solution was mixed with a pore size of 0.
When the serum was passed through a 45μ PTFE membrane, clean protein-free serum was obtained. In addition, as a membrane, the pore size is 0.2
0μm cellulose acetate membrane, 0.45μm cellulose nitrate membrane and molecular weight cutoff 20.000
Similar clean protein-depleted serum was obtained with the aromatic polyamide membrane.

失族M ヒト血清を試料として本発明の装置により、全亜鉛の分
析を行なった。使用した装置を図に示す。
Loss of M. Total zinc was analyzed using the apparatus of the present invention using human serum as a sample. The equipment used is shown in the figure.

(装置構成) 装置内には細管10と送液ポンプ11によって流路が形
成される。細管には、内径0.5〜1 、0mmのポリ
テトラフルオロエチレン(PTFE)チューブを用い、
送液ポンプにはダブルプランジャー型ポンプを使用した
。図に示す態様では、複数の試薬導入部1と2が設けら
れており、それぞれに細管が接続され、細管内の流路は
試料導入部5に至る前の部分で結合されている。試料注
入部5には、容量100μLのサンプルループを有する
セラミック製自動六方バルブを使用し、サンプルループ
内にはペリスタ型ポンプによって試料が導入される。試
料導入部に引き続いて反応部6が設けられている。反応
部6は、長さ2m、内径1.0mmのPTFEチューブ
をコイル状に巻いたものである。反応部6に続いて膜分
離部7が設けられている。分離された水相には試薬導入
部3を通じて検出試薬を添加する。
(Device Configuration) A flow path is formed in the device by a thin tube 10 and a liquid feeding pump 11. A polytetrafluoroethylene (PTFE) tube with an inner diameter of 0.5 to 1.0 mm was used as the thin tube.
A double plunger type pump was used as the liquid pump. In the embodiment shown in the figure, a plurality of reagent introduction sections 1 and 2 are provided, each of which is connected to a capillary tube, and the channels within the capillary tubes are connected at a portion before reaching the sample introduction section 5. The sample injection section 5 uses an automatic six-way ceramic valve having a sample loop with a capacity of 100 μL, into which the sample is introduced by a peristaltic pump. A reaction section 6 is provided following the sample introduction section. The reaction section 6 is a PTFE tube wound into a coil with a length of 2 m and an inner diameter of 1.0 mm. A membrane separation section 7 is provided following the reaction section 6. A detection reagent is added to the separated aqueous phase through the reagent introduction section 3.

試料と試薬との反応は第二反応部8で行なわれる。The reaction between the sample and the reagent takes place in the second reaction section 8.

第二反応部8は、長さ2m、内径0.5mmのPRFE
チューブをコイル状に巻いたものである。反応部に続い
ては検出器である分光光度計が接続されている。分光光
度計としては光路長10+a鳳のZ型フローセルを装着
した日立レシオビーム分光光度計U−1000を使用し
、 560nmにおける吸光度を測定した。
The second reaction part 8 is a PRFE with a length of 2 m and an inner diameter of 0.5 mm.
It is a tube wound into a coil. A spectrophotometer, which is a detector, is connected to the reaction section. As a spectrophotometer, a Hitachi ratio beam spectrophotometer U-1000 equipped with a Z-type flow cell with an optical path length of 10+a was used to measure the absorbance at 560 nm.

これらのポンプ類、分光光度計および自動六方バルブは
すべてコンピュータにより制御されており。
These pumps, spectrophotometers, and automatic six-way valves are all controlled by a computer.

分光光度計からのデジタル信号はすべてコンピュータに
より処理される。
All digital signals from the spectrophotometer are processed by a computer.

(分析) 試薬導入部1から0.5M トリクロロ酢酸−0,1M
塩酸溶液を、試薬導入部2からキャリアーとして、水ま
たは希塩酸を導入し、試料導入部5からヒト血清試料1
00μLを導入した。検出試薬としては、亜鉛発色試薬
2−(5−ブロモ−2−ピリジルアゾ)−5(N−プロ
ピル−N−スルホプロピルアミノ)フェノールナトリウ
ム塩(5−Br−PAPS)を使用した。形成される亜
鉛−5−Br−PAPS錯体による560nmでの吸光
度を測定し、標準溶液について得られた亜鉛濃度と吸光
度との関係式に基づいて、試料溶液中の亜鉛濃度を算出
した。結果を従来法による分析結果と合わせて次表に示
す。
(Analysis) 0.5M trichloroacetic acid-0.1M from reagent introduction section 1
Water or diluted hydrochloric acid is introduced into the hydrochloric acid solution as a carrier through the reagent introduction section 2, and human serum sample 1 is introduced through the sample introduction section 5.
00 μL was introduced. As a detection reagent, a zinc coloring reagent 2-(5-bromo-2-pyridylazo)-5(N-propyl-N-sulfopropylamino)phenol sodium salt (5-Br-PAPS) was used. The absorbance at 560 nm due to the formed zinc-5-Br-PAPS complex was measured, and the zinc concentration in the sample solution was calculated based on the relational expression between the zinc concentration and absorbance obtained for the standard solution. The results are shown in the table below along with the analysis results using the conventional method.

表 0.89             0.920.95
             0.931.2     
         1.21.0          
    1.1×各測定とも3回測定の平均値 表に示すように得られた結果は従来の遠心分離一原子吸
光法による結果とよく一致している。また、測定精度は
同一試料の5回測定で1.5%(C,V。
Table 0.89 0.920.95
0.931.2
1.21.0
1.1× For each measurement, the results obtained are in good agreement with the results obtained by the conventional centrifugal single atomic absorption method, as shown in the table of average values of three measurements. In addition, the measurement accuracy was 1.5% (C, V) when measuring the same sample five times.

%)と高精度であり、また、1時間で60試料の測定が
可能であった。
%), and it was possible to measure 60 samples in 1 hour.

〔発明の効果〕〔Effect of the invention〕

本発明の装置では、試料を分析するためには、一定の試
薬と試料を装置に導入するだけでよいので、分析操作が
簡便である。また、分析のための除タンパクおよび前処
理が密閉系内で行なわれるので試料の汚染が少なく、高
精度の結果が得られる。さらに、分析操作が自動化でき
るので、短時間に多数の試料を分析することが可能とな
り、分析結果の再現性も高い。
In the apparatus of the present invention, in order to analyze a sample, it is only necessary to introduce certain reagents and a sample into the apparatus, so that the analysis operation is simple. Furthermore, since protein removal and pretreatment for analysis are performed in a closed system, there is less contamination of the sample and highly accurate results can be obtained. Furthermore, since analysis operations can be automated, it is possible to analyze a large number of samples in a short period of time, and the reproducibility of analysis results is also high.

【図面の簡単な説明】[Brief explanation of drawings]

図は1本発明の装置の部分構成を示す概念図である。 1.2.3・・・試薬導入部、 5・・・試料導入部、
6.8・・・反応部、 7・・・膜分離器、 9・・・
検出器、10・・・細管、 11・・・送液ポンプ。
The figure is a conceptual diagram showing a partial configuration of an apparatus according to the present invention. 1.2.3...Reagent introduction part, 5...Sample introduction part,
6.8... Reaction section, 7... Membrane separator, 9...
Detector, 10... Thin tube, 11... Liquid pump.

Claims (1)

【特許請求の範囲】[Claims] 1、試料中のタンパク質を遊離する反応部と該遊離した
タンパク質を除去する膜分離部とを有することを特徴と
する、フローインジェクション法による生体液中の金属
自動分析装置。
1. An automatic metal analyzer in a biological fluid using a flow injection method, characterized by having a reaction section that releases proteins in a sample and a membrane separation section that removes the released proteins.
JP30249190A 1990-11-09 1990-11-09 Apparatus for automatically analyzing metal in body fluid Pending JPH04177169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30249190A JPH04177169A (en) 1990-11-09 1990-11-09 Apparatus for automatically analyzing metal in body fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30249190A JPH04177169A (en) 1990-11-09 1990-11-09 Apparatus for automatically analyzing metal in body fluid

Publications (1)

Publication Number Publication Date
JPH04177169A true JPH04177169A (en) 1992-06-24

Family

ID=17909604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30249190A Pending JPH04177169A (en) 1990-11-09 1990-11-09 Apparatus for automatically analyzing metal in body fluid

Country Status (1)

Country Link
JP (1) JPH04177169A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552941A (en) * 1978-10-16 1980-04-17 Sumitomo Bakelite Co Ltd Analyzing method and device of body liquid
JPH0238241A (en) * 1988-07-28 1990-02-07 Konica Corp Sensor device of copying machine
JPH0266452A (en) * 1988-09-01 1990-03-06 Terumo Corp Method for clearing body fluid sample and clearing agent used therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552941A (en) * 1978-10-16 1980-04-17 Sumitomo Bakelite Co Ltd Analyzing method and device of body liquid
JPH0238241A (en) * 1988-07-28 1990-02-07 Konica Corp Sensor device of copying machine
JPH0266452A (en) * 1988-09-01 1990-03-06 Terumo Corp Method for clearing body fluid sample and clearing agent used therein

Similar Documents

Publication Publication Date Title
EP2434289B1 (en) Whole blood component measuring device and method
US20080085507A1 (en) System for rapid analysis of glycated proteinaceous species in biological samples
JP2009109196A (en) Dilution ratio deriving method, quantity determination method and analyzer
JP2008542753A (en) A method for identifying interfering factors in small liquid samples on an automated clinical analyzer.
US8231838B2 (en) Method and device for processing a biological fluid for analyte determination
US8865418B2 (en) Immunoanalytical method and system using mass spectrometry technology
US5387524A (en) Method for quantitative flow injection analysis of metals in body fluids
JP4607899B2 (en) Method and system for analyzing a liquid sample
US5849592A (en) Carrierless sequential injection analysis
Heinemann et al. Analysis of raw biofluids by mass spectrometry using microfluidic diffusion-based separation
EP2103923B1 (en) Automatic analyzer and analysis system using photomultiplier tube
JPH04177169A (en) Apparatus for automatically analyzing metal in body fluid
Rocks et al. Automatic analysers in clinical biochemistry
JPH04177168A (en) Apparatus for automatically analyzing metal in body fluid
Koupparis et al. Application of automated flow injection analysis (FIA) to dissolution studies
De Castro et al. Automation of pharmaceutical dissolution testing by flow injection analysis
US4152939A (en) Micro-sampling device
CN112485340A (en) Method for detecting 1, 5-sorbitan in plasma by ultra-high performance liquid chromatography tandem mass spectrometry
CN110361443A (en) A kind of quasi- reaction in-situ monitoring system of high-resolution time of-flight mass spectrometer
Costa et al. RAPID DETERMINATION OF TRYPTOPHAN AND ITS METABOLITES ALONG THE KYNURENINE PATWAY BY HPLC.
BR112019017418A2 (en) METHOD FOR QUANTIFYING ANALYTICAL IN A SAMPLE, AND MICROFLUID DEVICE FOR QUANTIFYING ANALYTICAL
JPH03255955A (en) Catechol amine metabolyte analyzing apparatus
CN116783682A (en) Simultaneous and selective washing and detection in ion selective electrode analyzers
WO2021136718A1 (en) Method and device for analysis of liquid samples
Natelson Automatic analysis of microsamples contained in capillaries with a microsample dispenser