JPH04177038A - Temperature control device for air conditioner - Google Patents

Temperature control device for air conditioner

Info

Publication number
JPH04177038A
JPH04177038A JP2301038A JP30103890A JPH04177038A JP H04177038 A JPH04177038 A JP H04177038A JP 2301038 A JP2301038 A JP 2301038A JP 30103890 A JP30103890 A JP 30103890A JP H04177038 A JPH04177038 A JP H04177038A
Authority
JP
Japan
Prior art keywords
amount
temperature
heat
temperature difference
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2301038A
Other languages
Japanese (ja)
Inventor
Yoshito Imai
義人 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2301038A priority Critical patent/JPH04177038A/en
Publication of JPH04177038A publication Critical patent/JPH04177038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To enable a control over a heating calorie to be controlled in correspondence with a variation in thermal load by a method wherein a controlled variable of heating calorie for use in controlling a heating source for an air conditioner is stored, an amount of shift for shifting a relation between a temperature difference between a room temperature and a set temperature and a controlled variable of heating calorie is determined, the heating calorie controlled variable is determined in response to the temperature difference and the shifting amount, outputted to a heating calorie control device and then a heat source is controlled. CONSTITUTION:As a switch of heating operation is pressed, a set temperature Ts, a room temperature Ta and an initialization value of a shifting amount S are inputted. A position value or a negative value of a temperature difference DELTAT between the set temperature Ts and the room temperature Ta is judged. If DELTAT<0, a compressor 6 is turned off and a descending of the room temperature Ta is waited. If DELTAT>=0 is attained, the compressor 6 is turned on, a timer for counting an operation time for the compressor 6 and a counter for counting a heating calorie controlled variable are energized so as to calculated a temperature difference DELTAT=Ts-Ta+S. A positive value or a negative value of the temperature difference DELTAT is judged, and if DELTAT>=0 is attained, a heating calorie controlled variable (q) determined by the temperature difference DELTAT is calculated, this value is outputted to a heating amount controlling device 5 and this is controlled without changing a shifting amount S.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は室温と設定温度との差温により制御される空
調機の温度制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature control device for an air conditioner that is controlled based on the difference in temperature between room temperature and a set temperature.

[従来の技術] 第8図及び第9図は1例えな特公昭62−14050号
公報に示された従来の燃焼制御装置の動作説明図で、第
8図は設定温度と室温の差温に対する熱量デコーディン
グ図、第、9図は熱量デコーディング図に部屋の熱負荷
曲線を付加した図である。
[Prior Art] Figures 8 and 9 are explanatory diagrams of the operation of a conventional combustion control device disclosed in Japanese Patent Publication No. 14050/1983, and Figure 8 shows the operation of the conventional combustion control device shown in Japanese Patent Publication No. 62-14050. The heat quantity decoding diagram, Figure 9, is a diagram in which the heat load curve of the room is added to the heat quantity decoding diagram.

第8図中、ΔTは差温、qは発生熱量を示し。In FIG. 8, ΔT represents the temperature difference, and q represents the amount of heat generated.

差温ΔTとしてJ0〜J、の7レベルの基準信号を発生
させてデコードする。このデコード結果に基づいて90
〜q6の7レベルの発生熱量のいずれかに制御するか、
又は燃焼停止を行なわせるものである。
Seven levels of reference signals J0 to J are generated and decoded as the temperature difference ΔT. Based on this decoding result 90
Control to any of the 7 levels of heat generated from ~q6, or
Or it causes combustion to stop.

第9図中、Qは第8図に基づく発生熱量曲線。In Fig. 9, Q is the generated heat amount curve based on Fig. 8.

aは低熱負荷(例えば室内人数が少ない場合)の熱負荷
曲線、bは高熱負荷(例えば室内人数が多い場合)の熱
負荷曲線であり、上段の横軸は差温ΔT(設定温度Ts
−室温Tx)を示し、下段の横軸は設定温度Tsが?2
℃のときの室温Txの一例を示す。このとき、発生熱量
曲線Qと熱負荷曲線a。
a is the heat load curve for low heat load (for example, when there are few people in the room), b is the heat load curve for high heat load (for example, when there are many people in the room), and the horizontal axis in the upper row is the temperature difference ΔT (set temperature Ts
- room temperature Tx), and the lower horizontal axis indicates the set temperature Ts? 2
An example of room temperature Tx at °C is shown. At this time, the generated heat amount curve Q and the heat load curve a.

bの交差する点Ta、Tbが室温の中心点となる。The intersection point Ta and Tb of b becomes the center point of the room temperature.

すなわち、同一の設定温度Tsに対し、低熱負荷曲線a
を持つ部屋と高熱負荷曲線すを持つ部屋では、設定温度
Tsに対し、低熱負荷の部屋では室温Taで安定し、高
熱負荷の部屋では室温Tbで安定してしまい、設定温度
Tsに対して誤差が生じる。この対策として、差温ΔT
に対する熱量変化率を大きくして誤差をなくそうとする
と、室温はハンチング現象を生じるようになる。
That is, for the same set temperature Ts, the low heat load curve a
In a room with a low heat load and a room with a high heat load curve, the set temperature Ts is stabilized at room temperature Ta in a room with a low heat load, and stabilized at room temperature Tb in a room with a high heat load, resulting in an error with respect to the set temperature Ts. occurs. As a countermeasure for this, the temperature difference ΔT
If an attempt is made to eliminate the error by increasing the rate of change in heat quantity, a hunting phenomenon will occur at room temperature.

第10図は、例えば実公平1−14841号公報に示さ
れた別の従来の空調機の温度制御装置の動作説明図であ
る。なお、図中ドツトを施した部分は圧縮機運転時間帯
を示し、空白部分は送風時間帯を示す。
FIG. 10 is an explanatory diagram of the operation of another conventional air conditioner temperature control device disclosed in, for example, Japanese Utility Model Publication No. 1-14841. Note that the dotted portions in the figure indicate the compressor operation time periods, and the blank portions indicate the air blowing time periods.

冷房運転のスイッチが押されると、室内送風機が回転し
、室温Ta(以下、室温はTaで代表する)が設定温度
Tsよりも高いと、圧縮機が運転開始する。同時に、圧
縮機の運転時間をカウントするタイマが起動する。これ
で、室温Taは下降するが、その値は常に設定温度Ts
と比較されている。
When the cooling operation switch is pressed, the indoor blower rotates, and when the room temperature Ta (hereinafter, room temperature is represented by Ta) is higher than the set temperature Ts, the compressor starts operating. At the same time, a timer is started that counts the operating time of the compressor. Now, the room temperature Ta will decrease, but its value will always remain at the set temperature Ts.
It is compared with.

また、圧縮機の運転時間も所定時間τ、と比較されてい
る。
The operating time of the compressor is also compared with a predetermined time τ.

ここで、室温Taが所定時間τ□内に設定温度Tsに達
すると、圧縮機はオフされ、送風だけが行なわれ、同時
に上記タイマがオフとなる。圧縮機がオフされたことに
より、室温Taは上昇し、その値は設定温度Tsに温度
差βを加えた温度(Ts十β)と比較されている。そし
て、室温Taが温度(Ts+β)よりも高くなると、圧
縮機がオンされると同時に、上記タイマによって圧縮機
の運転時間がカウントされる。
Here, when the room temperature Ta reaches the set temperature Ts within a predetermined time τ□, the compressor is turned off, only air is blown, and at the same time the timer is turned off. Since the compressor is turned off, the room temperature Ta rises, and its value is compared with a temperature obtained by adding the temperature difference β to the set temperature Ts (Ts + β). When the room temperature Ta becomes higher than the temperature (Ts+β), the compressor is turned on and at the same time the timer counts the operating time of the compressor.

これで、室温Taは再び下降するが、所定時間τ□が経
過しても、室温Taが設定温度Tsに達しないと、設定
温度Tsはシフト量αだけ低温側にシフトされ、圧縮機
の運転は継続される。そして、室温Taが新しい設定温
度(Ts−α)に達したとき、圧縮機はオフされる。こ
れで、室温Taは再び上昇する。
Now, the room temperature Ta falls again, but if the room temperature Ta does not reach the set temperature Ts even after the predetermined time τ□, the set temperature Ts is shifted to the lower temperature side by the shift amount α, and the compressor is operated. will continue. Then, when the room temperature Ta reaches the new set temperature (Ts-α), the compressor is turned off. As a result, the room temperature Ta rises again.

[発明が解決しようとする課題] 上記のような従来の空調機の温度制御装置では、圧縮機
が運転開始してから所定時間τ1が経過しても、室温T
aが設定温度Tsに達しないと、設定温度Tsをシフト
量αだけシフトするようにしているが、熱量固定の熱源
であることから、室温変動量を変化させることはできず
、また熱量可変制御の熱源においては、室温と運転時間
のノくラメータでは制御が不可能であり、発生熱量や熱
量の積分等の別のパラメータが必要になるとps”)問
題点がある。また、低熱負荷時のシフト量を決定するに
は上記所定時間を短時間に設定する必要があるが、短時
間に設定すると高熱負荷時の精度が確保できなくなり、
シフト量が安定しないという問題点がある。
[Problems to be Solved by the Invention] In the conventional temperature control device for an air conditioner as described above, the room temperature T
If a does not reach the set temperature Ts, the set temperature Ts is shifted by the shift amount α, but since it is a heat source with a fixed amount of heat, the amount of room temperature fluctuation cannot be changed, and variable heat amount control For heat sources such as In order to determine the shift amount, it is necessary to set the above predetermined time to a short time, but if it is set to a short time, accuracy during high heat loads cannot be ensured.
There is a problem that the shift amount is not stable.

この発明は上記問題点を解決するためになされたもので
、熱負荷の異なる部屋の状態でも、設定温度に対する室
温の誤差を少なくすることができるようにした空調機の
温度制御装置を提供することを目的とする。
This invention has been made to solve the above problems, and provides a temperature control device for an air conditioner that can reduce the error in room temperature with respect to the set temperature even in rooms with different heat loads. With the goal.

[課題を解決するための手段] この発明に係る空調機の温度制御装置は、空調機の熱源
(圧縮機)を制御する熱量制御量を記憶し、この記憶さ
れた熱量制御量から、室温と設定温度の差温と熱量制御
量の関係をシフトするシフト量を決定し、差温と上記シ
フト量から熱量制御量を決定して熱量制御装置へ出力し
て熱源を制御するようにしたものである。
[Means for Solving the Problems] A temperature control device for an air conditioner according to the present invention stores a heat amount control amount for controlling the heat source (compressor) of the air conditioner, and calculates room temperature and temperature from the stored heat amount control amount. A shift amount for shifting the relationship between the temperature difference between the set temperatures and the amount of heat control is determined, and the amount of heat control is determined from the difference in temperature and the shift amount, and the amount is output to the heat amount control device to control the heat source. be.

[作 用] この発明においては、熱源を制御する熱量制御量を記憶
して発生熱量を求めることにより、部屋の熱負荷を推定
し、この推定熱負荷からシフト量を決定する。そして、
室内温度と設定温度の差温に対する熱量関係を、このシ
フト量で自動的に変化させ、熱負荷変動に対応した熱量
制御が行なわれる。
[Function] In this invention, the heat load of the room is estimated by storing the heat amount control amount for controlling the heat source and determining the generated heat amount, and the shift amount is determined from this estimated heat load. and,
The relationship between the amount of heat and the temperature difference between the indoor temperature and the set temperature is automatically changed by this shift amount, and the amount of heat is controlled in response to heat load fluctuations.

[実施例] 第1図〜第5図は、この発明の一実施例を示す図で、第
1図は全体構成図、第2図はブロック図、第3図は暖房
時の動作を示すフローチャート、第4図は暖房時の発生
熱量と差温の関係説明図、第5図は室温変化曲線図であ
る。
[Embodiment] Fig. 1 to Fig. 5 are diagrams showing an embodiment of the present invention, in which Fig. 1 is an overall configuration diagram, Fig. 2 is a block diagram, and Fig. 3 is a flowchart showing operations during heating. , FIG. 4 is an explanatory diagram of the relationship between the amount of heat generated during heating and the temperature difference, and FIG. 5 is a diagram of a room temperature change curve.

第1図中、(1)はサーミスタ等で構成され室温Taを
測定する室内温度測定器、(2)はキー等で構成され設
定温度Tsを設定する室内温度設定器、(3)は室温T
aと設定温度Tsの差温ΔTを出力する差温検出器、(
4)は差温ΔTとシフト量Sから発生熱量を決定する熱
量制御量決定手段、(5)はインバータ駆動回路等で構
成され、熱量制御量決定手段(4)の出力に基づいて熱
源(6)をオン・オフする熱量制御装置、(7)は熱量
制御装置(5)の熱意制御量を記憶する制御量記憶手段
、(8)は制御量記憶手段(7)から入力される熱量制
御量からシフト量Sを決定して熱量制御量決定手段(4
)へ出力するシフト量決定手段、(9)は人為的に操作
され設定温度Tsの変更指令をシフト量決定手段(8)
に出力する設定変更指令器である。
In Fig. 1, (1) is an indoor temperature measuring device that is composed of a thermistor etc. and measures the room temperature Ta, (2) is an indoor temperature setting device that is composed of keys etc. and is used to set the set temperature Ts, and (3) is the room temperature T
A temperature difference detector that outputs the temperature difference ΔT between a and the set temperature Ts, (
4) is a heat amount control amount determining means that determines the amount of heat generated from the temperature difference ΔT and the shift amount S, and (5) is comprised of an inverter drive circuit, etc. ), (7) is a control amount storage means for storing the enthusiasm control amount of the heat amount control device (5), and (8) is a heat amount control amount input from the control amount storage means (7). The shift amount S is determined from the calorie control amount determining means (4
), the shift amount determining means (9) is manually operated and outputs a command to change the set temperature Ts to the shift amount determining means (8).
This is a setting change command device that outputs to

第2図中、(11)はマイクロコンピュータ(以下マイ
コンという)からなる制御装置で、cpu(IIA)、
ROM (11B)及びRA M (IIc)を有し、
室内温度測定器(1)、室内温度設定器(2)及びイン
バータ(5)に接続されている。なお、圧縮機(6)は
第1図の熱源(6)に相当する。
In Fig. 2, (11) is a control device consisting of a microcomputer (hereinafter referred to as microcomputer);
It has ROM (11B) and RAM (IIc),
It is connected to an indoor temperature measuring device (1), an indoor temperature setting device (2), and an inverter (5). Note that the compressor (6) corresponds to the heat source (6) in FIG.

次に、この実施例の動作を第3図〜第5図を参照して説
明する。なお、第3図のフローチャートのプログラムは
制御装置(11)を構成するマイコンのROM (II
B)に記憶されている。
Next, the operation of this embodiment will be explained with reference to FIGS. 3 to 5. Note that the program in the flowchart of FIG. 3 is written in the ROM (II
B).

暖房運転のスイッチが押されると、ステップ(21)で
空調機は運転を開始し、ステップ(22)で設定温度T
s、室温Ta及びシフト量Sの初期設定を取り込む。ス
テップ(23)で設定温度Tsと室温Taの差温ΔTの
正負を判断し、ΔT<Oであればステップ(24)で圧
縮機(6)をオフし、ステップ(22)へ戻り、ステッ
プ(22)〜(24)を繰り返して室温Taの下降を待
つ。ΔT≧Oになればステップ(25)へ進み、圧縮機
(6)をオンにし、ステップ(26)で圧縮機(6)の
運転時間を計測するタイマと、熱意制御量をカウントす
るカウンタを起動させる。ステップ(27)で差温ΔT
=Ts−Ta+Sを求める。
When the heating operation switch is pressed, the air conditioner starts operating in step (21), and the set temperature T is set in step (22).
s, the room temperature Ta, and the initial settings of the shift amount S. In step (23), it is determined whether the temperature difference ΔT between the set temperature Ts and the room temperature Ta is positive or negative, and if ΔT<O, the compressor (6) is turned off in step (24), and the process returns to step (22). Repeat steps 22) to (24) and wait for the room temperature Ta to fall. If ΔT≧O, proceed to step (25), turn on the compressor (6), and in step (26) start a timer that measures the operating time of the compressor (6) and a counter that counts the amount of enthusiasm control. let In step (27), the temperature difference ΔT
=Ts-Ta+S is determined.

ステップ(28)で差温ΔTの正負を判断し、八T≧0
であればステップ(29)で差温ΔTで決定される熱量
制御量qを求・め、これが熱量制御装置(5)へ出力さ
れ、シフト量Sを変更することなく制御される。また、
ステップ(28)でΔTくoと判断されると、ステップ
(30)で圧縮機(6)をオフにする。
In step (28), determine whether the temperature difference ΔT is positive or negative, and 8T≧0
If so, in step (29), the heat amount control amount q determined by the temperature difference ΔT is determined, and this is output to the heat amount control device (5), where it is controlled without changing the shift amount S. Also,
If ΔT is determined in step (28), the compressor (6) is turned off in step (30).

そして、ステップ(31)でタイマの計測時間が所定時
間t1以内であるかを判断し、以内であればステップ(
27)へ戻り、ステップ(27)〜(31)を繰り返し
、時間の経過を待つ。計測時間が所定時間t0以上にな
れば、ステップ(32)でカウンタの値によって部屋の
熱負荷を推定し、シフト量Sを変更する。変更後はステ
ップ(33)で再度タイマとカウンタを起動させて、ス
テップ(27)へ戻る。
Then, in step (31), it is determined whether the time measured by the timer is within a predetermined time t1, and if it is within the predetermined time t1, step (31) is performed.
Return to step 27), repeat steps (27) to (31), and wait for time to pass. If the measurement time exceeds the predetermined time t0, the heat load in the room is estimated based on the value of the counter in step (32), and the shift amount S is changed. After the change, the timer and counter are activated again in step (33), and the process returns to step (27).

第4図(a)は初期設定時におけるシフト量S=Oでの
発生熱量曲線Qと、低熱負荷曲線a及び高熱負荷曲線す
の関係を示し、低線負荷では差温ΔT1、高熱負荷では
差温ΔT3で設定してしまう。
Figure 4 (a) shows the relationship between the generated heat amount curve Q at shift amount S = O at the time of initial setting, the low heat load curve a, and the high heat load curve. The temperature is set at ΔT3.

第4図(b)は低熱負荷の場合に、所定時間t2後のシ
フトが行なわれたときの差温ΔTと発生熱量qの関係を
示し、差温ΔT2は初期の差温ΔT□よりも減少してい
る。第4図(c)は同様に高熱負荷でのシフト例であり
、差温ΔT4は初期の差温ΔT3に比べて減少している
Figure 4(b) shows the relationship between the temperature difference ΔT and the amount of heat generated q when a shift is performed after a predetermined time t2 in the case of a low heat load, and the temperature difference ΔT2 is smaller than the initial temperature difference ΔT□. are doing. FIG. 4(c) similarly shows an example of a shift under a high heat load, in which the temperature difference ΔT4 is reduced compared to the initial temperature difference ΔT3.

第5図(a)は低熱負荷の場合の室温Taの変化経過を
時間に対して示し、第5図(b)は同じく高熱負荷に対
する室温Tbを示している。
FIG. 5(a) shows the change in room temperature Ta with respect to time under a low heat load, and FIG. 5(b) similarly shows the room temperature Tb under a high heat load.

第6図はこの発明の他の実施例を示す図で、石油暖房機
に適用した場合のブロック図であり、第2図のインバー
タ(5)に代えて周波数制御機構(41)が、圧縮機(
6)に代えて送油ポンプ(42)が用いられている。ま
た、燃焼用送風機(43)が回転制御機構(44)を介
して制御量W (11)に接続され、回転検出器(45
)により送風機(43)の回転速度が検出され、これが
熱量制御量として制御装置(11)に入力されている。
FIG. 6 is a diagram showing another embodiment of the present invention, and is a block diagram when applied to a kerosene heater, in which the frequency control mechanism (41) replaces the inverter (5) in FIG. (
6), an oil pump (42) is used. Further, the combustion blower (43) is connected to the control amount W (11) via the rotation control mechanism (44), and the rotation detector (45)
) detects the rotational speed of the blower (43), and this is input to the control device (11) as the amount of heat control.

なお、この熱量制御量として、送油ポンプ(42)の制
御量を用いることも可能である。
Note that it is also possible to use the control amount of the oil feed pump (42) as the heat amount control amount.

第7図もこの発明の他の実施例を示す図で、ガス暖房機
に適用した場合のブロック図であり、第2図のインバー
タ(5)に代えて電流制御機構(47)が、圧縮機(6
)に代えて電磁ガバナ(48)が用いられている。熱意
制御量として、送風機(43)の回転速度が検出されて
いるが′、電磁ガバナ(48)の制御電流を用いること
も可能である。
FIG. 7 is also a diagram showing another embodiment of the present invention, and is a block diagram when applied to a gas heater, in which the current control mechanism (47) replaces the inverter (5) in FIG. (6
) An electromagnetic governor (48) is used instead. Although the rotation speed of the blower (43) is detected as the enthusiasm control amount, it is also possible to use the control current of the electromagnetic governor (48).

[発明の効果] 以上説明したとおりこの発明では、熱源を制御する熱量
制御量を記憶して発生熱量を求めることにより、部屋の
熱負荷を推定し、この推定熱負荷から差温と熱量制御量
の関係のシフト量を決定するようにしたので、熱負荷の
異なる部屋の状態でも、設定温度に対する室温の誤差を
少なくすることができる効果がある。
[Effects of the Invention] As explained above, in this invention, the heat load of the room is estimated by storing the heat amount control amount for controlling the heat source and calculating the generated heat amount, and from this estimated heat load, the temperature difference and the heat amount control amount are calculated. Since the amount of shift in the relationship is determined, it is possible to reduce the error in the room temperature relative to the set temperature even in rooms with different heat loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図はこの発明による室温制御装置を空調機
に適用した一実施例を示す図で、第1図は全体構成図、
第2図はブロック図、第3図は暖房時の動作を示すフロ
ーチャート、第4図は暖房時の発生熱量と差温の関係説
明図、第5図は室温変化曲線図、第6図及び第7図はこ
の発明の他の実施例を示す図で、第6図は石油暖房機に
適用したブロック図、第7図はガス暖房時に適用したブ
ロック図、第8図及び第9図は従来の室温制御装置を示
す図で、第8図は設定温度と室温の差温に対する熱量デ
コーディング図、第9図は第8図に部屋の熱負荷曲線を
付加した図、第10図も従来の室温制御装置を示す動作
説明図である。 図中、(1)は室内温度測定器、(2)は室内温度設定
器、(3)は差温検出器、(4)は熱量制御量決定手段
、(5)は熱量制御装置、(6)は熱源(圧縮機)、(
7)は制御量記憶手段、(8)はシフト量決定手段、(
41)は熱量制御装置(周波数制御機構)、 (42)
は熱源(送油ポンプ)、(45)は回転検出器、(47
)は熱量制御装置(電流制御機構)、 (48)は熱源
(電磁ガバナ)である。 なお、図中同一符号は同−又は相当部分を示す。
1 to 5 are diagrams showing an embodiment in which a room temperature control device according to the present invention is applied to an air conditioner, and FIG. 1 is an overall configuration diagram;
Fig. 2 is a block diagram, Fig. 3 is a flowchart showing the operation during heating, Fig. 4 is an explanatory diagram of the relationship between the amount of heat generated during heating and the temperature difference, Fig. 5 is a room temperature change curve diagram, Figs. Fig. 7 is a diagram showing another embodiment of the present invention, Fig. 6 is a block diagram applied to an oil heater, Fig. 7 is a block diagram applied to a gas heating system, and Figs. 8 and 9 are diagrams showing a conventional example. This is a diagram showing a room temperature control device. Figure 8 is a calorific value decoding diagram for the temperature difference between the set temperature and the room temperature, Figure 9 is a diagram with the heat load curve of the room added to Figure 8, and Figure 10 is also a diagram of the conventional room temperature. It is an operation explanatory diagram showing a control device. In the figure, (1) is an indoor temperature measuring device, (2) is an indoor temperature setting device, (3) is a differential temperature detector, (4) is a heat quantity control amount determining means, (5) is a heat quantity control device, and (6) is a heat quantity control amount determining means. ) is the heat source (compressor), (
7) is a control amount storage means, (8) is a shift amount determination means, (
41) is a heat amount control device (frequency control mechanism), (42)
is the heat source (oil pump), (45) is the rotation detector, (47
) is a heat quantity control device (current control mechanism), and (48) is a heat source (electromagnetic governor). Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 室内温度と設定温度との差温を検出し、これに基づいて
熱量制御装置を介して熱源を起動・停止する空調機にお
いて、上記熱量制御装置の熱量制御量を記憶する制御量
記憶手段と、この記憶手段の出力から上記差温と熱量制
御量の関係をシフトする量を決定するシフト量決定手段
と、上記差温及びシフト量から上記熱量制御量を決定し
て上記熱量制御装置へ出力する熱量制御量決定手段とを
備えたことを特徴とする空調機の温度制御装置。
In an air conditioner that detects a temperature difference between an indoor temperature and a set temperature and starts and stops a heat source via a heat amount control device based on the detected temperature difference, a control amount storage means for storing a heat amount control amount of the heat amount control device; shift amount determining means for determining the amount by which the relationship between the temperature difference and the amount of heat control is to be shifted from the output of the storage means; and determining the amount of heat control from the temperature difference and the shift amount and outputting the determined amount to the heat amount control device. 1. A temperature control device for an air conditioner, comprising: means for determining a controlled amount of heat.
JP2301038A 1990-11-08 1990-11-08 Temperature control device for air conditioner Pending JPH04177038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2301038A JPH04177038A (en) 1990-11-08 1990-11-08 Temperature control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2301038A JPH04177038A (en) 1990-11-08 1990-11-08 Temperature control device for air conditioner

Publications (1)

Publication Number Publication Date
JPH04177038A true JPH04177038A (en) 1992-06-24

Family

ID=17892110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2301038A Pending JPH04177038A (en) 1990-11-08 1990-11-08 Temperature control device for air conditioner

Country Status (1)

Country Link
JP (1) JPH04177038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127643A (en) * 2003-10-24 2005-05-19 Mitsubishi Electric Building Techno Service Co Ltd Operation condition judgment method and operation condition judgment system of air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127643A (en) * 2003-10-24 2005-05-19 Mitsubishi Electric Building Techno Service Co Ltd Operation condition judgment method and operation condition judgment system of air conditioner

Similar Documents

Publication Publication Date Title
US4364237A (en) Microcomputer control for inverter-driven heat pump
US5819845A (en) Temperature control method for a heating/cooling system
JP2723339B2 (en) Heat pump heating equipment
US4831225A (en) Microwave oven/convection oven having means for controlling ventilation of the cooking chamber
JPS59226901A (en) State control system
US6681848B2 (en) Method and apparatus for operating a thermostat to provide an automatic changeover
JPH04177038A (en) Temperature control device for air conditioner
JPH05322279A (en) Control device for air conditioner
JPH02146447A (en) Cooling and heating timer
JPS62213628A (en) Automatic operating device for range hood fan
JPH06159773A (en) Controller for air conditioner
KR100262642B1 (en) Temperature setting method for air conditioner
JP3149932B2 (en) Air conditioner operation control method
JPS5875649A (en) Abnormality detecting device of air conditioner
KR100206757B1 (en) Heating operating control method of airconditioner
KR940015406A (en) Air Conditioning Control Method
JP2615999B2 (en) Air conditioner
KR930008396B1 (en) Temperature calibrating method in automatic cooking
JPS58211218A (en) Temperature control device
JP2002005489A (en) Air-conditioning control device
JPH0674529A (en) Air-conditioner
KR930007783B1 (en) Temperature control method
JPS6057143A (en) Device for controlling air conditioner
JPH03148542A (en) Automatic operating device for range hood
JPS624827Y2 (en)