JPH04176861A - Formation of thin film and device thereof - Google Patents

Formation of thin film and device thereof

Info

Publication number
JPH04176861A
JPH04176861A JP30302490A JP30302490A JPH04176861A JP H04176861 A JPH04176861 A JP H04176861A JP 30302490 A JP30302490 A JP 30302490A JP 30302490 A JP30302490 A JP 30302490A JP H04176861 A JPH04176861 A JP H04176861A
Authority
JP
Japan
Prior art keywords
thin film
substrate
gas
voltage
ion irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30302490A
Other languages
Japanese (ja)
Inventor
Tadasuke Hirayama
平山 忠亮
Hidehiko Funaoka
英彦 船岡
Yoshihiro Arai
芳博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP30302490A priority Critical patent/JPH04176861A/en
Publication of JPH04176861A publication Critical patent/JPH04176861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a rigid thin film excellent in adhesive properties on a base plate by supplying reactive gas into a vacuum tank which has the base plate to be treated and an ion irradiation means and ionizing this reactive gas and irradiating the base plate therewith. CONSTITUTION:A base body 4 such as a cutting tool, a wear resistant tool, high polymer material and ceramic parts is fitted to a holder 3 in a vacuum tank 2. An ion irradiation means 5 is arranged in the opposite position therein. Methane, ethane, the other gaseous hydrocarbon, gaseous boron compd. such as diborane and gaseous silicon compd. such as monosilane and disilane are supplied into the vacuum tank 2 from a gas introducing part 7. Successively one part of the gas is ionized by impressing high frequency voltage having >=100kHz frequency so that the voltage of DC component is regulated to 0.22-8KV to the holder 3 by the ion irradiation means 5 having a power source 6. A diamondlike ultrarigid carbon film and a rigid film made of BN and SiC, etc., are stably formed on the surface of the base body 4.

Description

【発明の詳細な説明】 l見立戎五至1 本発明は、基体への薄膜形成方法およびその装置に関し
、さらに詳しくは、基体上に基体との密着性に優れた硬
質薄膜を形成し得るような薄膜形成方法および装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a thin film on a substrate and an apparatus therefor, and more particularly, it relates to a method for forming a thin film on a substrate, and more specifically, it is capable of forming a hard thin film with excellent adhesion to the substrate on the substrate. The present invention relates to a method and apparatus for forming a thin film.

発明の 術的背景 近ζ 記録用ディスクの保護風 切削工具などの被覆膜
として硬質薄膜が用いられている。
Technical background of the invention Protective wind for recording disks Hard thin films are used as coatings for cutting tools and the like.

このような硬質薄膜を基体上へ形成する方法としては真
空蒸着法、イオンブレーティング法、スパッタリング法
、気相析出法などが知られている。
Vacuum deposition, ion blating, sputtering, vapor deposition, and the like are known as methods for forming such hard thin films on substrates.

しかし、上記のような従来技術を用いた薄膜形成方法で
は、薄膜形成速度が遅く、成膜速度を高めると薄膜の硬
度が低下するという問題があった。
However, in the thin film forming method using the conventional technique as described above, the thin film forming speed is slow, and when the film forming speed is increased, the hardness of the thin film decreases.

また、上記のような従来技術では、ダイヤモンドライク
薄膜のような硬質薄膜を基体との密着性よく形成するこ
とが困難であった 発明の目的 本発明はこのような問題を解決するためになされたもの
であって、基体上に基体との密着性に優れた硬質薄膜を
高い成膜速度で形成することができるような薄膜形成方
法およびその装置を提供することを目的としている。
In addition, with the above-mentioned conventional techniques, it is difficult to form a hard thin film such as a diamond-like thin film with good adhesion to a substrate. It is an object of the present invention to provide a thin film forming method and an apparatus therefor, which can form a hard thin film having excellent adhesion to the substrate on a substrate at a high deposition rate.

見見り厘1 本発明に係る薄膜形成方法は、真空槽内で基体を支持手
段により支持し、 上記基体に、高周波電圧を印加するとともに、少なくと
も一部がイオン化した気体を照射して、基体に薄膜を形
成することを特徴としているまた、本発明に係る薄膜形
成装置は、真空槽内で基体を支持する支持手段と 気体をイオン化し、上記基体に一部がイオン化された気
体を照射するイオン照射手段と、上記支持手段に高周波
電圧を印加する高周波電圧印加手段とを備えることを特
徴としている。
Mimi Rin 1 In the thin film forming method according to the present invention, a substrate is supported by a support means in a vacuum chamber, a high frequency voltage is applied to the substrate, and at least a partially ionized gas is irradiated to form the substrate. Further, the thin film forming apparatus according to the present invention is characterized in that a thin film is formed on the substrate by ionizing a gas and a supporting means for supporting a substrate in a vacuum chamber, and irradiating the partially ionized gas onto the substrate. It is characterized by comprising an ion irradiation means and a high frequency voltage application means for applying a high frequency voltage to the support means.

このような薄膜形成方法および装置では、基体に照射さ
れる気体(以下、気体材料という)が炭化水素、ホウ素
化合物、ケイ素化合物、から選ばれる少なくとも一種で
あることが好ましい。
In such a thin film forming method and apparatus, it is preferable that the gas (hereinafter referred to as gas material) irradiated onto the substrate is at least one selected from hydrocarbons, boron compounds, and silicon compounds.

また、このような薄膜形成方法および装置では、支持手
段に生じる直流成分の電圧が0.22〜8kVの範囲で
あることが好ましい。
Moreover, in such a thin film forming method and apparatus, it is preferable that the voltage of the DC component generated in the supporting means is in the range of 0.22 to 8 kV.

このような本発明に係る薄膜形成方法および装置では、
基体上に基体との密着性に優れた硬質薄膜を高い成膜速
度で形成することができる。
In such a thin film forming method and apparatus according to the present invention,
A hard thin film with excellent adhesion to the substrate can be formed on the substrate at a high deposition rate.

日の具体的説日 以下、本発明に係る基体への薄膜形成方法および装置に
ついて具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method and apparatus for forming a thin film on a substrate according to the present invention will be explained in detail below.

本発明では、真空槽内で基体を支持手段により支持し、 上記基体に、高周波電圧を印加するとともに、少なくと
も一部がイオン化した気体を照射して、基体に薄膜を形
成させているが、以下に本発明に係る薄膜形成装置およ
び装置について第1図に基づいて説明する。
In the present invention, a substrate is supported by a support means in a vacuum chamber, and a high frequency voltage is applied to the substrate and at least a partially ionized gas is irradiated to form a thin film on the substrate. Next, a thin film forming apparatus and apparatus according to the present invention will be explained based on FIG. 1.

第1図は本発明に係る薄膜形成装置を示す。FIG. 1 shows a thin film forming apparatus according to the present invention.

第1図に示すように、この薄膜形成装置1では、真空槽
2の内部上方に基体支持部3が設けられており、この基
体支持部3には、薄膜が被着される基体4が取り付けら
れている。基体支持部3には高周波電源6が接続されお
り、高周波電圧を基体4に印加できるようになっている
As shown in FIG. 1, in this thin film forming apparatus 1, a substrate support section 3 is provided inside and above a vacuum chamber 2, and a substrate 4 to which a thin film is to be applied is attached to this substrate support section 3. It is being A high frequency power source 6 is connected to the base support 3 so that a high frequency voltage can be applied to the base 4.

本発明において用いられる基体4としては、切削工具、
耐摩耗エル 軸受、金型などの鉄鋼材の他にポリエチレ
ンテレフタレート、ポリイミド、ポリアミド、ポリパラ
バン酸、ポリエーテルイミドなとの高分子樹脂、および
ガラス、シリコンウェハーなどのセラミックなどを挙げ
ることができる。
The base 4 used in the present invention includes a cutting tool,
In addition to steel materials such as bearings and molds, examples of wear-resistant materials include polymer resins such as polyethylene terephthalate, polyimide, polyamide, polyparabanic acid, and polyetherimide, and ceramics such as glass and silicon wafers.

本発明において基体支持部3は基体4を支持でき、高周
波電圧を基体4に印加できる部材であれば特に限定され
ない。また、基体支持部は加熱装置を備えていてもよい
In the present invention, the substrate support section 3 is not particularly limited as long as it is a member that can support the substrate 4 and can apply a high frequency voltage to the substrate 4. Moreover, the base support part may be equipped with a heating device.

このような薄膜形成装置1では、真空槽2の内部下方に
、イオン照射手段5が設けられている。
In such a thin film forming apparatus 1, an ion irradiation means 5 is provided inside and below the vacuum chamber 2.

このイオン照射手段5は、基体4に少なくとも一部がイ
オン化した気体材料を照射しうるように構成されている
。イオン化するための手段としては、Lカップリングに
よる高周波放電法、平行平板下での高周波放電法、マイ
クロ波による放電法およびECR放電法などを挙げるこ
とができる。
The ion irradiation means 5 is configured to irradiate the base 4 with at least a partially ionized gaseous material. Examples of means for ionization include a high frequency discharge method using L coupling, a high frequency discharge method under a parallel plate, a microwave discharge method, and an ECR discharge method.

また、イオン化される気体材料としては、メタン、エチ
レン、プロパン、ブタン、ベンゼン、エタンなどの炭化
水素。
In addition, gaseous materials that can be ionized include hydrocarbons such as methane, ethylene, propane, butane, benzene, and ethane.

ジボラン、三塩化ボロンなどのホウ素化合物。Boron compounds such as diborane and boron trichloride.

ポリシラン系の有機化合物およびモノシラン、ジシラン
などの珪素化合物を挙げることができる。
Examples include polysilane-based organic compounds and silicon compounds such as monosilane and disilane.

このような気体材料は、形成する薄膜に応じて単独でま
たは組み合わせて用いられる。また、これらの気体材料
は酸乳 窒荒 水素あるいはアルゴン、キセノン、ヘリ
ウムなどの貴ガスによって希釈することもできる。
Such gaseous materials may be used alone or in combination depending on the thin film to be formed. These gaseous materials can also be diluted with acid, nitrogen, hydrogen, or noble gases such as argon, xenon, and helium.

また、イオン照射手段5以外に気体材料のイオン化を促
進するために別のイオン源またはイオン化電極などのイ
オン化手段を用いてもよい。このようなイオン化手段は
、イオン照射手段5と同一であってもよく、異なってい
てもよい。
In addition to the ion irradiation means 5, another ion source or ionization means such as an ionization electrode may be used to promote ionization of the gaseous material. Such ionization means may be the same as the ion irradiation means 5, or may be different.

なお、第1図において7はガス導入管、8は排気管であ
る。
In addition, in FIG. 1, 7 is a gas introduction pipe, and 8 is an exhaust pipe.

本発明によって作成される薄膜の組成としては、ダイヤ
モンドおよびダイヤモンドライクのカーボン薄膜BN、
  SiCおよび珪化水素化合物などを挙げることがで
きる。
The composition of the thin film created by the present invention includes diamond and diamond-like carbon thin film BN,
Examples include SiC and hydrogen silicide compounds.

以上のような薄膜形成装置lを用いて薄膜を形成するに
は、まず基体4を基体支持部3に装着する。
In order to form a thin film using the thin film forming apparatus 1 as described above, the base 4 is first mounted on the base support 3 .

次いで、真空槽2内を減圧する。この際の真空槽2内の
真空度は、通常I X 10−5− I X 10−3
Torr。
Next, the pressure inside the vacuum chamber 2 is reduced. The degree of vacuum in the vacuum chamber 2 at this time is usually I x 10-5 - I x 10-3
Torr.

好ましくは2.6x 10−5〜8X 10− ’ T
orr、  さらに好ましくは2.6X 10−5〜4
×10弓Torrであることが望ましい。
Preferably 2.6x 10-5 to 8X 10-'T
orr, more preferably 2.6X 10-5~4
x10 Torr is desirable.

本発明では、上記のような真空条件下に保持するのに真
空槽2内にガス導入管7から気体材料と同種の気体を導
入してもよいし、酸素ガス 窒素ガス、水素ガスあるい
はアルゴン、キセノン、ヘリウムなどの貴ガスを導入し
てもよく、残留ガスによってもよい。
In the present invention, the same type of gas as the gaseous material may be introduced into the vacuum chamber 2 from the gas introduction tube 7 to maintain the vacuum condition as described above, or oxygen gas, nitrogen gas, hydrogen gas, argon gas, A noble gas such as xenon or helium may be introduced, or residual gas may be used.

真空槽z内の真空度を上記条件に設定した後、イオン照
射手段5に気体材料を導入しイオン化して基体4に照射
するとともに基体支持部3に高周波電圧を印加して基体
4に高周波電圧を印加する。
After setting the degree of vacuum in the vacuum chamber z to the above conditions, a gaseous material is introduced into the ion irradiation means 5, ionized, and irradiated onto the substrate 4, and at the same time, a high frequency voltage is applied to the substrate support 3 to apply the high frequency voltage to the substrate 4. Apply.

ここで、基体支持部3に印加される高周波電圧とは、1
00kHz以上の周波数を有する電圧を意味する。
Here, the high frequency voltage applied to the base support part 3 is 1
means a voltage having a frequency of 00kHz or higher.

本発明では、基体支持部3に上記のような高周波電圧だ
けを印加してもよく、高周波電圧を直流電圧に重畳させ
なから印加してもよい。
In the present invention, only the above-described high-frequency voltage may be applied to the base support 3, or the high-frequency voltage may be applied without being superimposed on the DC voltage.

また、放電が発生する基体支持部3近傍に磁界を印加し
、放電を安定化させてもよい。
Alternatively, a magnetic field may be applied near the base support portion 3 where the discharge occurs to stabilize the discharge.

このような高周波電圧を基体支持部3に印加すると基体
部近傍に放電が生ずる。この際、基体支持部3に生ずる
直流成分の電圧、すなわち直流電圧v、。は通常0.2
2−8kV、  好マL < iio、3−6 kVの
範囲となるようにすることが望ましい。この直流電圧V
、。は、高周波電圧のみを印加した場合であっても、ま
た高周波電圧を直流電圧に重畳させて印加した場合であ
っても同様の条件に設定される。
When such a high frequency voltage is applied to the base support portion 3, a discharge occurs near the base portion. At this time, the voltage of the DC component generated in the base support portion 3, that is, the DC voltage v. is usually 0.2
It is desirable to set the voltage to be in the range of 2-8 kV, preferably L<iio, and 3-6 kV. This DC voltage V
,. are set to the same conditions even when only the high frequency voltage is applied or when the high frequency voltage is applied in a superimposed manner on the DC voltage.

なお、薄膜形成時には必要に応じて基体を加熱してもよ
い。
Note that the substrate may be heated as necessary when forming the thin film.

このような放電処理をすることにより、基体4は放電処
理されて活性化される。同時にイオン照射手段5から照
射されたイオン化した気体材料のイオン化が促進され高
エネルギー化し、あるいは分解、酸化 還元などの反応
をして基体に被着される。このように、気体材料は大き
なエネルギーで活性化された基体に衝突するため、基体
との密着強度に優れた薄膜が基体上に形成される。
By performing such discharge treatment, the base body 4 is subjected to discharge treatment and activated. At the same time, the ionization of the ionized gaseous material irradiated from the ion irradiation means 5 is promoted and becomes high in energy, or undergoes reactions such as decomposition, redox, etc., and is deposited on the substrate. In this way, since the gaseous material collides with the activated substrate with a large amount of energy, a thin film with excellent adhesion strength to the substrate is formed on the substrate.

1里り皇J 本発明に係る薄膜形成方法およびその装置+4真空槽内
において基体を支持手段により支持し、上記基体に少な
くとも一部がイオン化した気体を照射するとともに、上
記支持手段に高周波電圧を印加して放電を生じさせなか
ら、イオン化した気体を構成する少なくとも1種類の元
素を基体に被着させているので、基体上に基体との密着
性に優れた硬質薄膜を高い成膜速度で形成することがで
きる。
1 Riri-no-J Thin film forming method and apparatus thereof according to the present invention +4 A substrate is supported by a support means in a vacuum chamber, the substrate is irradiated with at least a partially ionized gas, and a high frequency voltage is applied to the support means. Since at least one type of element constituting the ionized gas is deposited on the substrate, it is possible to form a hard thin film with excellent adhesion to the substrate at a high deposition rate. can be formed.

以下、本発明を実施例により説明するが、本発明はこれ
ら実施例に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 第1図に示すような装置に、イオン照射手段としてカウ
フマン型イオン照射手段を用い、基体としてシリコンウ
ェハーを装着しr= 真空槽内を排気し、真空槽内の真空度を6×10−’T
orrとした。
Example 1 A Kaufmann type ion irradiation means was used as the ion irradiation means in an apparatus as shown in FIG. 1, and a silicon wafer was attached as the substrate. 10-'T
It was set as orr.

次に、イオン照射手段にメタンガスを116secmに
て導入し、イオンビーム電流が80mAになるように調
節し、基体支持部に13.56kHz、  2 kWの
高周波電圧を印加しなから、4μm/分の成膜速度で3
μmの膜厚で薄膜を形成した 形成された薄膜のマイクロビッカース硬度は5300k
gf / m m 2 であり、薄膜の剥離強度は80
kg/Cm2であった。
Next, methane gas was introduced into the ion irradiation means at a rate of 116 seconds, the ion beam current was adjusted to 80 mA, and a high frequency voltage of 13.56 kHz and 2 kW was not applied to the substrate support. 3 in film formation speed
The micro Vickers hardness of the thin film formed with a thickness of μm is 5300k.
gf/mm2, and the peel strength of the thin film is 80
kg/Cm2.

また、薄膜のラマン分光スペクトルには1550cm−
2近傍にブロードなピークが認められた実施例1におい
て基体支持部に高周波電圧を印加しなかった以外は、実
施例1と同様にして3μm/分の成膜速度で薄膜を形成
した 形成された薄膜のマイクロビッカース硬度は1300k
gf / m m 2であり、薄膜の剥離強度は17k
g/cm2であつtム また、薄膜のラマン分光スペクトルには1550cm 
−2近傍に極微少でブロードなピークが認められへ (以下余白)
In addition, the Raman spectrum of the thin film is 1550 cm-
A thin film was formed at a deposition rate of 3 μm/min in the same manner as in Example 1, except that no high-frequency voltage was applied to the substrate support in Example 1, in which a broad peak was observed near 2. The micro Vickers hardness of the thin film is 1300k.
gf/m m2, and the peel strength of the thin film is 17k
g/cm2, and 1550 cm for the Raman spectrum of a thin film.
An extremely small and broad peak was observed near -2 (margin below)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る薄膜形成装置の概略説明図である
。 1 薄膜形成装置   2 真空槽 3 基体支持部    4 基体 5 イオン照射手段  6 高周波電瀝7 ガス導入管
    8 排気管 特許出願人  東 燃 株 式 会 上代 理 人  
弁理士 人傑1)耕 平復代理人  弁理士 鈴 木 
俊一部
FIG. 1 is a schematic explanatory diagram of a thin film forming apparatus according to the present invention. 1 Thin film forming device 2 Vacuum chamber 3 Substrate support portion 4 Substrate 5 Ion irradiation means 6 High frequency electrolysis 7 Gas introduction pipe 8 Exhaust pipe patent applicant Tonen Co., Ltd. Senior Manager
Patent Attorney Hitoshi 1) Ko Heifuku Agent Patent Attorney Suzuki
Shunbetsu

Claims (6)

【特許請求の範囲】[Claims] (1) 真空槽内で基体を支持手段により支持し、上記
基体に、高周波電圧を印加するとともに、少なくとも一
部がイオン化した気体を照射して、基体に薄膜を形成す
ることを特徴とする薄膜形成方法。
(1) A thin film characterized in that a substrate is supported by a support means in a vacuum chamber, and a high frequency voltage is applied to the substrate and at the same time irradiation of at least partially ionized gas is performed to form a thin film on the substrate. Formation method.
(2) 真空槽内で基体を支持する支持手段と気体をイ
オン化し、上記基体に一部がイオン化された気体を照射
するイオン照射手段と、 上記支持手段に高周波電圧を印加する高周波電圧印加手
段とを備えることを特徴とする薄膜形成装置。
(2) A support means for supporting the substrate in a vacuum chamber, an ion irradiation means for ionizing gas and irradiating the partially ionized gas onto the substrate, and a high-frequency voltage application means for applying a high-frequency voltage to the support means. A thin film forming apparatus comprising:
(3) 上記気体が、炭化水素、ホウ素化合物、ケイ素
化合物、から選ばれる少なくとも一種である請求項第1
項に記載の薄膜形成方法。
(3) Claim 1, wherein the gas is at least one selected from hydrocarbons, boron compounds, and silicon compounds.
The thin film forming method described in .
(4) 上記気体が、炭化水素、ホウ素化合物、ケイ素
化合物、から選ばれる少なくとも一種である請求項第2
項に記載の薄膜形成装置。
(4) Claim 2, wherein the gas is at least one selected from hydrocarbons, boron compounds, and silicon compounds.
The thin film forming apparatus described in .
(5) 上記支持手段に生じる直流成分の電圧が、0.
22〜8kVの範囲である請求項第1項あるいは第3項
に記載の薄膜形成方法。
(5) If the DC component voltage generated in the support means is 0.
The thin film forming method according to claim 1 or 3, wherein the voltage is in the range of 22 to 8 kV.
(6) 上記支持手段に生じる直流成分の電圧が、0.
22〜8kVの範囲である請求項第2項あるいは第4項
に記載の薄膜形成装置。
(6) If the DC component voltage generated in the support means is 0.
The thin film forming apparatus according to claim 2 or 4, wherein the voltage is in the range of 22 to 8 kV.
JP30302490A 1990-11-08 1990-11-08 Formation of thin film and device thereof Pending JPH04176861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30302490A JPH04176861A (en) 1990-11-08 1990-11-08 Formation of thin film and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30302490A JPH04176861A (en) 1990-11-08 1990-11-08 Formation of thin film and device thereof

Publications (1)

Publication Number Publication Date
JPH04176861A true JPH04176861A (en) 1992-06-24

Family

ID=17916017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30302490A Pending JPH04176861A (en) 1990-11-08 1990-11-08 Formation of thin film and device thereof

Country Status (1)

Country Link
JP (1) JPH04176861A (en)

Similar Documents

Publication Publication Date Title
EP0778902B1 (en) Jet plasma deposition process and apparatus
JP2005500440A (en) Method for forming nanostructured functional layer and coating layer produced thereby
KR980700451A (en) Large-Scale, Low Pressure Plasma-lon Deposition of Diamondike Carbon Films
WO2001036704A2 (en) Method and apparatus for forming carbonaceous film
PL186562B1 (en) Method of covering edges with diamond carbon
JP2004270022A (en) Method for manufacturing thin film and thin film
Raveh et al. Deposition and properties of diamondlike carbon films produced in microwave and radio‐frequency plasma
JP4284941B2 (en) Hard carbon film covering member and film forming method
Günther et al. High rate deposition of hard aC: H films using microwave excited plasma enhanced CVD
JPS60195092A (en) Method and apparatus for production of carbon thin film
JPH04176861A (en) Formation of thin film and device thereof
Salimon et al. Characterization of Si-DLC films synthesized by low cost plasma-enhanced chemical vapor deposition
WO2015068655A1 (en) Dlc film formation method
JP3147695B2 (en) Plasma CVD method and apparatus for forming diamond-like carbon film
JP3082979B2 (en) Method for forming a-DLC-Si film
JPH101305A (en) Carbon film and production of carbon film
JPH05117087A (en) Article having diamond-like thin film as protection film
JP3016748B2 (en) Method for depositing carbon-based high-performance material thin film by electron beam excited plasma CVD
JPH03240959A (en) Method for synthesizing carbon nitride thin film
JP5530962B2 (en) Carbon film forming apparatus and carbon film forming method
JPH04329879A (en) Formation of diamondlike carbon film
JP3898622B2 (en) Carbon film forming method and apparatus, and carbon film and product coated with the carbon film
JP2597498B2 (en) Synthesis method of vapor phase diamond
JPH05124825A (en) Mold having diamondlike thin film protection film
JP2004084004A (en) Method for forming hard carbon film