JPH04176661A - Driving system for piezoelectric element - Google Patents

Driving system for piezoelectric element

Info

Publication number
JPH04176661A
JPH04176661A JP2303897A JP30389790A JPH04176661A JP H04176661 A JPH04176661 A JP H04176661A JP 2303897 A JP2303897 A JP 2303897A JP 30389790 A JP30389790 A JP 30389790A JP H04176661 A JPH04176661 A JP H04176661A
Authority
JP
Japan
Prior art keywords
piezoelectric element
voltage
coil
switch
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2303897A
Other languages
Japanese (ja)
Inventor
Takeshi Miyazawa
宮澤 武
Satoshi Yoshino
吉野 悟志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2303897A priority Critical patent/JPH04176661A/en
Publication of JPH04176661A publication Critical patent/JPH04176661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To make constituent elements compact and reduce the stepped part of a charged voltage waveform by providing a process in which piezoelectric elements are connected serially with an inductance to a power supply to form a resonance circuit for charging the piezoelectric element, a process in which the inductance is charged electrically from a power supply and a process in which the flyback voltage of the inductance is stacked over the charged piezoelectric element. CONSTITUTION:Switch SW1 is turned ON. Then a resonance circuit is formed and a power supply charges a piezoelectric element 3 through switch SW1, coil 2 and diode D2 to boost the voltage of the piezoelectric element 3 to a voltage value twice as much as the voltage of the power supply. Next, with the switch SW1 maintained in 'ON' position, SW3 is turned ON. The piezoelectric element 3 is left as it is charged, while the power supply 1 is grounded through the switch SW1, coil 2 and switch SW3, charging the coil 2. In addition, if the switches SW1, SW2 are turned OFF, a flyback voltage from the coil 2 is applied through the diode D2, piezoelectric element 3 and a diode D3. Consequently, the terminal voltage of the piezoelectric element 3 is boosted by charging with the flyback voltage in addition to a charging to the element in the first process. Thus it is possible to make constituent elements used compact and reduce the stepped part of a charged voltage waveform.

Description

【発明の詳細な説明】 〔概 要〕 例えば印刷装置における印字部の圧電素子の駆動に応用
される圧電素子駆動方式に関し、構成要素を小型化し、
充電電圧波形の段差を減少させることを目的とし、 電源へインダクタンスと直列に圧電素子を接続して共振
回路を形成し該圧電素子を充電する過程と、該電源から
該インダクタンスを充電する過程と、該充電された該イ
ンダクタンスのフライバック電圧を前記充電された圧電
素子に重ね合わせて充電する過程とを具備するよう構成
する。
[Detailed Description of the Invention] [Summary] Regarding a piezoelectric element drive method that is applied to drive a piezoelectric element in a printing section of a printing device, for example, the components are miniaturized,
A process of connecting a piezoelectric element in series with an inductance to a power source to form a resonant circuit and charging the piezoelectric element, and a process of charging the inductance from the power source, for the purpose of reducing the step difference in the charging voltage waveform. and charging the charged piezoelectric element by superimposing the flyback voltage of the charged inductance on the charged piezoelectric element.

〔産業上の利用分野〕[Industrial application field]

本発明は例えば印刷装置における印字部の圧電素子の駆
動に応用される圧電素子駆動方式に関する。
The present invention relates to a piezoelectric element driving method applied to, for example, driving a piezoelectric element of a printing section in a printing apparatus.

〔従来の技術〕[Conventional technology]

圧電素子の駆動に関しては下記のような文献が開示され
ている。
Regarding the driving of piezoelectric elements, the following documents are disclosed.

(a)コイルと圧電素子とを直列に接続させ、その時に
発生する共振電圧によって、電源電圧の2倍に相当する
電荷を貯えるもの。(特開昭59−198885号) (b)電源電圧を一度コイルに充電することにより、電
源電圧とフライバック電圧によって圧電素子に充電する
もの。(特開昭63−126285号)(C)コイルと
圧電素子との直列共振を利用して圧電素子に充放電を行
う際に、充電時と放電時との通路を分けて放電時間を制
御可能とするもの。
(a) A coil and a piezoelectric element are connected in series, and the resonant voltage generated at that time stores an electric charge equivalent to twice the power supply voltage. (Japanese Unexamined Patent Publication No. 59-198885) (b) A piezoelectric element is charged by the power supply voltage and flyback voltage by once charging the coil with the power supply voltage. (Unexamined Japanese Patent Publication No. 63-126285) (C) When charging and discharging a piezoelectric element using series resonance between a coil and a piezoelectric element, the discharge time can be controlled by separating the paths for charging and discharging. What to do.

(特開平1−283978号) 〔発明が解決しようとする課題〕 しかしながら上記(a)ではコイルと圧電素子との共振
周波数により電圧の形が固定されてしまい、(b)では
圧電素子に充電する電荷の量を多くしようとすると、コ
イルも大容量にしなくてはならなくなり、大型になって
しまうという欠点がある。また、(C)についても、放
電時に際してコイルによって電圧の形に段差が生じると
いう課題があった。
(Unexamined Japanese Patent Publication No. 1-283978) [Problems to be Solved by the Invention] However, in (a) above, the shape of the voltage is fixed due to the resonance frequency of the coil and piezoelectric element, and in (b), the piezoelectric element is charged. Increasing the amount of charge requires increasing the capacity of the coil, which has the disadvantage of increasing the size. Also, regarding (C), there was a problem in that a step difference occurred in the voltage shape depending on the coil during discharging.

従って、本発明の目的は構成要素を小型化し、充電電圧
波形の段差を減少させることにある。
Therefore, an object of the present invention is to miniaturize the components and reduce the step difference in the charging voltage waveform.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては第1図に例示されるように、電源1ヘ
インダクタンス2と直列に圧電素子3を接続して共振回
路を形成し該圧電素子3を充電する過程と、該電源1か
ら該インダクタンス2を充電する過程と、該充電された
該インダクタンス2のフライバック電圧を前記充電され
た圧電素子3に重ね合わせて充電する過程とを具備する
圧電素子駆動方式が提供される。
In the present invention, as illustrated in FIG. A method for driving a piezoelectric element is provided, which includes a step of charging the piezoelectric element 3, and a step of superimposing the flyback voltage of the charged inductance 2 on the charged piezoelectric element 3.

〔作 用〕[For production]

上述の方式を用いれば、インダクタンスを与えるコイル
の大きさが比較的小型ですみ、充電電圧波形も第2図の
第4段目に示すようになり、顕著な段差は見られない。
If the above method is used, the size of the coil providing inductance can be relatively small, and the charging voltage waveform becomes as shown in the fourth row of FIG. 2, with no noticeable step difference.

〔実施例〕〔Example〕

本発明の一実施例としての圧電素子駆動方式を行う回路
の回路図が第1図に示される。
A circuit diagram of a circuit that performs a piezoelectric element driving method as an embodiment of the present invention is shown in FIG.

この回路は電源11キヤパシタC1スイツチ(SWI 
、 SW2 、5W3) 、ダイオード(Di、D2゜
D3.D4) 、インダクタンスとしてのコイル2、圧
電素子3を具備する。電源1は直流電源であって負極側
は接地され、正極側はスイッチSWIの接点を介してコ
イル2へ接続される。電源1には並列にキャパシタCが
接続される。スイッチ5II11の接点間にはダイオー
ドD1が並列に接続され゛る。
This circuit is a power supply 11 capacitor C1 switch (SWI
, SW2, 5W3), diodes (Di, D2°D3.D4), a coil 2 as an inductance, and a piezoelectric element 3. The power supply 1 is a DC power supply whose negative pole side is grounded and whose positive pole side is connected to the coil 2 via the contact of the switch SWI. A capacitor C is connected to the power supply 1 in parallel. A diode D1 is connected in parallel between the contacts of the switch 5II11.

ダイオードD1の極性は陰極側が電源lの正極側に接続
される。スイッチSWIとコイル2の接続点と接地の間
にダイオードD3が陽極を接地側にして接続される。コ
イル2の他方側の端子はダイオードD2の陽極、ダイオ
ードD4の陰極、スイッチSW2の一方の接点、および
スイッチSW3の一方の接点に接続される。ダイオード
D2の陰極とスイッチSW2の他方の接点は共に圧電素
子3の一方の端子に接続される。ダイオードD4の陽極
およびスイッチSW3の他方の接点はそれぞれ接地され
る。圧電素子3の他方の端子は接地される。
Regarding the polarity of the diode D1, the cathode side is connected to the positive side of the power supply l. A diode D3 is connected between the connection point between the switch SWI and the coil 2 and the ground, with its anode being on the ground side. The other terminal of the coil 2 is connected to the anode of the diode D2, the cathode of the diode D4, one contact of the switch SW2, and one contact of the switch SW3. The cathode of the diode D2 and the other contact of the switch SW2 are both connected to one terminal of the piezoelectric element 3. The anode of diode D4 and the other contact of switch SW3 are each grounded. The other terminal of the piezoelectric element 3 is grounded.

前述の回路の動作を説明する。まず第1の過程としてス
イッチSI!11がオン(導通状態)される。
The operation of the circuit described above will be explained. First, the first step is switch SI! 11 is turned on (conducting state).

すると共振回路が形成され、電源はスイッチswi、コ
イル2、ダイオードD2を介して圧電素子3を充電し、
電源電圧の2倍の電圧値に迄、圧電素子3を昇圧する。
Then, a resonant circuit is formed, and the power source charges the piezoelectric element 3 via the switch swi, the coil 2, and the diode D2,
The piezoelectric element 3 is boosted to a voltage value twice the power supply voltage.

第2の過程としてスイッチSWIはオンのままとし、さ
らにスイッチ鐘3をオンする。
As a second step, the switch SWI is left on, and the switch bell 3 is turned on.

圧電素子3は充電状態のまま保持され、一方、電源1は
スイッチSW 1 、コイル2、スイッチSW3を介し
て接地され、コイル2が充電される。さらに第3の過程
としてスイッチSW 1 右よび5Il12をオフする
と、コイル2からのフライバック電圧が、ダイオードD
2、圧電素子3、およびダイオードD3を通って印加さ
れ、圧電素子3の第1の過程における充電に加えて、第
3の過程のフライバック電圧による充電で、さらに圧電
素子3の端子電圧が上昇される。最後に、スイッチsw
2がオンされると圧電素子3の充電された電荷はスイッ
チSW2、コイル2、ダイオードD1を介して電源lに
回送される。
The piezoelectric element 3 is maintained in a charged state, while the power source 1 is grounded via the switch SW 1 , the coil 2, and the switch SW3, and the coil 2 is charged. Furthermore, as a third step, when the switch SW 1 right and 5Il12 are turned off, the flyback voltage from the coil 2 is transferred to the diode D.
2. Applied through the piezoelectric element 3 and the diode D3, in addition to charging the piezoelectric element 3 in the first process, charging by the flyback voltage in the third process further increases the terminal voltage of the piezoelectric element 3. be done. Finally, switch sw
When the piezoelectric element 2 is turned on, the electric charge charged in the piezoelectric element 3 is transferred to the power supply l via the switch SW2, the coil 2, and the diode D1.

前述の動作を第2図の波形を用いて説明する。The above operation will be explained using the waveforms shown in FIG.

コイル2を流れる電流Iは最上段の波形図のように、第
1の過程においては徐々に電流値を増しその後徐々に減
少して第2図第4段目のVに示すように圧電素子3の端
子間電圧を徐々に上昇させる。
As shown in the topmost waveform diagram, the current I flowing through the coil 2 gradually increases in current value in the first process, and then gradually decreases, and as shown by V in the fourth row of FIG. Gradually increase the voltage between the terminals.

第2の過程においてはIは直線状に増大し、一方電圧V
は一定値を保持する。第3の過程ではフライバック充電
されコイル2の電流は減少し、圧電素子3の端子電圧V
は徐々に上昇する。この端子電圧の上昇によって圧電素
子3は膨張し印字を行うことができる。圧電素子3の膨
張を元に戻すた狛の放電はスイッチSW2のオンによっ
て行われコイルに充電時とは逆向きの電流が流れ電圧V
は減少する。
In the second process, I increases linearly, while the voltage V
holds a constant value. In the third process, the current in the coil 2 decreases due to flyback charging, and the terminal voltage V of the piezoelectric element 3 decreases.
increases gradually. This rise in terminal voltage causes the piezoelectric element 3 to expand and print can be performed. The discharging of the shield that has returned the expansion of the piezoelectric element 3 to its original state is performed by turning on the switch SW2, and a current flows through the coil in the opposite direction to that during charging, resulting in a voltage V.
decreases.

このような回路を用いれば共振電圧による充電とフライ
バック電圧による充電の双方を利用するため始動時に必
要とするコイルの容量も比較的小さくてすみ、コイルの
小型化を実現することができる。
If such a circuit is used, since both resonant voltage charging and flyback voltage charging are used, the capacity of the coil required at startup can be relatively small, and the coil can be made smaller.

前述の実施例の回路の変形が第3図に示される。A modification of the circuit of the previous embodiment is shown in FIG.

この回路は第1図の回路に比べてコイルとして中間タッ
プの設けられたコイル2′を用い、この中間タップから
スイッチSW3とダイオードD4への接続線を引き出し
、コイルに充電する時のインダクタンス値を減少するも
ので、これにより第2図における電圧Vの波形をより滑
らかにすることができる。
Compared to the circuit shown in Figure 1, this circuit uses a coil 2' with a center tap as the coil, draws out the connection wire from the center tap to the switch SW3 and the diode D4, and calculates the inductance value when charging the coil. This allows the waveform of the voltage V in FIG. 2 to be made smoother.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、使用する構成要素を小型化でき、充電
電圧波形の段差を減少させることができる。
According to the present invention, it is possible to downsize the components used and reduce the level difference in the charging voltage waveform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の圧電素子駆動方式を行う回路の回路図
、 第2図は第1図の回路の波形図、および第3図は第1図
の回路の変形例を示す回路図である。 図において、 1・・・電源、     2・・・コイル、3・・・圧
電素子、  C・・・キャパシタ、DI、D2.D3.
D4・・・ダイオード、SWI 、 SW2 、 SW
3・・・スイッチ、である。 実施例の回路の回路図       1・・・til1
3・・・圧電素子 実施例の回路の波形図 第2図 実施例の回路の変形の回路図 第3図 2′・・・コイル
FIG. 1 is a circuit diagram of a circuit that performs the piezoelectric element driving method of the present invention, FIG. 2 is a waveform diagram of the circuit of FIG. 1, and FIG. 3 is a circuit diagram showing a modification of the circuit of FIG. 1. . In the figure, 1...power supply, 2...coil, 3...piezoelectric element, C...capacitor, DI, D2. D3.
D4...diode, SWI, SW2, SW
3...Switch. Circuit diagram of the circuit of the example 1...til1
3... Waveform diagram of the circuit of the piezoelectric element embodiment. Fig. 2. Circuit diagram of modification of the circuit of the embodiment. 3. 2'... Coil.

Claims (1)

【特許請求の範囲】 電源(1)へインダクタンス(2)と直列に圧電素子(
3)を接続して共振回路を形成し該圧電素子(3)を充
電する過程、 該電源(1)から該インダクタンス(2)を充電する過
程、および 該充電された該インダクタンス(2)のフライバック電
圧を前記充電された圧電素子(3)に重ね合わせて充電
する過程、 を具備する圧電素子駆動方式。
[Claims] A piezoelectric element (
3) to form a resonant circuit and charge the piezoelectric element (3), charge the inductance (2) from the power source (1), and fry the charged inductance (2). A piezoelectric element driving method comprising: superimposing a back voltage on the charged piezoelectric element (3) to charge it.
JP2303897A 1990-11-13 1990-11-13 Driving system for piezoelectric element Pending JPH04176661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2303897A JPH04176661A (en) 1990-11-13 1990-11-13 Driving system for piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2303897A JPH04176661A (en) 1990-11-13 1990-11-13 Driving system for piezoelectric element

Publications (1)

Publication Number Publication Date
JPH04176661A true JPH04176661A (en) 1992-06-24

Family

ID=17926582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2303897A Pending JPH04176661A (en) 1990-11-13 1990-11-13 Driving system for piezoelectric element

Country Status (1)

Country Link
JP (1) JPH04176661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759766B2 (en) 2001-12-18 2004-07-06 Fuji Xerox Co., Ltd. Power supply apparatus and image forming apparatus using the same
CN103782406A (en) * 2011-08-26 2014-05-07 全球喷墨系统有限公司 Method of driving a capacitive load and drive circuit therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759766B2 (en) 2001-12-18 2004-07-06 Fuji Xerox Co., Ltd. Power supply apparatus and image forming apparatus using the same
CN103782406A (en) * 2011-08-26 2014-05-07 全球喷墨系统有限公司 Method of driving a capacitive load and drive circuit therefor
JP2014526236A (en) * 2011-08-26 2014-10-02 グローバル インクジェット システムズ リミテッド Capacitive load driving method and driving circuit therefor

Similar Documents

Publication Publication Date Title
US6759766B2 (en) Power supply apparatus and image forming apparatus using the same
EP1111763A3 (en) DC/DC Converter and method of operating a DC/DC converter
JPH04507481A (en) Piezoelectric actuator drive device
JPH0686536A (en) Carrying-over circuit for ac-dc converter
US11329569B2 (en) Power conversion system
US6633091B1 (en) Storage module
JPH04176661A (en) Driving system for piezoelectric element
CN112187056A (en) Power supply system and DC-DC converter
US11831238B2 (en) Power conversion system
JPS60194675A (en) Multiscanning frequency deflecting circuit for video displaydevice
JP4105491B2 (en) Piezoelectric transformer and strobe device having the piezoelectric transformer
JPH1198829A (en) Switching power source
JP2636330B2 (en) Snubber circuit
JP2000278868A (en) Method of charging battery using controller main circuit for driving motor
JPH11145791A (en) Pulsating power unit with bias function
JPS585572B2 (en) Charging and overdischarge prevention circuit
JP3078118B2 (en) Pulse power circuit
JPH05347546A (en) Switching circuit for electrostatic induction thyristor
SU1561115A1 (en) Dc switch
JP2879227B2 (en) Push-pull inverter
SU1457109A1 (en) Unit for successive switching of thyristor
JP4343362B2 (en) Igniter circuit for discharge lamp
SU966870A1 (en) Control device
JP2889364B2 (en) Discharge lamp starting device
JPH11146662A (en) Pulse power unit