JPH0417623A - Production of cold rolled ferritic stainless steel having excellent surface characteristic and moldability - Google Patents

Production of cold rolled ferritic stainless steel having excellent surface characteristic and moldability

Info

Publication number
JPH0417623A
JPH0417623A JP11775090A JP11775090A JPH0417623A JP H0417623 A JPH0417623 A JP H0417623A JP 11775090 A JP11775090 A JP 11775090A JP 11775090 A JP11775090 A JP 11775090A JP H0417623 A JPH0417623 A JP H0417623A
Authority
JP
Japan
Prior art keywords
annealing
stainless steel
ferritic stainless
sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11775090A
Other languages
Japanese (ja)
Inventor
Kazuya Miura
和哉 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11775090A priority Critical patent/JPH0417623A/en
Publication of JPH0417623A publication Critical patent/JPH0417623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To prevent the erosion of crystal grain boundaries by pickling and to stably produce a stainless steel sheet having excellent surface characteristics by subjecting the slab of a ferritic stainless steel to hot rolling and annealing under specific temp. conditions, then pickling the surface to remove scale, then subjecting the slab to cold rolling and annealing. CONSTITUTION:The slab of the ferritic stainless steel consisting of the compsn. contg., by weight %, <0.055% C, 16.0 to 18.0% Cr, 0.05 to 0.20% Al, and 0.025 to 0.070% Ni and having >=2 ratio of Al/N is hot rolled to a hot rolled sheet, which is then coiled at <=650 deg.C. This hot rolled sheet is annealed in a temp. range of 800 to 90O deg.C and is cooled at 25 deg.C/sec cooling rate down to <=600 deg.C; in succession, the steel sheet is pickled by an acid mixture composed of nitric acid and hydrofluoric acid, by which the surface scale is removed. The steel sheet is thereafter worked to the sheet of the final sheet thickness by cold rolling and is then subjected to the final finish rolling. The ferritic stainless steel sheet having the excellent surface characteristics and moldability is produced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、表面性状と成形性に極めて優れたフェライト
系ステンレス冷延綱板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a cold-rolled ferritic stainless steel sheet having extremely excellent surface properties and formability.

〈従来の技術〉 5US430で代表されるフェライト系ステンレス綱板
は熱間圧延後ハツチ焼鈍あるいは連続焼鈍し、引続き冷
間圧延と仕上焼鈍を行って製造される。この製造工程に
おいて前記熱間圧延に続いて行う焼鈍処理は、耐リジン
グ性及び成形性の向上に不可欠な工程であるが、この他
に熱延板の鋭敏化の回復という重要な目的を持つ。
<Prior Art> A ferritic stainless steel sheet represented by 5US430 is produced by hot rolling, hatch annealing or continuous annealing, and then cold rolling and final annealing. In this manufacturing process, the annealing treatment performed subsequent to the hot rolling is an essential step for improving ridging resistance and formability, but it also has an important purpose of restoring the sensitization of the hot rolled sheet.

ところで、焼鈍工程に引続き、一般には混酸を用いた酸
洗により脱スケールが施されるが、この焼鈍工程での鋭
敏化の回復が不充分であると混酸により粒界浸食を生じ
、冷延後にゴールドダストあるいはキラキラといった表
面欠陥の発生によってその表面性状が著しく阻害される
By the way, following the annealing process, descaling is generally carried out by pickling using a mixed acid, but if the recovery of sensitization in this annealing process is insufficient, the mixed acid will cause grain boundary erosion, resulting in descaling after cold rolling. The appearance of surface defects such as gold dust or glitter significantly impairs the surface quality.

従来から行われているバッチ焼鈍による場合は、焼鈍時
の冷却速度が5〜30℃/hと極めて小さく、焼鈍後に
鋭敏化を住じることはないが連続焼鈍工程においては焼
鈍温度に保持後大きな冷却速度で冷却されるため、鋭敏
化の回復が充分になされにくい。
In the case of conventional batch annealing, the cooling rate during annealing is extremely low at 5 to 30°C/h, and sensitization does not occur after annealing, but in continuous annealing processes, the cooling rate during annealing is extremely low, and sensitization does not occur after annealing. Since it is cooled at a high cooling rate, it is difficult to recover the sensitization sufficiently.

しかしながら、バ・シチ式焼鈍はその処理に数10時間
を要し、生産性が低いため近年この工程を連続焼鈍によ
り処理時間の短縮を図る技術が実施されつつある。例え
ば特公昭59−43978号公報にはMを含有するフェ
ライト系ステンレス綱板の熱延板焼鈍を850〜110
0℃で行い、その冷却過程において700〜900℃の
温度まで15℃/sで冷却を行い、700〜900 ℃
で2癲以上の保持を行うことなくさらにN量に応じて冷
却する方法が開示されている。
However, since the process of Bacchi type annealing takes several tens of hours and has low productivity, in recent years, techniques have been implemented to shorten the processing time by performing continuous annealing in this process. For example, in Japanese Patent Publication No. 59-43978, a hot rolled sheet of ferritic stainless steel sheet containing M is annealed to 850 to 110
The temperature is 0°C, and during the cooling process, cooling is performed at 15°C/s to a temperature of 700 to 900°C.
A method for further cooling according to the amount of N without holding the temperature at 2 or more times is disclosed.

しかし、かかる従来技術の場合鋭敏化の防止を目的とし
て熱延板焼鈍時の冷却を一応制御しているものの、従来
のバッチ焼鈍材に比べて成形性、面内異方性、耐リジン
グ性が劣るばかりでなく次工程で混酸による酸洗を行う
と、粒界浸食を生じやすい問題を有している。
However, in the case of such conventional technology, although the cooling during hot-rolled sheet annealing is controlled to prevent sensitization, the formability, in-plane anisotropy, and ridging resistance are lower than that of conventional batch annealed materials. Not only is it inferior, but it also has the problem of easily causing grain boundary erosion when pickling with a mixed acid is performed in the next step.

〈発明が解決しようとするaS> この発明は、従来の熱延板の連続焼鈍化技術における問
題である、成形性、耐リジング性の劣化および混酸によ
る粒界浸食発生を有利に解決するもので、表面性状と成
形性に優れたフェライト系ステンレス冷延綱板の製造方
法を提供することを目的とするものである。
<aS to be solved by the invention> This invention advantageously solves the problems of conventional continuous annealing technology for hot-rolled sheets, such as deterioration of formability and ridging resistance and occurrence of grain boundary erosion due to mixed acids. The object of the present invention is to provide a method for producing a cold-rolled ferritic stainless steel sheet with excellent surface properties and formability.

〈!I題を解決するための手段〉 すなわちこの発明は、重量比にて、C0.055%以下
、Cr 16.0〜18.0%、A10.05〜0.2
0%、N0.025〜0.070%、かつAI7N≧2
を含有するフェライト系ステンレス鋼スラブを、熱間圧
延し、650℃以下の温度で巻取り、引続き熱延板焼鈍
を800℃以上900℃未満の温度範囲で行い、焼鈍後
の冷却を600″C以下の温度まで25℃/ s以下の
冷却速度で行い、ついで酸洗処理、冷間圧延ならびに焼
鈍処理を施すことを特徴とする表面性状と成形性に優れ
たフェライト系ステンレス冷延綱板の製造方法である。
<! Means for Solving Problem I> That is, the present invention provides carbon of 0.055% or less, Cr of 16.0 to 18.0%, and A of 10.05 to 0.2% by weight.
0%, N0.025-0.070%, and AI7N≧2
A ferritic stainless steel slab containing is hot-rolled and coiled at a temperature of 650°C or less, followed by hot-rolled plate annealing at a temperature range of 800°C or more and less than 900°C, and cooling after annealing at 600"C. Production of cold-rolled ferritic stainless steel steel sheet with excellent surface texture and formability, characterized by cooling to the following temperature at a rate of 25°C/s or less, followed by pickling treatment, cold rolling, and annealing treatment. It's a method.

〈作 用〉 本発明は、前述したように熱延板に連続焼鈍工程を採用
しても、冷延、仕上焼鈍後の成形性、耐リジング性の改
善および連続焼鈍後の酸洗工程での混酸による粒界浸食
の防止を大きな目的とじている。
<Function> As described above, the present invention improves formability and ridging resistance after cold rolling and finish annealing, and improves the pickling process after continuous annealing even if a continuous annealing process is adopted for hot rolled sheets. The main purpose is to prevent grain boundary erosion caused by mixed acids.

そこで本発明者らは、まず連続焼鈍工程における冷延仕
上焼鈍後の成形性および耐リジング性に及ぼす成分の影
響について研究を行った結果MとNを積極的に添加し、
Cの低減を行うことが極めて有効であることを見出した
Therefore, the present inventors first conducted research on the influence of components on formability and ridging resistance after cold rolling finish annealing in the continuous annealing process, and as a result, actively added M and N.
It has been found that reducing C is extremely effective.

5US430で代表されるフェライト系ステンレス鋼の
連続焼鈍化において、0.1%程度のNの添加が有効で
あることは一般によ(知られている。
It is generally known that addition of about 0.1% of N is effective in continuous annealing of ferritic stainless steel represented by 5US430.

すなわちAtは、強力なフェライト生成元素であるため
、その添加によりA、変態温度が上昇し、従来のバッチ
焼鈍が800〜850℃であるのに対し、850〜90
0℃といったより高温での焼鈍が可能となるために、短
時間で焼鈍の効果が得られやすくなる。ところがMの添
加により、高温でのオーステナイト量が減少し耐リジン
グ性が劣化するという深刻な問題を招き、一方で高温短
時間化焼鈍により従来と同等レベルのY値は得られるも
のの、熱延組織が充分に均質化されないためにプレス加
工性の最も重要なファクターである伸びの劣化が従来の
パンチ焼鈍材に比べて著しい。これらの問題に対してN
の添加およびCの低減は極めて有効に作用する。
That is, since At is a strong ferrite-forming element, the addition of At increases the A transformation temperature, which is 850-90°C, whereas conventional batch annealing is 800-850°C.
Since annealing can be performed at a higher temperature such as 0° C., the effect of annealing can be easily obtained in a short time. However, the addition of M causes a serious problem of reducing the amount of austenite at high temperatures and deteriorating the ridging resistance.On the other hand, although high-temperature and short-time annealing can obtain the same level of Y value as conventional methods, the hot-rolled structure deteriorates. Because the material is not sufficiently homogenized, elongation, which is the most important factor in press workability, deteriorates significantly compared to conventional punch annealed materials. For these problems, N
The addition of C and the reduction of C are extremely effective.

Nはオーステナイト性成元素であるため添加により熱延
中のγ相が増加し、熱延集合組織を均質化することによ
って耐リジング性が向上する。ところが単にNのみを添
加すると耐リジング性は向上するものの綱板が硬質化し
プレス成形性が劣化する。これに対して本発明法ではA
Iと0.03%以上のNを複合添加することによって、
プレス成形性を向上させるとともに、耐リジング性の向
上を可能とする。すなわちNの添加により熱延中のγ相
が増加し耐リジング性が向上するが、約1000℃以下
の温度域では、A77N≧2とすることでNは固溶せず
AINとして析出するためにプレス成形性の劣化を招か
ない。
Since N is an austenitic element, its addition increases the γ phase during hot rolling and homogenizes the hot rolling texture, thereby improving ridging resistance. However, if only N is added, although the ridging resistance is improved, the steel plate becomes hard and the press formability deteriorates. On the other hand, in the method of the present invention, A
By adding I and 0.03% or more of N in combination,
It improves press formability and also makes it possible to improve ridging resistance. In other words, the addition of N increases the γ phase during hot rolling and improves the ridging resistance, but in the temperature range of about 1000°C or less, by setting A77N≧2, N does not dissolve in solid solution but precipitates as AIN. Does not cause deterioration of press formability.

そしてさらに従来のバンチ焼鈍材と同等以上のプレス成
形性を得るにはCをo、 055%以下に低減すること
が有効である。
Further, in order to obtain press formability equivalent to or higher than that of conventional bunch annealed materials, it is effective to reduce C to 0.055% or less.

そこで次に連続焼鈍工程におけるプレス成形性、耐リジ
ング性に及ぼす成分の影響についての上述の知見に留意
しつつ混酸による粒界浸食防止に関してさらに詳細な研
究を行った。
Therefore, we next conducted a more detailed study on prevention of grain boundary erosion by mixed acids, keeping in mind the above-mentioned findings regarding the effects of ingredients on press formability and ridging resistance in continuous annealing processes.

その結果、フェライト系ステンレス綱板はその熱延工程
において一般に約700〜750℃の温度でコイルに巻
取られるが、巻取後の自己焼鈍効果によって綱板表層に
脱Cr層が生成する。ここで生成する脱Cr相の厚さは
約1100Irにも達しこれが混酸による粒界浸食の原
因となる。すなわち、5US430で代表される17C
rtliは、約900℃以上の温度に加熱後冷却するこ
とにより鋭敏化を住じるが、熱延後の巻取によって脱C
r層を生じると綱板の表層のCr濃度は約10%程度に
まで低下するために、Cr炭化物の固溶温度低下に起因
して800℃といった低い温度でも冷却速度の比較的大
きい連続焼鈍工程においては綱板表層の鋭敏化を生しる
0本発明者らは、このようにして混酸による粒界浸食を
生じる機構を解明するに至った。
As a result, the ferritic stainless steel steel sheet is generally wound into a coil at a temperature of about 700 to 750° C. during the hot rolling process, and a Cr-free layer is formed on the surface layer of the steel sheet due to the self-annealing effect after winding. The thickness of the Cr-free phase generated here reaches approximately 1100 Ir, which causes grain boundary erosion by the mixed acid. That is, 17C represented by 5US430
Rtli is sensitized by heating to a temperature of about 900°C or higher and then cooling, but it can be decarbonized by winding after hot rolling.
When an R-layer is formed, the Cr concentration in the surface layer of the steel sheet decreases to about 10%, so a continuous annealing process with a relatively high cooling rate even at temperatures as low as 800°C is necessary due to the lowering of the solid solution temperature of Cr carbides. In this way, the present inventors have elucidated the mechanism of grain boundary erosion caused by mixed acids.

ここで本発明における適正な工程条件を見出すに至った
基礎となる実験について説明する。
Here, the experiments that served as the basis for finding the appropriate process conditions for the present invention will be explained.

小型真空高周波炉で、C0.01〜0.07%、MO7
15%、N 0.035%、Cr 16.5%を含有す
る種々の小型鋼塊を熔製し、これを1230℃に加熱し
た後4鵬厚に熱間圧延し、直ちに800℃〜室温で巻取
の操作を行うシミュレートとしてそれらの温度範囲に3
0m保持後空冷した。これらを870℃、1諭の条件で
熱延板焼鈍した。このとき焼鈍後の冷却速度を10〜4
0℃/ sの範囲で変化させた。
Small vacuum high frequency furnace, C0.01-0.07%, MO7
Various small steel ingots containing 15% N, 0.035% N, and 16.5% Cr were melted, heated to 1230°C, hot rolled to a thickness of 4 mm, and immediately heated from 800°C to room temperature. 3 in those temperature ranges to simulate the winding operation.
After holding at 0 m, it was air cooled. These were hot-rolled sheets annealed at 870°C and 1 hour. At this time, the cooling rate after annealing was set to 10 to 4
It was varied in the range of 0°C/s.

これらに対し、混酸酸洗(HNOx 100 g / 
l’ + HF20g/I!、、50℃160s)を行
い走査型電子顕微鏡により粒界を観察した。その結果を
第1図に示す。
For these, mixed acid pickling (HNOx 100 g/
l' + HF20g/I! , 50° C. for 160 seconds), and grain boundaries were observed using a scanning electron microscope. The results are shown in FIG.

巻取温度を低下させることによって鋭敏化温度範囲は縮
小し、また低C化、焼鈍後の冷却速度の低下も粒界浸食
の防止に効果を示す、焼鈍後の冷却速度が25℃/ s
より小さな場合は巻取温度が650℃以下で粒界浸食を
生じないが、C量が0.055%を趙えると急激に粒界
浸食を生じやすくなる。また、焼鈍後の冷却速度が25
℃/ sを超えて大きくなった場合にも粒界浸食を生し
やすくなり、その防止は困難である。これは焼鈍中にわ
ずかに固溶したCr炭化物が冷却中に再析出し鋭敏化を
生じるが、−25℃/ sより小さな速度で冷却した場
合はCrが拡散し鋭敏化を回復させるためと考えられる
By lowering the coiling temperature, the sensitization temperature range is reduced, and lowering the C and lowering the cooling rate after annealing is also effective in preventing grain boundary erosion.The cooling rate after annealing is 25℃/s.
If the carbon content is smaller, grain boundary erosion does not occur at a winding temperature of 650° C. or less, but if the C content exceeds 0.055%, grain boundary erosion is rapidly likely to occur. In addition, the cooling rate after annealing is 25
If it increases beyond ℃/s, grain boundary erosion tends to occur, and it is difficult to prevent it. This is thought to be because a slight amount of Cr carbide dissolved in solid solution during annealing re-precipitates during cooling, causing sensitization, but when cooling at a rate lower than -25°C/s, Cr diffuses and recovers the sensitization. It will be done.

25℃/sより小さな速度での冷却は室温まで行う必要
はなく、Cr原子の拡散が活発な600′Cまでの冷却
制御が効果を示す、それ以下の温度から急冷しても鋭敏
化は生じない。
It is not necessary to cool down to room temperature at a rate lower than 25°C/s, and cooling control up to 600'C, where Cr atoms are actively diffusing, is effective.Sensitization does not occur even if rapidly cooled from a temperature below that temperature. do not have.

次に成分の限定理由を説明する。Next, the reason for limiting the ingredients will be explained.

Cは、0.055%以下の含有量で良好な伸びが得られ
、また0、055%を超えると伸びが劣化するとともに
混酸により粒界浸食を生じやすくなるので0.055%
以下に限定した。
Good elongation can be obtained with a C content of 0.055% or less, and if it exceeds 0.055%, elongation deteriorates and grain boundary erosion is likely to occur due to mixed acid, so 0.055% is selected.
Limited to the following.

C「は、フェライト系ステンレス綱における基本元素で
、所期した耐食性を得るためには少なくとも16.0%
が必要であり、またその含有量の増大により耐食性は向
上するが、18%を趙えると成形加工性が劣化するので
16.0〜18.0%の範囲とした。
C is a basic element in ferritic stainless steel, and must be at least 16.0% in order to obtain the desired corrosion resistance.
Although the corrosion resistance is improved by increasing the content, the moldability deteriorates when the content exceeds 18%, so the content is set in the range of 16.0 to 18.0%.

Nは、有効なオーステナイト生成元素で、熱延中のオー
ステナイト析出量を増加させることにより耐リジング性
を向上させるが、0.025%未満ではその効果がなく
、0.07%を超えるとA7Nが多量に析出し綱板の表
面性状を劣化させるので0.025〜0.07%に限定
した。
N is an effective austenite-forming element that improves ridging resistance by increasing the amount of austenite precipitated during hot rolling, but if it is less than 0.025%, it has no effect, and if it exceeds 0.07%, A7N Since it precipitates in large amounts and deteriorates the surface properties of the steel plate, it is limited to 0.025 to 0.07%.

A!は、強力なフェライト生成元素で、A1変態温度を
上昇させることになりより高温度での焼鈍が可能となる
だけでなく、NをAnとして安定化させプレス成形性を
向上させる。0.05%未満ではNの安定化が不充分な
ので下限を0.05%とし、またAI/Nを2以上に限
定した。一方0.2%を趨えると結晶粒が粒大化しr(
Iが劣化するので、上限を0,2%に限定した。
A! is a strong ferrite-forming element that not only increases the A1 transformation temperature and enables annealing at a higher temperature, but also stabilizes N as An and improves press formability. If it is less than 0.05%, stabilization of N is insufficient, so the lower limit was set to 0.05%, and AI/N was limited to 2 or more. On the other hand, when it exceeds 0.2%, the grain size increases and r(
Since I deteriorates, the upper limit was limited to 0.2%.

この他、Si、 Mnといった元素の成分範囲は特に限
定しないが、Siは、加工性の確保の観点から1.0%
以下、Mnは耐食性の確保の観点から0.7%以下が好
ましい。
In addition, the composition range of elements such as Si and Mn is not particularly limited, but Si is 1.0% from the viewpoint of ensuring workability.
Hereinafter, Mn is preferably 0.7% or less from the viewpoint of ensuring corrosion resistance.

次に、熱延での巻取り温度は650″Cを趨えると脱C
r層の生成量が増加し、混酸により粒界浸食を住しるの
で、650℃以下に限定した。
Next, when the coiling temperature in hot rolling exceeds 650"C, the carbon is removed.
The temperature was limited to 650° C. or lower because the amount of r-layer formed increases and the mixed acid causes grain boundary erosion.

熱延板焼鈍温度は800℃未満でも良好なプレス成形性
と耐リジング性得られるが、面内異方性が増大するので
下限を800℃以上に限定した。一方900℃以上では
焼鈍中に固溶するCr炭化物が増加し鋭敏化するので、
上限を900℃未満とした。
Although good press formability and ridging resistance can be obtained even when the hot-rolled sheet annealing temperature is lower than 800°C, the in-plane anisotropy increases, so the lower limit was limited to 800°C or higher. On the other hand, at temperatures above 900°C, the amount of Cr carbide solid-solved during annealing increases and becomes more sensitive.
The upper limit was set to less than 900°C.

焼鈍後の冷却速度は25℃/ sを超えると混酸により
粒界浸食を生じるので、25℃/ s以下に限定した。
The cooling rate after annealing was limited to 25°C/s or less because if it exceeded 25°C/s, grain boundary erosion would occur due to the mixed acid.

また600℃以上から25℃/ sより大きな速度で冷
却すると、混酸による粒界浸食を生じるので25℃/ 
s以下での冷却終了温度を600℃以下に限定した。
Also, cooling at a rate higher than 25°C/s from 600°C or higher will cause grain boundary erosion due to the mixed acid.
The cooling end temperature below 600° C. was limited to 600° C. or below.

次に実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 表1にA−Gとして示す化学成分を含有する連鋳スラブ
を4■厚に熱間圧延した後、焼鈍に引続き混酸酸洗(8
1103100g#! + IIF 20g/f、50
℃、60s)を行い、ついで0.7■厚まで冷間圧延し
引続き850 ℃X 30 sの仕上焼鈍を施した。
<Example> After hot rolling a continuously cast slab containing the chemical components shown as A-G in Table 1 to a thickness of 4 mm, annealing and subsequent mixed acid pickling (8 mm
1103100g#! + IIF 20g/f, 50
℃, 60 s), and then cold rolled to a thickness of 0.7 mm, followed by final annealing at 850 ℃ for 30 s.

熱延FiM洗後のSEMによる粒界浸食観察結果、仕上
焼鈍板のT値、Δγ、伸び、リジングのうねり高さを製
造条件とともに表2に示す。
Table 2 shows the results of grain boundary erosion observation by SEM after hot-rolled FiM washing, the T value, Δγ, elongation, and ridging waviness height of the finished annealed sheet, together with the manufacturing conditions.

表2から明らかなように、適量のCr、 A7及びNを
含有させたフェライト系ステンレス鋼スラブに適切な巻
取り温度による熱間圧延及び適切な処理温度と冷却の下
での熱延板焼鈍を施すことによって混酸酸洗により粒界
浸食を生じることなくプレス成形性に著しく優れた冷延
板が得られた。
As is clear from Table 2, a ferritic stainless steel slab containing appropriate amounts of Cr, A7, and N was hot-rolled at an appropriate coiling temperature and hot-rolled plate annealed at an appropriate processing temperature and cooling. By applying this method, a cold-rolled sheet with extremely excellent press formability was obtained without causing grain boundary erosion due to mixed acid pickling.

〈発明の効果〉 この発明では、表面性状及び成形性に優れたフェライト
系ステンレス綱板を熱延板の短時間の焼鈍によって製造
することができ、従来に比し著しい製造コストの低減及
び生産性の向上を実現し得る。
<Effects of the Invention> According to the present invention, a ferritic stainless steel sheet with excellent surface properties and formability can be manufactured by short-time annealing of a hot-rolled sheet, resulting in a significant reduction in manufacturing costs and productivity compared to the conventional method. It is possible to realize an improvement in

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、C含有量、巻取り温度ならびに冷却速度が粒
界浸食発生に及ぼす影響を示すグラフである。
FIG. 1 is a graph showing the effects of C content, winding temperature, and cooling rate on the occurrence of grain boundary erosion.

Claims (1)

【特許請求の範囲】[Claims]  重量比にて、C0.055%以下、Cr16.0〜1
8.0%、Al0.05〜0.20%、N0.025〜
0.070%、かつAl/N≧2を含有するフェライト
系ステンレス鋼スラブを、熱間圧延し、650℃以下の
温度で巻取り、引続き熱延板焼鈍を800℃以上900
℃未満の温度範囲で行い、焼鈍後の冷却を600℃以下
の温度まで25℃/s以下の冷却速度で行い、ついで酸
洗処理、冷間圧延ならびに焼鈍処理を施すことを特徴と
する表面性状と成形性に優れたフェライト系ステンレス
冷延綱板の製造方法。
In terms of weight ratio, C0.055% or less, Cr16.0-1
8.0%, Al0.05~0.20%, N0.025~
A ferritic stainless steel slab containing 0.070% and Al/N≧2 is hot rolled, coiled at a temperature of 650°C or lower, and then hot-rolled plate annealed at a temperature of 800°C or higher and 900°C.
A surface texture characterized by performing annealing in a temperature range of less than 600°C, cooling after annealing to a temperature of 600°C or less at a cooling rate of 25°C/s or less, and then subjecting it to pickling treatment, cold rolling, and annealing treatment. and a method for producing cold-rolled ferritic stainless steel steel sheet with excellent formability.
JP11775090A 1990-05-09 1990-05-09 Production of cold rolled ferritic stainless steel having excellent surface characteristic and moldability Pending JPH0417623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11775090A JPH0417623A (en) 1990-05-09 1990-05-09 Production of cold rolled ferritic stainless steel having excellent surface characteristic and moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11775090A JPH0417623A (en) 1990-05-09 1990-05-09 Production of cold rolled ferritic stainless steel having excellent surface characteristic and moldability

Publications (1)

Publication Number Publication Date
JPH0417623A true JPH0417623A (en) 1992-01-22

Family

ID=14719394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11775090A Pending JPH0417623A (en) 1990-05-09 1990-05-09 Production of cold rolled ferritic stainless steel having excellent surface characteristic and moldability

Country Status (1)

Country Link
JP (1) JPH0417623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328524A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel thin sheet reduced in plane anisotropy upon forming and excellent in ridging resistance and roughening resistance, and method for producing the same
EP4257719A4 (en) * 2020-12-03 2024-10-23 Posco Co Ltd Ferritic stainless steel with improved grain boundary erosion, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328524A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel thin sheet reduced in plane anisotropy upon forming and excellent in ridging resistance and roughening resistance, and method for producing the same
EP4257719A4 (en) * 2020-12-03 2024-10-23 Posco Co Ltd Ferritic stainless steel with improved grain boundary erosion, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5405463A (en) Continuous annealing process of producing cold rolled mild steel sheet excellent in deep drawability and aging resistibility
JPH07116510B2 (en) Non-oriented electrical steel sheet manufacturing method
JPS6043431A (en) Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPH0417623A (en) Production of cold rolled ferritic stainless steel having excellent surface characteristic and moldability
JPS62130268A (en) Production of hot dip zinc coated mild steel sheet for working subjected to alloying treatment
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JPS5856734B2 (en) Manufacturing method of ferritic stainless steel sheet
JPS5925933A (en) Production of thin ferritic stainless steel sheet having excellent workability
JPH0694575B2 (en) Method for producing ferritic stainless steel sheet having excellent surface properties and press formability
JPH0564212B2 (en)
JPH02111846A (en) Martensitic stainless steel excellent in press formability
JPH10152728A (en) Production of cold rolled steel sheet excellent in workability and surface property
JPH0137454B2 (en)
JPS6044377B2 (en) Method for producing soft cold-rolled steel sheets for drawing with excellent aging resistance through continuous annealing
JPH0320407A (en) Method for preventing oxidation of grain boundary in high strength cold-rolled steel sheet
JPS58104124A (en) Production of cold-rolled steel plate for working by continuous annealing
JPH0448866B2 (en)
JPS62136524A (en) Production of martensitic stainless steel sheet having excellent workability and oxidation resistance
JPH08311557A (en) Production of ferritic stainless steel sheet free from ridging
JPH0356622A (en) Production of ferrite single-phase stainless steel sheet
JPH01177322A (en) Manufacture of cold rolled steel sheet extremely excellent in deep drawability
JPS62104008A (en) Manufacture of unidirectional silicon steel plate
JPH02141534A (en) Production of cold rolled steel sheet having delayed aging property
JPS6070123A (en) Method for hot rolling continuously cast aluminum killed steel
JPS59116327A (en) Production of cold rolled aluminum killed steel plate for deep drawing