JPH0417611A - Method for operating ladle refining furnace - Google Patents

Method for operating ladle refining furnace

Info

Publication number
JPH0417611A
JPH0417611A JP12052190A JP12052190A JPH0417611A JP H0417611 A JPH0417611 A JP H0417611A JP 12052190 A JP12052190 A JP 12052190A JP 12052190 A JP12052190 A JP 12052190A JP H0417611 A JPH0417611 A JP H0417611A
Authority
JP
Japan
Prior art keywords
arc
electrode
electrodes
ladle
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12052190A
Other languages
Japanese (ja)
Inventor
Takeji Okada
岡田 竹司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP12052190A priority Critical patent/JPH0417611A/en
Publication of JPH0417611A publication Critical patent/JPH0417611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To improve the refining efficiency by charging of a large electric power to electrodes by providing means for detecting the currents to be supplied to the electrodes and the arc voltages of the electrodes and determining a set value at the time of heating and refining a molten steel by using arcs. CONSTITUTION:The arc currents are supplied from a power source device 5 via a current control means 6 to the electrodes 2 to generate the arcs 13 between the front ends 2a of the electrodes and the front surface 11a of the molten steel 11, by which the molten steel 11 is heated and refined. The arc currents flowing in the electrodes 2 at this time are detected by a current detector 7 and the current control means 6 is controlled by a current controller 8 according to the detected values, by which the preset value is obtd. The arc voltages of the electrodes 2 are detected and a lifting mechanism 3 is controlled according to the detected value by an electrode lifting controller 10, by which the electrodes 2 are lifted and the arc voltages are controlled to the preset value. The damage of the side walls la of the ladle 1 by the arc radiation is prevented in this way and the refining efficiency by the charging of the large electric power is improved.

Description

【発明の詳細な説明】 C産業上の利用分野〕 この発明は取鍋精錬炉の操業方法に関する。[Detailed description of the invention] C Industrial application field] This invention relates to a method of operating a ladle refining furnace.

〔従来の技術〕[Conventional technology]

取鍋精錬炉において溶鋼の精錬を行う場合、電極に流れ
るアーク電流と電極のアーク電圧との比を一定にする方
法で操業が行われている。
When refining molten steel in a ladle refining furnace, the operation is performed by keeping the ratio of the arc current flowing through the electrodes to the arc voltage of the electrodes constant.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来の取鍋精錬炉の操業方法では、電極への投入電
力を増大させて精錬の能率を向上させる為に上記アーク
電流を増加させた場合、それに応じて上記アーク電圧が
高められ、上記の比が一定にされる。上記アーク電圧の
上昇は、電極を上昇させて電極先端と溶鋼上面との間の
アークの長さを長くすることにより行われる。しかしそ
のように電極を上昇させると、電極の先端がスラグの上
面より上方へ出て、アークの発生がスラグ外で行われる
状態となる場合がある。そのようにアークがスラグの外
に出ると、取鍋内での精錬である為に電極と取鍋の側壁
との距離が小さいが故、取鍋の側壁内面の耐火物が上記
アークの輻射熱を受けて損傷(溶融)する問題点が生ず
る。この為通常はそのような問題が生ずるのを防ぐ為に
、上記電極への投入電力を抑えた状態で操業を行わねば
ならぬ問題点があった。
In this conventional method of operating a ladle smelting furnace, when the arc current is increased in order to increase the power input to the electrodes and improve the efficiency of smelting, the arc voltage is increased accordingly, and the above-mentioned The ratio is held constant. The arc voltage is increased by raising the electrode to increase the length of the arc between the tip of the electrode and the upper surface of the molten steel. However, when the electrode is raised in this way, the tip of the electrode may come out above the upper surface of the slag, resulting in a situation where arc generation occurs outside the slag. When the arc goes outside the slag, the distance between the electrode and the side wall of the ladle is small because the refining is done inside the ladle, so the refractory on the inner surface of the side wall of the ladle absorbs the radiant heat of the arc. A problem arises in that the material is damaged (melted) by being damaged. For this reason, in order to prevent such problems from occurring, there is usually a problem in that the operation must be carried out with the power input to the electrodes being suppressed.

本発明は上記従来技術の問題点(技術的課題)を解決す
る為になされたもので、電極の先端をスラグ中に位置さ
せたまま電極への供給電流を増大させるようにして、取
鍋の側壁の損傷を防止した状態で、電極への大電力投入
による精錬能率の向上を図り得るようにした取鍋精錬炉
の操業方法を提供することを目的とするものである。
The present invention was made to solve the problems (technical problems) of the prior art described above, and it increases the current supplied to the electrode while keeping the tip of the electrode in the slag. It is an object of the present invention to provide a method of operating a ladle refining furnace that can improve refining efficiency by applying high power to the electrodes while preventing damage to the side walls.

〔課題を解決する為の手段〕[Means to solve problems]

上記目的を達成する為に、本願発明は前記請求の範囲記
載の通りの手段を講じたものであって、その作用は次の
通りである。
In order to achieve the above object, the present invention takes the measures as described in the claims above, and its effects are as follows.

〔作用〕[Effect]

電極に電流が供給されることにより電極の先端と溶鋼上
面との間でアークが生じ、そのアークにより溶鋼が加熱
され精錬される。上記の場合電極に対する投入電力の増
大は電極への供給電流を増大させることにより行われる
。この場合電極の先端はスラグの中に位置させたままで
上記電流の増大が行われる。従ってアークは常にスラグ
の中にあり、スラグはアークの輻射熱が取鍋の側壁に及
ぶことを遮る。
When a current is supplied to the electrode, an arc is generated between the tip of the electrode and the upper surface of the molten steel, and the molten steel is heated and refined by the arc. In the above case, the power applied to the electrodes is increased by increasing the current supplied to the electrodes. In this case, the current increase is performed while the tip of the electrode remains located within the slug. Therefore, the arc is always inside the slag, and the slag blocks the radiant heat of the arc from reaching the side walls of the ladle.

〔実施例〕〔Example〕

以下本願の実施例を示す図面について説明する。 The drawings showing the embodiments of the present application will be described below.

第1図に示される取鍋精錬炉におて、1は取鍋で、例え
ば鋼板製の外被の内面を耐火物で内張した構造である。
In the ladle refining furnace shown in FIG. 1, reference numeral 1 denotes a ladle, which has a structure in which the inner surface of an outer jacket made of, for example, a steel plate is lined with a refractory material.

2は取鍋1内の空間の上部に配置した電極で、複数本例
えば三和交流用に3本の黒鉛電極が、周知の如く平面的
に見て三角形となる位置で、しかも夫々上下動自在に配
置されている。3は上記電極2を昇降させる為の周知の
電極昇降機構を示す。4は上記電極2に対する電力の供
給回路で、主回路と呼ばれる。5は供給回路4に設けら
れた電源装置で、例えば炉用トランスである。
Reference numeral 2 denotes electrodes arranged in the upper part of the space inside the ladle 1, and there are a plurality of electrodes, for example, three graphite electrodes for Sanwa AC, in a triangular position when viewed from above, as is well known, and each can be moved up and down. It is located in 3 shows a well-known electrode lifting mechanism for lifting and lowering the electrode 2. As shown in FIG. 4 is a circuit for supplying power to the electrode 2, which is called a main circuit. Reference numeral 5 denotes a power supply device provided in the supply circuit 4, which is, for example, a furnace transformer.

6は供給回路4に設けられた電流調節手段で、上記電極
2に供給する電流を調節する為のものであり、例えば三
相の各回路に夫々サイリスタを設けた構造のものが用い
られる。7は電極2と上記調節手段6との間の回路に付
設した電流検出器で、各電極2に流れるアーク電流を検
出する為のものであり、例えば電流トランスが用いられ
る。8は電流制御装置で、上記電流検出器7からの信号
を受けることによって得られる実際のアーク電流の検出
値と、該装置8に予め設定されている設定値とを比較し
、その比較結果に応じて、上記検出値が上記設定値に近
づくよう上記電流g1節手段6におけるサイリスタの点
弧角を制御するように構成されている。又該装置8は取
鍋精錬炉の操業中におけるアーク電流値を上記設定値と
して手動操作成いは自動s制御により予め設定できるよ
うにしである。9はアーク電圧検出端を示す。この検出
端は電極2のアーク電圧を検出する為のものであり、一
般には上記sii手段Gと電極2との間のr!!J路又
は電極2に検出用の導線を接続することによって構成さ
れているものである。10は電極昇降制御装置で、上記
検出端9において検出される実際のアーク電圧と、該装
置10に予め設定されている設定値とを比較し、その比
較結果に応じて、上記実際のアーク電圧が上記設定値に
近づくよう上記昇降機構3を制御するように構成されて
いる。又該装置10は取鍋n錬炉の操業中におけるアー
ク電圧値を上記設定値として手動操作乃至は自動制御に
よって予め設定できるようにしである。
Reference numeral 6 denotes a current adjusting means provided in the supply circuit 4 for adjusting the current supplied to the electrode 2. For example, a structure in which a thyristor is provided in each three-phase circuit is used. Reference numeral 7 denotes a current detector attached to the circuit between the electrodes 2 and the adjustment means 6, and is for detecting the arc current flowing through each electrode 2, and for example, a current transformer is used. Reference numeral 8 denotes a current control device, which compares the detected value of the actual arc current obtained by receiving the signal from the current detector 7 with a set value preset in the device 8, and uses the result of the comparison. Accordingly, the firing angle of the thyristor in the current g1 node means 6 is controlled so that the detected value approaches the set value. Further, the device 8 is configured such that the arc current value during operation of the ladle refining furnace can be preset as the above set value by manual operation or automatic control. 9 indicates an arc voltage detection end. This detection end is for detecting the arc voltage of the electrode 2, and generally the r! between the sii means G and the electrode 2 is used. ! It is constructed by connecting a conducting wire for detection to the J path or electrode 2. Reference numeral 10 denotes an electrode elevation control device that compares the actual arc voltage detected at the detection end 9 with a set value preset in the device 10, and adjusts the actual arc voltage according to the comparison result. The elevating mechanism 3 is configured to control the elevating mechanism 3 so that the value approaches the set value. Further, the device 10 is configured such that the arc voltage value during operation of the ladle n refining furnace can be preset as the above set value by manual operation or automatic control.

次に上記取鍋精錬炉の操業について説明する。Next, the operation of the ladle refining furnace will be explained.

取鍋1内には溶鋼11が入れられると共にその上にスラ
グ12が入れられ、m all 11の上面1taはス
ラグ12によ・って覆われた状態にされる。この状態に
おいて電源装置5から電流調節手段6を介して電極2に
アーク電流が供給され、電極2の先端2aと溶鋼11の
上面11aとの間にアーク13が生ぜしめられる。この
アーク13によって溶鋼11は加熱され、周知の如くn
鏡が行われる。
Molten steel 11 is placed in the ladle 1 and slag 12 is placed thereon, so that the upper surface 1ta of the mall 11 is covered with the slag 12. In this state, an arc current is supplied from the power supply device 5 to the electrode 2 via the current adjustment means 6, and an arc 13 is generated between the tip 2a of the electrode 2 and the upper surface 11a of the molten steel 11. The molten steel 11 is heated by this arc 13, and as is well known, n
A mirror is done.

上記精錬中において電極2に流れるアーク電流は電流検
出器7により検出される。電流制御装W8はその検出値
に応じて電流調節手段6を制御する。
The arc current flowing through the electrode 2 during the refining is detected by the current detector 7. The current control device W8 controls the current adjustment means 6 according to the detected value.

その結果、上記アーク電流は予め設定された値となる。As a result, the arc current becomes a preset value.

又検出端9において電極2のアーク電圧が検出される。Further, the arc voltage of the electrode 2 is detected at the detection end 9.

電極昇降機構装W10;まその検出値に応して昇111
1fill 3を制御し、電極2の昇降が行われる。そ
の結果、上記アーク電圧は予め設定された値となる。
Electrode lifting mechanism W10; lifts 111 according to the detected value
1fill 3 is controlled, and the electrode 2 is raised and lowered. As a result, the arc voltage becomes a preset value.

上記電極昇降制御装置10におけるアーク電圧の設定は
、スラグ厚対応電圧z下に設定される。本件明細書中に
おいては、アーク13の長さがスラグ12の厚み(例え
ば100〜250mm)以下となって電極2の先端2a
がスラグ12内に位置する状態が維持される範囲のアー
ク電圧(アーク電圧は先端2aと上面11aとの間のア
ーク長と比例関係にある)を、スラグ厚対応電圧と呼ぶ
。このようなスラグ厚対応電圧以下に上記アーク電圧が
維持されるよう上記電極2の昇降の制御が行われる為、
電極2の先端2aは常にスラグ12内に位置する。従っ
て電流調節手段6により電極2へのアーク電流を増大さ
せても、アーク13は掌にスラグ12の中にあり、その
結果、取鍋1の側壁内面におけるスラグライン近くの部
分1aにアーク13からの輻射が及ぶことは無く、そこ
の耐火物の損傷(7g ti )が防止される。
The arc voltage in the electrode lifting control device 10 is set below the voltage z corresponding to the slag thickness. In this specification, the length of the arc 13 is equal to or less than the thickness of the slag 12 (for example, 100 to 250 mm), and the tip 2a of the electrode 2
The arc voltage in the range in which the state in which the arc voltage is maintained within the slag 12 (the arc voltage is proportional to the arc length between the tip 2a and the upper surface 11a) is called a slag thickness-corresponding voltage. Since the elevation of the electrode 2 is controlled so that the arc voltage is maintained below the voltage corresponding to the slag thickness,
The tip 2a of the electrode 2 is always located within the slug 12. Therefore, even if the arc current to the electrode 2 is increased by the current adjustment means 6, the arc 13 remains in the slag 12, and as a result, the arc 13 is transferred to the portion 1a near the slag line on the inner surface of the side wall of the ladle 1. radiation will not reach the area, and damage to the refractories there (7g ti ) will be prevented.

次に、上記したようにアーク電圧とアーク長とは比例関
係にある。従って電極昇降制御装置10においてはアー
ク電圧に代えてアーク長を設定するようにしても良い。
Next, as described above, arc voltage and arc length are in a proportional relationship. Therefore, in the electrode elevation control device 10, the arc length may be set instead of the arc voltage.

また上記取鍋精錬炉においては、スラグ厚の測定手段を
設けて、それにより測定したスラグ12の厚みを電極昇
降制御装置10において設定し、溶1111の上面11
aと電極2の先端2aとの間の寸法がその設定寸法を越
えぬよう電極昇降機構3を制御するようにしても良い。
Further, in the ladle refining furnace, a slag thickness measuring means is provided, and the thickness of the slag 12 measured by the means is set in the electrode elevation control device 10, and the upper surface of the molten 1111 is
The electrode elevating mechanism 3 may be controlled so that the dimension between the tip 2a of the electrode 2 and the tip 2a of the electrode 2 does not exceed the set dimension.

次に第2図は主回路4eにおける電流調節手段6eと炉
用トランス5eとの位置関係を前実施例とは反対にした
例を示すものである。このような例においても電流の制
御と電極の昇降制御とを上記の場合と同様に行うことに
より、取鍋の側壁の損傷を防止した状態で電極2eへの
大電力投入を可能にすることができる。
Next, FIG. 2 shows an example in which the positional relationship between the current regulating means 6e and the furnace transformer 5e in the main circuit 4e is reversed from that of the previous embodiment. Even in such an example, by controlling the current and controlling the elevation of the electrode in the same manner as in the above case, it is possible to input a large amount of power to the electrode 2e while preventing damage to the side wall of the ladle. can.

なお、機能上前図のものと同−又は均等構成と考えられ
る部分には、前回と同一の符号にアルファベットのeを
付して重複する説明を省略した。
It should be noted that parts that are considered to have the same or equivalent structure as those in the previous figure in terms of function are given the same reference numerals as in the previous figure with the letter e, and redundant explanations are omitted.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明にあっては、電極2に電力を供給す
乙ことによりアーク13を生ぜしめ、そのアーク13に
より取鍋l内の溶鋼11を加熱して精錬ができるは勿論
のこと、 上記の場合、電流調節手段6により上記電極2への供給
電流を増大させることができ、大電力投入による上記精
錬の能率の向上を図り得る有用性がある。
As described above, in the present invention, an arc 13 is generated by supplying electric power to the electrode 2, and the molten steel 11 in the ladle 1 can be heated and refined by the arc 13, of course. In the above case, the current regulating means 6 can increase the current supplied to the electrode 2, which is useful in improving the efficiency of the refining by inputting a large amount of power.

しかも本願発明は、上記電極2の昇降位置の制御を、電
極2の先#2aがスラグ12内に没する状態となるよう
に独立して行うから、上記大電力投入の場合、電極2の
先端2aがスラグ12の中に位置する状態にしたまま電
極2に供給するアーク電流を増大させられる特長がある
。このことは、取&%1内での精錬である為、電極2と
取鍋の側壁内面1aとの距離が小さくても、側壁内面1
aに対するアーク輻射を上記スラグ12により防いでそ
の損傷を防止できる効果がある。
Moreover, in the present invention, the vertical position of the electrode 2 is independently controlled so that the tip #2a of the electrode 2 is submerged in the slag 12. It has the advantage that the arc current supplied to the electrode 2 can be increased while the electrode 2a remains in the slag 12. This means that even if the distance between the electrode 2 and the side wall inner surface 1a of the ladle is small, since the refining is within the ladle &%1, the side wall inner surface 1a
The slag 12 prevents arc radiation to a, thereby preventing damage thereto.

このように本件発明は取鍋の側壁1aの損傷を防止した
状態で、大電力投入によるn錬能率の向上を図り得る有
用性がある。
As described above, the present invention is useful in that it is possible to improve the kneading efficiency by inputting large amounts of power while preventing damage to the side wall 1a of the ladle.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本願の実施例を示すもので、第1図は取鍋na炉
の制御系統を示す図、第2図は取鍋精錬炉における電流
調節手段と炉用トランスとの位置関係の異なる例を示す
部分図。 1・・・取鍋、2・・・電極、3・・・電極昇降機構、
6・・・電流調節手段、11・・・溶鋼、12・・・ス
ラグ、13・・・アーク。 第 図 第 ? あ
The drawings show an embodiment of the present application, and FIG. 1 shows a control system of a ladle na furnace, and FIG. 2 shows a different example of the positional relationship between the current regulating means and the furnace transformer in a ladle refining furnace. Partial view shown. 1... Ladle, 2... Electrode, 3... Electrode lifting mechanism,
6... Current adjustment means, 11... Molten steel, 12... Slag, 13... Arc. Figure number? a

Claims (1)

【特許請求の範囲】[Claims]  取鍋内の空間の上部に、昇降機構により昇降されるよ
うにした複数の電極を配置し、一方上記取鍋内には上面
をスラグで覆われた溶鋼を存置させ、上記電極に電力を
供給することにより、該電極の先端と上記取鍋内の溶鋼
の上面との間にアークを生ぜしめ、そのアークにより上
記溶鋼を加熱し精錬する取鍋精錬炉の操業方法において
、上記電極への電力の供給回路に電流調節手段を設けて
、該電流調節手段により上記電極に供給される電流を調
節する一方、上記電極のアーク電圧を検出して、その検
出したアーク電圧が予め定められたスラグ厚対応電圧以
下となるよう上記昇降機構を制御することによって、電
極の先端がスラグ内に没する状態となるように上記電極
の昇降位置を制御することを特徴とする取鍋精錬炉の操
業方法。
A plurality of electrodes are placed in the upper part of the space inside the ladle and are moved up and down by a lifting mechanism, while molten steel whose upper surface is covered with slag is left in the ladle, and power is supplied to the electrodes. In a method of operating a ladle refining furnace, in which an arc is generated between the tip of the electrode and the upper surface of the molten steel in the ladle, and the molten steel is heated and refined by the arc, electric power is supplied to the electrode. A current regulating means is provided in the supply circuit, and the current regulating means regulates the current supplied to the electrode, while detecting the arc voltage of the electrode, and adjusting the detected arc voltage to a predetermined slag thickness. A method for operating a ladle refining furnace, characterized in that the lifting mechanism is controlled so that the voltage is below the corresponding voltage, thereby controlling the lifting position of the electrode so that the tip of the electrode is submerged in the slag.
JP12052190A 1990-05-10 1990-05-10 Method for operating ladle refining furnace Pending JPH0417611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12052190A JPH0417611A (en) 1990-05-10 1990-05-10 Method for operating ladle refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12052190A JPH0417611A (en) 1990-05-10 1990-05-10 Method for operating ladle refining furnace

Publications (1)

Publication Number Publication Date
JPH0417611A true JPH0417611A (en) 1992-01-22

Family

ID=14788314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12052190A Pending JPH0417611A (en) 1990-05-10 1990-05-10 Method for operating ladle refining furnace

Country Status (1)

Country Link
JP (1) JPH0417611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046785A (en) * 2010-08-25 2012-03-08 Nippon Steel Corp Apparatus and method for ladle refining of molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046785A (en) * 2010-08-25 2012-03-08 Nippon Steel Corp Apparatus and method for ladle refining of molten steel

Similar Documents

Publication Publication Date Title
CA2029285C (en) Direct current electric arc furnace
US4683577A (en) Method and apparatus for regulating arc discharge furnace
EP0657710B1 (en) Dc arc furnace
WO1991014911A1 (en) Dc electric furnace for melting metal
JP3209845B2 (en) DC arc furnace
JPH0417611A (en) Method for operating ladle refining furnace
JPH0773078B2 (en) DC arc furnace equipment
US3857697A (en) Method of continuously smelting a solid material rich in iron metal in an electric arc furnace
JP2903915B2 (en) Electrode lift control device for arc heating furnace
JP5007094B2 (en) Control method of plasma melting furnace
JP2020535380A (en) Equipment and methods for melting metallic materials
JPH08185972A (en) Plasma heating method of fused metal and device therefor
JP2769326B2 (en) Control method for raising and lowering electrodes of DC arc furnace
JP2665296B2 (en) DC arc furnace voltage controller
JPH07161473A (en) Device for controlling elevation of electrode of arc heating furnace
JPH0914864A (en) Automatic electrode vertical movement controller for arc furnace
JP2526554B2 (en) Dissolution control method for AC arc furnace
JP2841513B2 (en) Electric furnace
JPH07110400B2 (en) Plasma heating method and apparatus for molten steel in tundish
JP2769325B2 (en) Electrode position control method for DC arc furnace
RU2097947C1 (en) Dc electric arc furnace and its functioning
JP2794774B2 (en) Operation method of DC arc furnace
JPH05332679A (en) Dc electric furnace
US3131246A (en) Electric furnace
JP2003279269A (en) Input electric power control method of electric furnace