JPH0417425B2 - - Google Patents

Info

Publication number
JPH0417425B2
JPH0417425B2 JP11911585A JP11911585A JPH0417425B2 JP H0417425 B2 JPH0417425 B2 JP H0417425B2 JP 11911585 A JP11911585 A JP 11911585A JP 11911585 A JP11911585 A JP 11911585A JP H0417425 B2 JPH0417425 B2 JP H0417425B2
Authority
JP
Japan
Prior art keywords
group
general formula
formula
substituent
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11911585A
Other languages
Japanese (ja)
Other versions
JPS61275849A (en
Inventor
Masakazu Matsumoto
Masataka Yamashita
Hajime Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11911585A priority Critical patent/JPS61275849A/en
Publication of JPS61275849A publication Critical patent/JPS61275849A/en
Publication of JPH0417425B2 publication Critical patent/JPH0417425B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0675Azo dyes
    • G03G5/0679Disazo dyes
    • G03G5/0681Disazo dyes containing hetero rings in the part of the molecule between the azo-groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0675Azo dyes
    • G03G5/0679Disazo dyes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は電子写真感光体に関する。 〔従来の技術〕 従来より、光導電性を示す顔料や染料について
は、数多くの分献等で発表されている。 例えば、“RCA Review”Vo1.23,P.413〜
P.419(1962年9月)ではフタロシアニン顔料の光
導電性について発表がなされており、又このフタ
ロシアニン顔料を用いた電子写真感光体が米国特
許第3397086号公報や米国特許第3816118号公報等
に示されている。その他に、電子写真感光体に用
いる有機半導体としては、例えば米国特許第
4315983号公報、米国特許第4327169号公報や
“Reseach Disclosure”20517(1981年5月)に示
されているピリリウム系染料、米国特許第
3824099号公報に示されているスクエアリツク酸
メチン染料、米国特許第3898084号公報、米国特
許第4251613号公報等に示されたジスアゾ顔料な
どが挙げられる。 この様な有機半導体は、無機半導体に較べて合
成が容易で、しかも要求する波長域の光に対して
光導電性をもつ様な化合物として合成することが
でき、この様な有機半導体の被膜を導電性支持体
に形成した電子写真感光体は、感色性が良くなる
という利点を有しているが、感度および耐久性に
おいても実用できるものは、ごく僅かである。 〔発明の解決すべき問題点〕 本発明は、新規な有機光導電性材料を使用する
ことにより、従来にもまして優れた実用上の感度
特性及び耐久性、特に繰返し使用時における電位
特性の安定性を備えた電子写真感光体を供給すべ
くなされたものである。 〔問題点を解決するための手段及び効果〕 即ち、本発明は、導電性基体上に、下記一般式
〔〕で示されるジスアゾ顔料を含有する感光層
を有することを特徴とする電子写真感光体であ
る。 一般式〔〕 (式中、Aはフエノール性OH基を有するカプラ
ー残基を表す。Ar1及びAr2は、それぞれ、置換
基を有してもよいフエニレン基、置換基を有して
もよいビフエニレン基もしくは縮合多環芳香族基
又は2価の複素環基を表す。但し、Ar1及びAr2
が、共に置換基を有していてもよいフエニレン基
であることはない。) 上記式中、Ar1及びAr2は、それぞれ、置換基
を有していてもよい、フエニレン基;置換基を有
してもよいビフエニレン基;ナフチレン基、アン
トリレン基、フルオレン及びフルオレノン等から
水素2原子を除いて生ずる2価の基などの2価の
縮合多環芳香族基;又は、キノリン、カルバゾー
ル、ベンゾオキサゾール等から水素2原子を除い
て生ずる2価の基などの2価の複素環基を表わ
す。これらAr1,Ar2,Ar3及びAr4で表わされる
2価の基を置換する原子又は基としては、例えば
フツ素原子、塩素原子、臭素原子、ヨウ素原子等
のハロゲン原子、メチル基、エチル基、プロピル
基等のアルキル基、ベンジル基、フエネチル基、
ナフチルメチル基等のアラルキル基、フエニル
基、ジフエニル基、ナフチル基等のアリール基、
メトキシ基、エトキシ基、ブトキシ基等のアルコ
キシ基、シアノ基、アセチル基、ベンゾイル基等
のアシル基、ニトロ基等が挙げられる。 但し、Ar1及びAr2が、共に、置換基を有して
いてもよいフエニレン基であることはない。 また、一般式〔〕中は、Aはフエノール性
OH基を有するカプラー残基を表わすが、好まし
い具体例としては下記一般式〔〕、〔〕〜
〔〕で示される基を挙げることができる。 一般式〔〕 式中、Xはベンゼン環と縮合して、置換基を有
していてもよい多環芳香族環(例えばナフタレン
環、アントラセン環)又はヘテロ環(例えばカル
バゾール環、ベンズカルバゾール環、ジベンゾフ
ラン環、ベンゾナフトフラン環、ジフエニレンサ
ルフアイト環を形成するのに必要な残基を表わ
す。これら環のより好ましくは、ナフタレン環、
アントラセン環、カルバゾール環及びベンズカル
バゾール環である。R1及びR2は、それぞれ、水
素原子、置換基を有していてもよいアルキル基、
アラルキル基、アリール基又はヘテロ環基を表わ
すか、あるいはR1とR2とで、結合する窒素原子
と共に環状アミノ基を形成するのに必要な残基を
表わす。アルキル基の具体例としてはメチル基、
エチル基、プロピル基、ブチル基等が挙げられ
る。アラルキル基と具体例としては、ベンジル
基、フエネチル基、ナフチルメチル基等が挙げら
れる。アリール基としては、フエニル基、ジフエ
ニル基、ナフチル基、アンスリル基等が挙げられ
る。とりわけR1を水素原子、R2をオルト位にハ
ロゲン原子、ニトロ基、シアノ基、トリフルオロ
メチル基等の電子吸引性基及びエチル基、メチル
基、ブチル基等のアルキル基を有するフエニル基
とした場合に電子写真特性が良好である。ヘテロ
環基としてはカルバゾール、ジベンゾフラン、ベ
ンゾイミダゾロン、ベンゾチアゾール、チアゾー
ル、ピリジン等のヘテロ環から水素1原子を除い
た基が挙げられる。 R1とR2とで形成される環状アミノ基としては、
ピロリジノ基、ピペリジノ基、モルホリノ基など
が挙げられる。 特に、一般式〔〕中、R1が水素原子であり、
R2が下記一般式〔〕で示されるフエニル基で
あるものが好適な例として挙げられる。 一般式〔〕 式中、R3は、ハロゲン原子(フツ素原子、塩
素原子、臭素原子又はヨウ素原子)、ニトロ基、
シアノ基、トリフルオロメチル基又はアシル基
(例えばアセチル基、ベンゾイル基等)を表わす。
また、一般式〔〕のもう1つの好適な例とし
て、下記一般式〔〕で示されるものが挙げられ
る。 一般式〔〕 式中、R4は置換基を有していてもよいフエニ
ル基を表わす。 一般式〔〕 式中、R5は置換基を有していてもよいアルキ
ル基、アラルキル基又はアリール基を表わす。 一般式〔〕 式中、R6は置換基を有していてもよいアルキ
ル基、アラルキル基又はアリール基を表わす。 R5及びR6で表わされるアルキル基の具体例と
してはメチル基、エチル基、プロピル基、ブチル
基等が挙げられる。アラルキル基の具体例として
はベンジル基、フエネチル基、ナフチルメチル基
等が挙げられるアリール基としてはフエニル基、
ジフエニル基、ナフチル基、アンスリル基等が挙
げられる。 一般式〔〕、〔〕、〔〕及び〔〕中の置換
基を有していてもよい基を置換する原子又は基と
しては、例えばメチル基、エチル基、プロピル基
等のアルキル基、メトキシ基、エトキシ基、プロ
ポキシ基等のアルコシキ基、フツ素原子、塩素原
子、臭素原子、ヨウ素原子等ハロゲン原子、ニト
ロ基、シアノ基、ジメチルアミノ基、ジエチルア
ミノ基、ベンジルアミノ基、ジフエニルアミノ基
等の置換アミノ基などが挙げられる。 一般式〔〕 式中、Y1は2つの窒素原子と結合した2価の
芳香族炭化水素基を表わすか、あるいは、
[Field of Application of the Invention] The present invention relates to an electrophotographic photoreceptor. [Prior Art] Pigments and dyes exhibiting photoconductivity have been published in numerous publications. For example, “RCA Review” Vo1.23, P.413~
P.419 (September 1962), the photoconductivity of phthalocyanine pigments was announced, and electrophotographic photoreceptors using this phthalocyanine pigment were published in US Pat. No. 3,397,086, US Pat. No. 3,816,118, etc. It is shown. In addition, as organic semiconductors used in electrophotographic photoreceptors, for example, US Pat.
4315983, U.S. Patent No. 4327169, and pyrylium dyes disclosed in “Reseach Disclosure” 20517 (May 1981), U.S. Patent No.
Examples include methine squaritate dyes shown in US Pat. No. 3,824,099, and disazo pigments shown in US Pat. No. 3,898,084 and US Pat. No. 4,251,613. Such organic semiconductors are easier to synthesize than inorganic semiconductors, and can be synthesized as compounds that have photoconductivity for light in the required wavelength range. Electrophotographic photoreceptors formed on conductive supports have the advantage of improved color sensitivity, but only a few of them have good sensitivity and durability for practical use. [Problems to be Solved by the Invention] By using a new organic photoconductive material, the present invention achieves better practical sensitivity characteristics and durability than ever before, and in particular stability of potential characteristics during repeated use. The purpose of this invention was to provide an electrophotographic photoreceptor with high properties. [Means and Effects for Solving the Problems] That is, the present invention provides an electrophotographic photoreceptor comprising a photosensitive layer containing a disazo pigment represented by the following general formula [] on a conductive substrate. It is. General formula [] (In the formula, A represents a coupler residue having a phenolic OH group. Ar 1 and Ar 2 are respectively a phenylene group which may have a substituent, a biphenylene group which may have a substituent, or a fused Represents a polycyclic aromatic group or a divalent heterocyclic group.However, Ar 1 and Ar 2
However, neither of them is a phenylene group which may have a substituent. ) In the above formula, Ar 1 and Ar 2 each represent a phenylene group which may have a substituent; a biphenylene group which may have a substituent; a hydrogen group from a naphthylene group, anthrylene group, fluorene, fluorenone, etc. A divalent fused polycyclic aromatic group such as a divalent group formed by removing two atoms; or a divalent heterocycle such as a divalent group formed by removing two hydrogen atoms from quinoline, carbazole, benzoxazole, etc. represents a group. Examples of atoms or groups that substitute the divalent groups represented by Ar 1 , Ar 2 , Ar 3 and Ar 4 include halogen atoms such as fluorine atom, chlorine atom, bromine atom, and iodine atom, methyl group, and ethyl group. group, alkyl group such as propyl group, benzyl group, phenethyl group,
Aralkyl groups such as naphthylmethyl groups, phenyl groups, diphenyl groups, aryl groups such as naphthyl groups,
Examples include alkoxy groups such as methoxy, ethoxy and butoxy groups, acyl groups such as cyano, acetyl and benzoyl, and nitro groups. However, Ar 1 and Ar 2 are not both phenylene groups which may have a substituent. In addition, in the general formula [], A is phenolic
It represents a coupler residue having an OH group, and preferred specific examples include the following general formulas [], []~
Examples include groups represented by []. General formula [] In the formula, X is fused with a benzene ring to form a polycyclic aromatic ring which may have a substituent (e.g. naphthalene ring, anthracene ring) or a hetero ring (e.g. carbazole ring, benzcarbazole ring, dibenzofuran ring, benzene ring). Represents a residue necessary to form a naphthofuran ring or a diphenylene sulfite ring. More preferably, naphthalene ring,
They are anthracene ring, carbazole ring and benzcarbazole ring. R 1 and R 2 are each a hydrogen atom, an alkyl group that may have a substituent,
It represents an aralkyl group, an aryl group, or a heterocyclic group, or represents a residue necessary for forming a cyclic amino group with R 1 and R 2 together with the bonded nitrogen atom. Specific examples of alkyl groups include methyl group,
Examples include ethyl group, propyl group, butyl group, and the like. Specific examples of the aralkyl group include benzyl group, phenethyl group, naphthylmethyl group, and the like. Examples of the aryl group include phenyl group, diphenyl group, naphthyl group, and anthryl group. In particular, R 1 is a hydrogen atom, R 2 is a phenyl group having a halogen atom, an electron-withdrawing group such as a nitro group, a cyano group, a trifluoromethyl group, and an alkyl group such as an ethyl group, a methyl group, a butyl group, etc. In this case, the electrophotographic properties are good. Examples of the heterocyclic group include groups obtained by removing one hydrogen atom from a heterocyclic ring such as carbazole, dibenzofuran, benzimidazolone, benzothiazole, thiazole, and pyridine. As a cyclic amino group formed by R 1 and R 2 ,
Examples include pyrrolidino group, piperidino group, and morpholino group. In particular, in the general formula [], R 1 is a hydrogen atom,
Preferred examples include those in which R 2 is a phenyl group represented by the following general formula []. General formula [] In the formula, R 3 is a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom), a nitro group,
Represents a cyano group, trifluoromethyl group, or acyl group (eg, acetyl group, benzoyl group, etc.).
Further, another suitable example of the general formula [] is represented by the following general formula []. General formula [] In the formula, R 4 represents a phenyl group which may have a substituent. General formula [] In the formula, R 5 represents an alkyl group, an aralkyl group, or an aryl group which may have a substituent. General formula [] In the formula, R 6 represents an alkyl group, an aralkyl group, or an aryl group that may have a substituent. Specific examples of the alkyl group represented by R 5 and R 6 include a methyl group, an ethyl group, a propyl group, a butyl group, and the like. Specific examples of aralkyl groups include benzyl group, phenethyl group, naphthylmethyl group, etc. Aryl groups include phenyl group,
Examples include diphenyl group, naphthyl group, and anthryl group. Examples of atoms or groups substituting optionally substituent-containing groups in general formulas [], [], [], and [] include alkyl groups such as methyl, ethyl, and propyl groups, and methoxy groups. , alkoxy groups such as ethoxy groups and propoxy groups, halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms, substituted amino groups such as nitro groups, cyano groups, dimethylamino groups, diethylamino groups, benzylamino groups, and diphenylamino groups. Examples include groups. General formula [] In the formula, Y 1 represents a divalent aromatic hydrocarbon group bonded to two nitrogen atoms, or

【式】により2価のヘテロ環を形成する のに必要な残基を表わす。 一般式〔〕 式中、Y1は2つの窒素原子と結合した2価の
芳香族炭化水素基を表わすか、あるいは、
[Formula] represents the residue necessary to form a divalent heterocycle. General formula [] In the formula, Y 1 represents a divalent aromatic hydrocarbon group bonded to two nitrogen atoms, or

〔発明の具体的説明及び実施例〕[Specific description and examples of the invention]

本発明で使用する、前記一般式〔〕のジスア
ゾ顔料としては、以下の顔料No.及び構造式のジス
アゾ顔料を挙げることができる。 これらのジスアゾ顔料は、1種を用いても、あ
るいは2種以上を併用してもよい。 前記一般式〔〕のジスアゾ顔料は次の様にし
て合成することができる。 即ち、一般式: H2N−Ar1−NH−Ar2−NH2 (式中、Ar1及びAr2は前述の意味を有する。)で
示される2級アミンを有するジアミンを常法によ
りテトラゾ化と同時にニトロソ化し、次いで対応
するカプラーをアルカリの存在下に水系カツプリ
ングするか、または前記のジアミンのテトラゾニ
ウム塩をホウフツ化塩あるいは塩化亜鉛複塩等の
形で一旦単離した後、適当な溶媒例えばN,N−
ジメチルホルムアミド、ジメチルスルホキシド等
の溶媒中でアルカリの存在下にカツプラーとカツ
プリングすることにより容易に製造することがで
きる。 次に、本発明で用いるジスアゾ顔料の代表的な
合成例を下記に示す。 合成例 1 (前記例示のジスアゾ顔料No.1の合成) 500mlビーカーに水80ml濃塩酸16.6ml(0.19モ
ル)を入れ氷水浴で冷却しながらジアミン 7.23g(0.029モル)撹拌し液温を3℃とした。
次に亜硝酸ソーダ6.2g(0.090モル)を水7mlに
溶かした液を液温を3〜10℃の範囲にコントロー
ルしながら10分間で滴下し、滴下終了後同温度で
更に30分撹拌した。反応液にカーボンを加えて濾
過してテトラゾ化液を得た。 次に、21ビーカーにジメチルホルムアミド700
mlを入れトリエチルアミン53.6g(0.53モル)を
加え3−ヒドロキシ−2−ナフトエ酸アニリド
16.06g(0.061モル)を添加して溶解した。 このカプラー溶液を6℃に冷却し液温を6〜10
℃にコントロールしながら前述のテトラゾ化液を
30分かけて撹拌下滴下して、その後室温で2時間
撹拌し更に1晩放置した。反応液を濾過後水洗濾
過し固型分演算で粗製顔料23.05gの水ペースト
を得た。 次に400mlのN,N−ジメチルホルムアミドを
用い室温で撹拌濾過を4回繰り返した。その後
400mlのメチルエチルケトンでそれぞれ2回撹拌
濾過を繰り返した後室温で減圧乾燥し精製顔料
20.7gを得た。収率は86.5%であつた。融点300
℃以上。 元素分析 計算値(%) 実験値(%) C 72.63 72.79 H 4.14 4.10 N 13.55 13.66 以上代表的な顔料の合成法について述べたが一
般式(1)で示される他のジスアゾ顔料も同様にして
合成される。 前述のジスアゾ顔料を含有する被膜は光導電性
を示し、電子写真感光体の感光層に用いるのに適
している。 すなわち、本発明の具体例では導電性支持体の
上に前述のジスアゾ顔料を真空蒸着法により被覆
形成するか、あるいは適当なバインダー中に分散
含有させて被膜形成することにより電子写真感光
体を調製することができる。 本発明の好ましい具体例では、電子写真感光体
の感光体を電荷発生層と電荷輸送層とに機能分離
した電子写真感光体における電荷発生層として、
前述の光導電性被膜を適用することができる。 電荷発生層は、十分な吸光度を得るために、で
きる限り多くの前述のジスアゾ顔料を含有し、且
つ発生した電荷キヤリアの飛程を短かくするため
に薄膜層、例えば5μ以下、好ましくは0.01〜1μの
厚みをもつ薄膜層とすることが好ましい。このこ
とは、人射光量の大部分が電荷発生層で吸収され
て、多くの電荷キヤリアを生成すること、さらに
発生した電荷キヤリアを再結合や補獲(トラツ
プ)により失活することなく電荷輸送層に注入す
る必要があることに帰因している。 電荷発生層は、前述のジスアゾ顔料を適当なバ
インダーに分散させ、これを基体の上に塗工する
ことによつて形成でき、また真空蒸着装置により
蒸着膜を形成することによつても得ることができ
る。電荷発生層を塗工によつて形成する際に用い
るバインダーとしては広範な絶縁性樹脂から選択
でき、またポリ−N−ビニルカルバゾール、ポリ
ビニルアントラセンやポリビニルピレンなどの有
機光導電性ポリマーから選択できる。好ましく
は、ポリビニルブチラール、ポリアリレート(ビ
スフエノールAとフタル酸の縮重合体など。)、ポ
リカーボネート、ポリエステル、フエノキシ樹
脂、ポリ酢酸ビニル、アクリル樹脂、ポリアクリ
ルアミド樹脂、ポリアミド、ポリビニルピリジ
ン、セルロース系樹脂、ウレタン樹脂、エポキシ
樹脂、カゼイン、ポリビニルアルコール、ポリビ
ニルピロリドンなどの絶縁性樹脂を挙げることが
できる。電荷発生層中に含有する樹脂は、80重量
%以下、好ましくは40重量%以下が適している。 これらの樹脂を溶解する溶剤は、樹脂の種類に
よつて異なり、また下述の電荷輸送層を下引層を
溶解しないものから選択することが好ましい。具
体的な有機溶剤としては、メタノール、エタノー
ル、イソプロパノールなどのアルコール類、アセ
トン、メチルエチルケトン、ジクロヘキサノンな
どのケトン類、N,N−ジメチルホルムアミド、
N,N−ジメチルアセトアミドなどのアミド類、
ジメチルスルホキシドなどのスルホキシド類、テ
トラヒドロフラン、ジオキサン、エチレングリコ
ールモノメチルエーテルなどのエーテル類、酢酸
メチル、酢酸エチルなどのエステル類、クロロホ
ルム、塩化メチレン、ジクロルエチレン、四塩化
炭素、トリクロルエチレンなどの脂肪族ハロゲン
化炭化水素類あるいはベンゼン、トルエン、キシ
レン、リグロイン、モノクロルベンゼン、ジクロ
ルベンゼンなどの芳香族類などを用いることがで
きる。 塗工は、浸漬コーテイング法、スプレーコーテ
イング法、スピンナーコーテイング法、ビードコ
ーテイング法、マイヤーバーコーテイング法、ブ
レートコーテイング法、ローラーコーテイング
法、カーテンコーテイング法などのコーテイング
法を用いて行なうことができる。乾燥は、室温に
おける指触乾燥後、加熱乾燥する方法が好まし
い。加熱乾燥は、30℃〜200℃の温度で5分〜2
時間の範囲の時間で、静止または送風下で行なう
ことができる。 電荷輸送層は、前述の電荷発生層と電気的に接
続されており、電界の存在下で電荷発生層から注
入された電荷キヤリアを受け取るとともに、これ
らの電荷キヤリアを表面まで輸送できる機能を有
している。この際、この電荷輸送層は、電荷発生
層の上に積層されていてもよくまたその下に積層
されていてもよい。 電荷輸送層が電荷発生層の上に形成される場合
電荷輸送層における電荷キヤリアを輸送する物質
(以下、単に電荷輸送物質という)は、前述の電
荷発生層が感応する電磁波の波長域に実質的に非
感応性であることが好ましい。ここで言う「電磁
波」とは、γ線、X線、紫外線、可視光線、近赤
外線、赤外線、遠赤外線などを包含する広義の
「光線」の定義を包含する。電荷輸送層の光感応
性波長域が電荷発生層のそれと一致またはオーバ
ーラツプする時には、両者で発生した電荷キヤリ
アが相互に補獲し合い、結果的には感度の低下の
原因となる。 電荷輸送物質としては電子輸送性物質と正孔輸
送性物質があり、電子輸送性物質としては、クロ
ルアニル、ブロモアニル、テトラシアノエチレ
ン、テトラシアノキノジメタン、2,4,7−ト
リニトロ−9−フルオレノン、2,4,5,7−
テトラニトロ−9−フルオレノン、2,4,7−
トリニトロ−9−ジシアノメチレンフルオレノ
ン、2,4,5,7−テトラニトロキサントン、
2,4,8−トリニトロチオキサントン等の電子
吸収性物質やこれら電子吸収性物質を高分子化し
たもの等がある。 正孔輸送性物質としては、ピレン、N−エチル
カルバゾール、N−イソプロピルカルバゾール、
N−メチル−N−フエニルヒドラジノ−3−メチ
リデン−9−エチルカルバゾール、N,N−ジフ
エニルヒドラジノ−3−メチリデン−9−エチル
カルバゾール、N,N−ジフエニルヒドラジノ−
3−メチリデン−10−エチルフエノチアジン、
N,N−ジフエニルヒドラジノ−3−メチリデン
−10−エチルフエノキサジン、p−ジエチルアミ
ノベンズアルデヒド−N,N−ジフエニルヒドラ
ゾン、p−ジエチルアミノベンズアルデヒド−N
−α−ナフチル−N−フエニルヒドラゾン、p−
ピロリジノベンズアルデヒド−N,N−ジフエニ
ルヒドラゾン、1,3,3−トリメチルインドレ
ニン−ω−アルデヒド−N,N−ジフエニルヒド
ラゾン、p−ジエチルベンズアルデヒド−3−メ
チルベンズチアゾリノン−2−ヒドラゾン等のヒ
ドラゾン類、2,5−ビス(p−ジエチルアミノ
フエニル)−1,3,4−オキサジアゾール、1
−フエニル−3−(p−ジエチルアミノスチリル)
−5−(p−ジメチルアミノフエニル)ピラゾリ
ン、1−〔キノリル(2)〕−3−(p−ジエチルアミ
ノスチリル)−5−(p−ジメチルアミノフエニ
ル)ピラゾリン、1−〔ピリジル(2)〕−3−(p−
ジエチルアミノスチリル)−5−(p−ジエチルア
ミノフエニル)ピラゾリン、1−〔6−メトキシ
−ピリジル(2)〕−3−(p−ジエチルアミノスチリ
ル)−5−(p−ジエチルアミノフエニル)ピラゾ
リン、1−〔ピリジル(3)〕−3−(p−ジエチルア
ミノスチリル)−5−(p−ジエチルアミノフエニ
ル)ピラゾリン、1−〔レピジル(2)〕−3−(p−
ジエチルアミノスチリル)−5−(p−ジエチルア
ミノフエニル)ピラゾリン、1−〔ピリジル(2)〕−
3−(p−ジエチルアミノスチリル)−4−メチル
−5−(p−ジメチルアミノフエニル)ピラゾリ
ン、1−〔ピリジル(2)〕−3−(α−メチル−p−
ジエチルアミノスチリル)−5−(p−ジエチルア
ミノフエニル)ピラゾリン、1−フエニル−3−
(−ジエチルアミノスチリル)−4−メチル−5−
(p−ジエチルアミノフエニル)ピラゾリン、1
−フエニル−3−(α−ベンジル−p−ジエチル
アミノスチリル)−5−(p−ジエチルアミノフエ
ニル)ピラゾリン、スピロピラゾリンなどのピラ
ゾリン類、2−(p−ジエチルアミノスチリル)−
6−(ジエチルアミノベンズオキサゾール、2−
(p−ジメチルアミノフエニル)−4−(p−ジメ
チルアミノフエニル)−5−(2−クロロフエニ
ル)オキサゾール等のオキサゾール系化合物、2
−(p−ジエチルアミノスチリル)−6−ジエチル
アミノベンゾチアゾール等のチアゾール系化合
物、ビス(4−ジエチルアミノ−2−メチルフエ
ニル)−フエニルメタン等とトリアリールメタン
系化合物、1,1−ビス(4−N,N−ジエチル
アミノ−2−メチルフエニル)ペプタン、1,
1,2,2−テトラキス(4−N,N−ジメチル
アミノ−2−メチルフエニル)エタン等のポリア
リールアルカン類、4−ジフエニルアミノ−4′−
メトキシスチルベン、4′−ジエチルアミノスチリ
ル−3−(9−エチル)カルバゾール等のスチル
ベン系化合物、トリフエニルアミン、ポリ−N−
ビニルカルバゾール、ポリビニルピレン、ポリビ
ニルアントラセン、ポリビニルアクリジン、ポリ
−9−ビニルフエニルアントラセン、ピレン−ホ
ルムアルデヒド樹脂、エチルカルバゾールホルム
アルデヒド樹脂等がある。 これらの有機電荷輸送物質の他に、セレン、セ
レン−テルル、アモルフアスシリコン、硫化カド
ミウムなどの無機材料も用いることができる。 また、これらの電荷輸送物質は、1種または2
種以上組合せて用いることができる。 電荷輸送物質に成膜性を有していない時には、
適当なバインダーを選択することによつて被膜形
成できる。バインダーとして使用できる樹脂は、
例えばアクリル樹脂、ポリアリレート、ポリエス
テル、ポリカーボネート、ポリスチレン、アクリ
ロニトリル−スチレンコポリマー、アクリロニト
リル−ブタジエンコポリマー、ポリビニルブチラ
ール、ポリビニルホルマール、ポリスルホン、ポ
リアクリルアミド、ポリアミド、塩素化ゴムなど
の絶縁性樹脂、あるいはポリ−N−ビニルカルバ
ゾール、ポリビニルアントラセン、ポリビニルピ
レンなどの有機光導電性ポリマーを挙げることが
できる。 電荷輸送層は、電荷キヤリアを輸送できる限界
があるので、必要以上に膜厚を厚くすることがで
きない。一般的には、5〜30μであるが、好まし
い範囲は8〜20μである。塗工によつて電荷輸送
層を形成する際には、前述した様な適当なコーテ
イング法を用いることができる。 この様な電荷発生層と電荷輸送層の積層構造か
らなる感光層は、導電層を有する基体の上に設け
られる。導電層を有する基体としては、基体自体
が導電性をもつもの、例えばアルミニウム、アル
ミニウム合金、銅、亜鉛、ステンレス、バナジウ
ム、モリブデン、クロム、チタン、ニツケル、イ
ンジウム、金や白金などを用いることができ、そ
の他にアルミニウム、アルミニウム合金、酸化イ
ンジウム、酸化錫、酸化インジウム−酸化錫合金
などを真空蒸着法によつて被膜形成された層を有
するプラスチツク(例えばポリエチレン、ポリプ
ロピレン、ポリ塩化ビニル、ポリエチレンテレフ
タレート、アクリル樹脂、ポリフツ化エチレンな
ど)、導電性粒子(例えば、アルミ粉末、酸化ス
ズ、酸化亜鉛、酸化チタン、カーボンブラツク、
銀粒子など)を適当なバインダーとともにプラス
チツク又は前記導電性基体の上に被覆した基体、
導電性粒子をプラスチツクや紙に含浸した基体や
導電性ポリマーを有するプラスチツクなどを用い
ることができる。 導電層と感光層の中間に、バリヤー機能と接着
機能をもつ下引層を設けることもできる。下引層
は、カゼイン、ポリビニルアルコール、ニトロセ
ルロース、エチレン−アクリル酸コポリマー、ポ
リアミド(ナイロン6、ナイロン66、ナイロン
610、共重合ナイロン、アルコキシメチル化ナイ
ロンなど)、ポリウレタン、ゼラチン、酸化アル
ミニウムなどによつて形成できる。 下引層の膜厚は、0.1〜5μ、好ましくは0.5〜3μ
が適当である。 導電層、電荷発生層、電荷輸送層の順に積層し
た感光体を使用する場合において電荷輸送物質が
電子輸送性物質からなるときは、電荷輸送層表面
を正に帯電する必要があり、帯電後露光すると露
光部では電荷発生層において生成した電子が電荷
輸送層に注入され、そのあと表面に達して正電荷
を中和し、表面電位の減衰が生じ未露光部との間
に静電コントラストが生じる。この様にしてでき
た静電潜像を負荷電性のトナーで現象すれば可視
像が得られる。これを直接定着するか、あるいは
トナー像を紙やプラスチツクフイルム等に転写
後、現像し定着することができる。 また、感光体上の静電潜像を転写紙の絶縁層上
に転写後現像し、定着する方法もとれる。現像剤
の種類の現像方法、定着方法は公知のものや公知
の方法のいずれを採用しても良く、特定のものに
限定されるものではない。 一方、電荷輸送物質が正孔輸送物質から成る場
合、電荷輸送層表面を負に帯電する必要があり、
帯電後、露光すると露光部では電荷発生層におい
て生成した正孔が電荷輸送層に注入され、その後
表面に達して負電荷を中和し、表面電位の減衰が
生じ未露光部との間に静電コントラスが生じる。
現像時には電子輸送性物質を用いた場合とは逆に
正電荷性トナーを用いる必要がある。 導電層、電荷輸送層、電荷発生層の順に積層し
た感光体を使用する場合において、電荷輸送物質
が電子輸送性物質からなるときは、電荷発生層表
面を負に帯電する必要があり帯電後露光すると、
露光部では電荷発生層において生成した電子は電
荷輸送層に注入されそのあと基盤に達する。一方
電荷発生層において生成した正孔は表面に達し表
面電位の減衰が生じ未露光部との間に静電コント
ラストが生じる。この様にしてできた静電潜像を
正荷電性のトナーで現像すれば可視像が得られ
る。これを直接定着するか、あるいはトナー像を
紙やプラスチツクフイルム等に転写後現像し定着
することができる。また、感光体上の静電潜像を
転写紙の絶縁層上に転写後現像し、定着する方法
もとれる。現像剤の種類や現像方法、定着方法は
公知のものや公知の方法のいずれを採用してもよ
く、特定のものに限定されるものではない。 一方電荷発生層が正孔輸送性物質からなるとき
は、電荷発生層表面を正に帯電する必要があり、
帯電後露光すると露光部では電荷発生層において
生成した正孔は電荷輸送層に注入されその後基盤
に達する。一方電荷発生層において生成した電子
は表面に達し表面電位の減衰が生じ未露光部との
間に静電コントラストが生じる。現像時には電子
輸送性物質を用いた場合とは逆に負電荷性トナー
を用いる必要がある。 また、本発明の別の具体例では、前述のヒドラ
ゾン類、ピラゾリン類、オキサゾール類、チアゾ
ール類、トリアリールメタン類、ポリアリールア
ルカン類、トリフエニルアミン、ポリ−N−ビニ
ルカルバゾール類など有機光導電性物質や酸化亜
鉛、硫化カドミウム、セレンなどの無機光導電性
物質の増感剤として前述のジスアゾ顔料を含有さ
せた感光被膜とすることができる。この感光被膜
は、これらの光導電性物質と前述のジスアゾ顔料
をバインダーとともに塗工によつて被膜形成され
る。 本発明の別の具体例としては前述のジスアゾ顔
料を電荷輸送物質とともに同一層に含有させた電
子写真感光体を挙げることができる。この際前述
の電荷輸送物質の他にポリ−N−ビニルカルバゾ
ールとトリニトロフルオレノンからなる電荷移動
錯体化合物を用いることができる。この例の電子
写真感光体は前述のジスアゾ顔料と電荷移動錯体
化合物をテトラヒドロフランに溶解されたポリエ
ステル溶液中に分散させた後、被膜形成されて調
製できる。 いずれの感光体においても用いられる顔料は一
般式(1)で示されるジスアゾ顔料から選ばれる少な
くとも一種類の顔料を含有しその結晶形は非晶質
であつても結晶質であつてもよい。 又必要に応じて光吸収の異なる顔料を組合せて
使用し感光体の感度を高めたり、パンクロマチツ
クな感光体を得るなどの目的で一般式(1)で示され
るジスアゾ顔料を2種類以上組合せたり、または
公知の染料、顔料から選ばれた電荷発生物質と組
合せて使用することも可能である。 本発明の電子写真感光体は電子写真複写機に利
用するのみならず、レーザープリンターやCRT
プリンター、LEDプリンター、液晶プリンター、
レーザー製版等の電子写真応用分野にも広く用い
る事ができる。 以下本発明を実施例によつて説明する。 実施例 1〜40 アルミナ板上にカゼインのアンモニア水溶液
(カゼイン11.2%アンモニア水1g、水222ml)を
マイヤーバーで乾燥後の膜厚が1.0μとなる様に塗
布し乾燥した。 次に前記例示のジスアゾ顔料No.1、5gをエタ
ノール9.5mlにブチラール樹脂(ブチラール化度
63モル%)2gを溶かした液に加えサンドミルで
2時間分散した。この分散液を先に形成したカゼ
イン層の上に乾燥後の膜厚が0.5μとなる様にマイ
ヤーバーで塗布し乾燥して電荷発生層を形成し
た。次いで構造式 のヒドラゾン化合物5gとポリメチルメタクリレ
ート樹脂(数平均分子量100000)5gをベンゼン
70mlに溶解しこれを電荷発生層の上に乾燥後の膜
厚が12μとなる様にマイヤーバーで塗布し乾燥し
て電荷輸送層を形成し実施例1の感光体を作成し
た。ジスアゾ顔料No.1に代えて第一表に示す他の
例示顔料を用い実施例2〜40に対応する感光体を
全く同様にして作成した。 この様にして作成した電子写真感光体を川口電
気(株)製静電複写紙試験装置Model SP−428を用
いてスタテイツク方式で−5kVでコロナ帯電し暗
所で1秒間保持した後照度21uxで露光し帯電特
性を調べた。 帯電特性としては表面電位(Vo)と1秒間暗
減衰させた時の電位を1/2に減衰するに必要な露
光量(E1/2)を測定した。この結果を第一表に示
す。
Examples of the disazo pigment of the general formula [] used in the present invention include disazo pigments of the following pigment numbers and structural formulas. These disazo pigments may be used alone or in combination of two or more. The disazo pigment of the general formula [] can be synthesized as follows. That is, a diamine having a secondary amine represented by the general formula: H 2 N-Ar 1 -NH-Ar 2 -NH 2 (wherein Ar 1 and Ar 2 have the above-mentioned meanings) is tetrazotized by a conventional method. At the same time, the corresponding coupler is subjected to nitrosation, and then the corresponding coupler is coupled in an aqueous system in the presence of an alkali, or the tetrazonium salt of the diamine is isolated in the form of a borofluoride salt or zinc chloride double salt, and then a suitable solvent is used. For example, N, N-
It can be easily produced by coupling with a coupler in a solvent such as dimethylformamide or dimethyl sulfoxide in the presence of an alkali. Next, a typical synthesis example of the disazo pigment used in the present invention is shown below. Synthesis Example 1 (Synthesis of Disazo Pigment No. 1 exemplified above) Add 80 ml of water and 16.6 ml (0.19 mol) of concentrated hydrochloric acid to a 500 ml beaker and add diamine while cooling in an ice water bath. 7.23g (0.029mol) was stirred and the liquid temperature was brought to 3°C.
Next, a solution prepared by dissolving 6.2 g (0.090 mol) of sodium nitrite in 7 ml of water was added dropwise over 10 minutes while controlling the temperature within the range of 3 to 10°C, and after the addition was completed, the mixture was stirred for an additional 30 minutes at the same temperature. Carbon was added to the reaction solution and filtered to obtain a tetrazotized solution. Next, dimethylformamide 700 in 21 beakers
ml, add 53.6 g (0.53 mol) of triethylamine, and add 3-hydroxy-2-naphthoic acid anilide.
16.06 g (0.061 mol) was added and dissolved. Cool this coupler solution to 6℃ and reduce the liquid temperature to 6-10℃.
Add the above-mentioned tetrazotization solution while controlling the temperature at
The mixture was added dropwise over 30 minutes with stirring, and then stirred at room temperature for 2 hours and further left overnight. The reaction solution was filtered, washed with water, and a water paste containing 23.05 g of crude pigment was obtained by calculating the solid content. Next, stirring filtration was repeated four times at room temperature using 400 ml of N,N-dimethylformamide. after that
After repeating stirring and filtration twice with 400ml of methyl ethyl ketone, dry under reduced pressure at room temperature to obtain purified pigment.
20.7g was obtained. The yield was 86.5%. Melting point 300
℃ or more. Elemental analysis Calculated value (%) Experimental value (%) C 72.63 72.79 H 4.14 4.10 N 13.55 13.66 The synthesis method of typical pigments has been described above, but other disazo pigments represented by general formula (1) can also be synthesized in the same manner. be done. The coating containing the aforementioned disazo pigment exhibits photoconductivity and is suitable for use in the photosensitive layer of an electrophotographic photoreceptor. That is, in a specific example of the present invention, an electrophotographic photoreceptor is prepared by coating the above-mentioned disazo pigment on a conductive support by vacuum evaporation, or by dispersing it in a suitable binder to form a coating. can do. In a preferred embodiment of the present invention, as a charge generation layer in an electrophotographic photoreceptor in which the photoreceptor of the electrophotographic photoreceptor is functionally separated into a charge generation layer and a charge transport layer,
Photoconductive coatings as described above can be applied. The charge generation layer contains as much of the above-mentioned disazo pigment as possible in order to obtain sufficient absorbance, and is a thin film layer, for example, 5μ or less, preferably 0.01~ to shorten the range of the generated charge carriers. Preferably, it is a thin film layer with a thickness of 1μ. This means that most of the amount of sunlight is absorbed by the charge generation layer, generating many charge carriers, and that the generated charge carriers are transported without being deactivated by recombination or trapping. This is due to the need to inject into the layer. The charge generation layer can be formed by dispersing the above-mentioned disazo pigment in a suitable binder and coating it on the substrate, or it can also be obtained by forming a vapor deposited film using a vacuum vapor deposition device. I can do it. The binder used in forming the charge generating layer by coating can be selected from a wide variety of insulating resins, and can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylpyrene. Preferably, polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide, polyvinylpyridine, cellulose resin, Examples include insulating resins such as urethane resin, epoxy resin, casein, polyvinyl alcohol, and polyvinylpyrrolidone. The resin contained in the charge generation layer is suitably 80% by weight or less, preferably 40% by weight or less. The solvent that dissolves these resins varies depending on the type of resin, and it is preferable to select a solvent that does not dissolve the undercoat layer in the charge transport layer described below. Specific organic solvents include alcohols such as methanol, ethanol, and isopropanol, ketones such as acetone, methyl ethyl ketone, and dichlorohexanone, N,N-dimethylformamide,
Amides such as N,N-dimethylacetamide,
Sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, aliphatic halogens such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, and trichloroethylene. Hydrocarbons or aromatics such as benzene, toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene, etc. can be used. Coating can be carried out using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, plate coating, roller coating, and curtain coating. For drying, it is preferable to dry to the touch at room temperature and then heat dry. Heat drying at a temperature of 30℃ to 200℃ for 5 minutes to 2
It can be carried out stationary or under blown air for a period of time within a range of hours. The charge transport layer is electrically connected to the charge generation layer described above, and has the function of receiving charge carriers injected from the charge generation layer in the presence of an electric field and transporting these charge carriers to the surface. ing. At this time, this charge transport layer may be laminated on or under the charge generation layer. When the charge transport layer is formed on the charge generation layer, the material that transports charge carriers in the charge transport layer (hereinafter simply referred to as charge transport material) is substantially in the wavelength range of electromagnetic waves to which the charge generation layer is sensitive. Preferably, it is insensitive to. The term "electromagnetic waves" used herein includes a broad definition of "light rays" that includes gamma rays, X-rays, ultraviolet rays, visible light, near infrared rays, infrared rays, far infrared rays, and the like. When the photosensitive wavelength range of the charge transport layer coincides with or overlaps that of the charge generation layer, charge carriers generated in both layers capture each other, resulting in a decrease in sensitivity. Charge transport substances include electron transport substances and hole transport substances, and electron transport substances include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, and 2,4,7-trinitro-9-fluorenone. , 2, 4, 5, 7-
Tetranitro-9-fluorenone, 2,4,7-
trinitro-9-dicyanomethylenefluorenone, 2,4,5,7-tetranitroxanthone,
Examples include electron-absorbing substances such as 2,4,8-trinitrothioxanthone, and polymerized versions of these electron-absorbing substances. Examples of hole-transporting substances include pyrene, N-ethylcarbazole, N-isopropylcarbazole,
N-Methyl-N-phenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-
3-methylidene-10-ethylphenothiazine,
N,N-diphenylhydrazino-3-methylidene-10-ethylphenoxazine, p-diethylaminobenzaldehyde-N,N-diphenylhydrazone, p-diethylaminobenzaldehyde-N
-α-naphthyl-N-phenylhydrazone, p-
Pyrrolidinobenzaldehyde-N,N-diphenylhydrazone, 1,3,3-trimethylindolenine-ω-aldehyde-N,N-diphenylhydrazone, p-diethylbenzaldehyde-3-methylbenzthiazolinone-2-hydrazone hydrazones such as 2,5-bis(p-diethylaminophenyl)-1,3,4-oxadiazole, 1
-Phenyl-3-(p-diethylaminostyryl)
-5-(p-dimethylaminophenyl)pyrazoline, 1-[quinolyl(2)]-3-(p-diethylaminostyryl)-5-(p-dimethylaminophenyl)pyrazoline, 1-[pyridyl(2) ]-3-(p-
diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[6-methoxy-pyridyl(2)]-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1- [Pyridyl(3)]-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[Lepidyl(2)]-3-(p-
diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-
3-(p-diethylaminostyryl)-4-methyl-5-(p-dimethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(α-methyl-p-
diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-phenyl-3-
(-diethylaminostyryl)-4-methyl-5-
(p-diethylaminophenyl)pyrazoline, 1
-Phenyl-3-(α-benzyl-p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, spiropyrazoline and other pyrazolines, 2-(p-diethylaminostyryl)-
6-(diethylaminobenzoxazole, 2-
Oxazole compounds such as (p-dimethylaminophenyl)-4-(p-dimethylaminophenyl)-5-(2-chlorophenyl)oxazole, 2
Thiazole compounds such as -(p-diethylaminostyryl)-6-diethylaminobenzothiazole, bis(4-diethylamino-2-methylphenyl)-phenylmethane, triarylmethane compounds, 1,1-bis(4-N,N -diethylamino-2-methylphenyl)peptane, 1,
Polyarylalkanes such as 1,2,2-tetrakis(4-N,N-dimethylamino-2-methylphenyl)ethane, 4-diphenylamino-4'-
Stilbene compounds such as methoxystilbene, 4'-diethylaminostyryl-3-(9-ethyl)carbazole, triphenylamine, poly-N-
Examples include vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylacridine, poly-9-vinylphenylanthracene, pyrene-formaldehyde resin, and ethylcarbazole formaldehyde resin. In addition to these organic charge transport materials, inorganic materials such as selenium, selenium-tellurium, amorphous silicon, and cadmium sulfide can also be used. Moreover, these charge transport substances may be one or two types.
More than one species can be used in combination. When the charge transport material does not have film-forming properties,
A film can be formed by selecting an appropriate binder. Resins that can be used as binders are:
For example, insulating resins such as acrylic resin, polyarylate, polyester, polycarbonate, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene copolymer, polyvinyl butyral, polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, or poly-N- Mention may be made of organic photoconductive polymers such as vinylcarbazole, polyvinylanthracene, polyvinylpyrene. Since the charge transport layer has a limit in its ability to transport charge carriers, it cannot be made thicker than necessary. Generally, it is 5-30μ, but the preferred range is 8-20μ. When forming the charge transport layer by coating, an appropriate coating method as described above can be used. A photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer is provided on a substrate having a conductive layer. As the substrate having a conductive layer, materials that are themselves conductive can be used, such as aluminum, aluminum alloy, copper, zinc, stainless steel, vanadium, molybdenum, chromium, titanium, nickel, indium, gold, and platinum. In addition, plastics (e.g., polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, acrylic, conductive particles (e.g. aluminum powder, tin oxide, zinc oxide, titanium oxide, carbon black,
a substrate in which silver particles, etc.) are coated on plastic or the conductive substrate with a suitable binder;
A substrate made of plastic or paper impregnated with conductive particles, a plastic containing a conductive polymer, etc. can be used. A subbing layer having barrier and adhesive functions can also be provided between the conductive layer and the photosensitive layer. The subbing layer is made of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon
610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, etc. The thickness of the undercoat layer is 0.1 to 5μ, preferably 0.5 to 3μ.
is appropriate. When using a photoreceptor in which a conductive layer, a charge generation layer, and a charge transport layer are laminated in this order, and the charge transport material is an electron transport material, the surface of the charge transport layer must be positively charged, and exposure after charging is required. Then, in the exposed area, electrons generated in the charge generation layer are injected into the charge transport layer, and then reach the surface and neutralize the positive charge, causing a decrease in surface potential and creating an electrostatic contrast with the unexposed area. . A visible image can be obtained by treating the electrostatic latent image thus formed with a negatively charged toner. This can be directly fixed, or the toner image can be transferred to paper, plastic film, etc. and then developed and fixed. Alternatively, a method may be used in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper, then developed and fixed. The developing method and the fixing method using the type of developer may be any known method or known methods, and are not limited to any particular method. On the other hand, when the charge transport material consists of a hole transport material, the surface of the charge transport layer must be negatively charged.
After charging, when exposed to light, holes generated in the charge generation layer in the exposed area are injected into the charge transport layer, and then reach the surface and neutralize the negative charge, causing a decrease in the surface potential and static electricity between the exposed area and the unexposed area. Electrical contrast occurs.
During development, it is necessary to use a positively charged toner, contrary to the case where an electron transporting substance is used. When using a photoreceptor in which a conductive layer, a charge transport layer, and a charge generation layer are laminated in this order, if the charge transport material is an electron transport material, the surface of the charge generation layer must be negatively charged, and exposure after charging is required. Then,
In the exposed area, electrons generated in the charge generation layer are injected into the charge transport layer and then reach the substrate. On the other hand, holes generated in the charge generation layer reach the surface and the surface potential is attenuated, creating an electrostatic contrast with the unexposed area. A visible image can be obtained by developing the electrostatic latent image thus formed with a positively charged toner. This can be directly fixed, or the toner image can be transferred to paper, plastic film, etc. and then developed and fixed. Alternatively, a method may be used in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper, then developed and fixed. The type of developer, the developing method, and the fixing method may be any known ones or methods, and are not limited to specific ones. On the other hand, when the charge generation layer is made of a hole transporting substance, the surface of the charge generation layer must be positively charged.
When exposed to light after charging, holes generated in the charge generation layer in the exposed area are injected into the charge transport layer and then reach the substrate. On the other hand, electrons generated in the charge generation layer reach the surface and the surface potential is attenuated, creating an electrostatic contrast with the unexposed area. During development, it is necessary to use a negatively charged toner, contrary to the case where an electron transporting substance is used. In another specific example of the present invention, organic photoconductive materials such as the aforementioned hydrazones, pyrazolines, oxazoles, thiazoles, triarylmethanes, polyarylalkanes, triphenylamines, poly-N-vinylcarbazoles, etc. The photosensitive film may contain the above-mentioned disazo pigment as a sensitizer for photoconductive substances and inorganic photoconductive substances such as zinc oxide, cadmium sulfide, and selenium. This photosensitive film is formed by coating these photoconductive substances and the above-mentioned disazo pigment together with a binder. Another specific example of the present invention is an electrophotographic photoreceptor containing the above-mentioned disazo pigment and a charge transport material in the same layer. In this case, in addition to the above-mentioned charge transport materials, a charge transfer complex compound consisting of poly-N-vinylcarbazole and trinitrofluorenone can be used. The electrophotographic photoreceptor of this example can be prepared by dispersing the aforementioned disazo pigment and charge transfer complex compound in a polyester solution dissolved in tetrahydrofuran, and then forming a film thereon. The pigment used in any of the photoreceptors contains at least one pigment selected from disazo pigments represented by the general formula (1), and its crystal form may be amorphous or crystalline. Furthermore, if necessary, two or more types of disazo pigments represented by the general formula (1) may be used in combination for the purpose of increasing the sensitivity of the photoreceptor or obtaining a panchromatic photoreceptor by using a combination of pigments with different light absorption. Alternatively, it can be used in combination with a charge generating substance selected from known dyes and pigments. The electrophotographic photoreceptor of the present invention can be used not only for electrophotographic copying machines, but also for laser printers and CRTs.
Printers, LED printers, LCD printers,
It can also be widely used in electrophotographic applications such as laser engraving. The present invention will be explained below with reference to Examples. Examples 1 to 40 An ammonia aqueous solution of casein (11.2% casein in aqueous ammonia, 1 g, 222 ml of water) was coated on an alumina plate using a Mayer bar so that the film thickness after drying was 1.0 μm and dried. Next, 5 g of the above-mentioned disazo pigment No. 1 was added to 9.5 ml of ethanol with butyral resin (butyralization degree).
63 mol%) was added to the solution and dispersed for 2 hours using a sand mill. This dispersion was applied onto the previously formed casein layer using a Mayer bar so that the film thickness after drying was 0.5 μm, and dried to form a charge generation layer. Then the structural formula 5 g of hydrazone compound and 5 g of polymethyl methacrylate resin (number average molecular weight 100,000) were added to benzene.
The photoreceptor of Example 1 was prepared by dissolving the solution in 70 ml and coating it on the charge generation layer using a Mayer bar so that the dry film thickness was 12μ, and drying to form a charge transport layer. Photoreceptors corresponding to Examples 2 to 40 were prepared in exactly the same manner using other exemplary pigments shown in Table 1 in place of disazo pigment No. 1. The electrophotographic photoreceptor thus prepared was statically charged with corona at -5kV using an electrostatic copying paper tester Model SP-428 manufactured by Kawaguchi Electric Co., Ltd., and held in a dark place for 1 second, then at an illuminance of 21ux. It was exposed to light and its charging characteristics were investigated. As for the charging characteristics, the surface potential (Vo) and the exposure amount (E 1/2 ) required to attenuate the potential by 1/2 when dark decaying for 1 second were measured. The results are shown in Table 1.

【表】【table】

【表】【table】

【表】 比較例 1〜7 例示ジスアゾ顔料(1)(3)(4)に代えて顔料の中心骨
格を
[Table] Comparative Examples 1 to 7 In place of the exemplified disazo pigments (1), (3), and (4), the central skeleton of the pigment was

【式】型とした、公開 特許公報昭58−132242号記載のアゾ顔料No.2、No.
1、No.3の顔料を用いて比較資料1、2、3を作
成した。次に例示ジスアゾ顔料(1)、(14)、(19)、
(34)に代えて、顔料の中心骨格を順に、 とした比較顔料を用い、比較例4、5、6、7を
作成した。 比較顔料1〜7を用いた比較資料1〜7につい
て、実施例1と同様にして帯電測定を用つた。 第2表に本発明に対比させた比較例の特性を示
す。
[Formula] Azo pigment No. 2, No.
Comparative materials 1, 2, and 3 were created using pigments No. 1 and No. 3. Next, exemplified disazo pigments (1), (14), (19),
Instead of (34), the central skeleton of the pigment is Comparative Examples 4, 5, 6, and 7 were created using the comparative pigments. Regarding Comparative Materials 1 to 7 using Comparative Pigments 1 to 7, charge measurement was performed in the same manner as in Example 1. Table 2 shows the characteristics of comparative examples compared to the present invention.

【表】 ※ 第1表のデータより抜粋
第2表の結果より明らかなように本発明の感光
体は顔料の中心骨格に
[Table] * Extracted from the data in Table 1 As is clear from the results in Table 2, the photoreceptor of the present invention has a central skeleton of the pigment.

【式】基を有しているこ とと、一つ以上の多環芳香環又はヘテロ環を含ん
でいることにより、電子写真的な感度が著しく良
好になることが確認された。 実施例 41〜46 実施例1、3、4、12、14、25に用いた感光体
を用い繰返し使用時の明部電位と暗部電子の変動
を測定した。方法としては−5.6kVのコロナ帯電
器、露光光学系、現像器、転写帯電器、除電露光
光学系およびクリーナーを備えた電子写真複写機
のシリンダーに感光体を貼り付けた。この複写機
は、シリンダーの駆動に伴い、複写紙上に画像が
得られる構成になつている。この複写機を用いて
初期の明部電位(VL)と暗部電位(VD)をそれ
ぞれ−100V、−600V付近に設定し、5000回使用
した後の明部電位(VL)暗部電位を測定した。
この結果を第3表に示す。
It was confirmed that electrophotographic sensitivity is significantly improved by having the group [Formula] and one or more polycyclic aromatic rings or heterocycles. Examples 41 to 46 Using the photoreceptors used in Examples 1, 3, 4, 12, 14, and 25, fluctuations in bright area potential and dark area electrons during repeated use were measured. The photoreceptor was attached to the cylinder of an electrophotographic copying machine equipped with a -5.6 kV corona charger, an exposure optical system, a developer, a transfer charger, a static elimination exposure optical system, and a cleaner. This copying machine is configured to produce an image on copy paper as a cylinder is driven. Using this copier, set the initial light potential (V L ) and dark potential (V D ) to around -100V and -600V, respectively, and calculate the light potential (V L ) and dark potential after using it 5000 times. It was measured.
The results are shown in Table 3.

【表】【table】

【表】 実施例 47 実施例1で作成したえ電荷発生層の上に、2,
4,7−トリニトロ−9−フルオレノン5gとポ
リ−4,4′−ジオキシジフエニル−2,2′−プロ
パンカーボネート(分子量300000)5gをテトラ
ヒドロフラン70mlに溶解して作成した塗布液を乾
燥後の塗工量が10g/m2となる様に塗布し、乾燥
した。 こうして作成した電子写真感光体を実施例1と
同様の方法で帯電測定を行なつた。この時、帯電
極性はとした。この結果を第4表に示す。 第4表 Vp 590ボルト E1/2;3.31ux・sec 実施例 48 アルミ蒸着ポリエチレンテレフタレートフイル
ムのアルミ面上に膜厚0.5μのポリビニルアルコー
ルの被膜を形成した。 次に、実施例1で用いたジスアゾ顔料の分散液
を先に形成したポリビニルアルコール層の上に、
乾燥後の膜厚が0.5μとなる様にマイヤーバーで塗
布し、乾燥して電荷発生層を形成した。 次いで、構造式 のピラゾリン化合物5gとポリアリレート樹脂
(ビスフエノールAとテレフタル酸−イソフタル
酸の縮重合体)5gをテトラヒドロフラン70mlに
溶かした液を電荷発生層の上に乾燥後の膜厚が
10μとなる様に塗布し乾燥して電荷輸送層を形成
した。 こうして調製した感光体の帯電特性および耐久
特性を実施例1及び実施例4と同様の方法によつ
て測定した。この結果を第5表に示す。 第5表 Vp:600V E1/2;3.81ux・sec 耐久特性 初 期 5000枚耐久後 Vp VL Vp VL −600V −1000V −630V −125 第5表の結果より感度も良く耐久使用時の電位
安定性も良好である。 実施例 49 厚さ100ミクロン厚のアルミ板上にカゼインの
アンモニア水溶液を塗布し、乾燥して膜厚0.5ミ
クロンの下引層を形成した。 次に、2,4,7−トリニトロ−9−フルオレ
ノン5gとポリ−N−ビニルカルバゾール(数平
均分子量300000)5gをテトラヒドロフラン70ml
に溶かして電荷移動錯化合物を形成した。この電
荷移動錯化合物と前記例示のジスアゾ顔料No.
(26)1gを、ポリエステル樹脂(バイロン:東
洋紡製)5gをテトラヒドロフラン70mlに溶かし
た液に加え、分散した。この分散液を下引層の上
に乾燥後の膜厚が12ミクロンとなる様に塗布し、
乾燥した。 こうした調製した感光体の帯電特性と耐久特性
を実施例1と同様の方法によつて測定した。この
結果を第6表に示し。但し、帯電極性はとし
た。 第6表 Vp:580V E1/2;4.41ux・sec 実施例 50 実施例1で用いたカゼイン層を施したアルミ板
のカゼイン層上に実施例1の電荷輸送層、電荷発
生層を順次積層し、層構成を異にする以外は実施
例1と全く同様にして成光性を形成し、実施例1
と同様に帯電測定した。但し帯電極性をとし
た。帯電特性を第7表に示す。 第7表 Vp:600V E1/2;4.51ux・sec 実施例 51 アルミニウムシリンダー上にカゼインのアンモ
ニア水溶液(カゼイン11.2g、28%アンモニア水
1g、水22.2ml)を浸漬コーテイング法で塗工
し、乾燥して塗工量1.0g/m2の下引層を形成し
た。 次に、前述のジスアゾ顔料No.58の1重量部、ブ
チラール樹脂(エスレツクBM−2:積水化学(株)
製)1重量部とイソプロピルアルコール30重量部
をボールミル分散機で4時間分散した。この分散
液を先に形成した下引層の上に浸漬コーテイング
法で塗工し、乾燥して電荷発生層を形成した。こ
の時の膜厚は0.3ミクロンであつた。 次に、実施例1に用いたヒドラゾン化合物1重
量部、ポリスルホン樹脂(P1700:ユニオンカー
バイト社製)、1重量部とモノクロルベンゼン6
重量部を混合し、撹拌機で撹拌溶解した。この液
を電荷発生層の上に浸漬コーテイング法で塗工
し、乾燥して電荷輸送層を形成した。この時の膜
厚は、12ミクロンであつた。 こうして調製した感光体に−5kVのコロナ放電
を行なつた。この時の表面電位を測定した(初期
電位Vp)。さらに、こと感光体を5秒間暗所で放
置した後の表面電位を測定した(暗減衰VK)。感
度は、暗減衰した後の電位VKを1/2に減衰するに
必要な露光量(E1/2マイクロジユール/cm2)を測
定することによつて評価した。この際、光源とし
てカリウム/アルミニウム/ヒ素の三元系半導体
レーザー(出力:5mW;発振波長778nm)を
用いた。これらの結果は次のとおりであつた。 Vp:−520ボルト VK:94% E1/2:1.3マイクロジユール/cm2 次に同上の半導体レーザーを備えた反転現像方
式の電子写真式プリンターであるレーザービーム
プリンター(キヤノン製LBP−CX)に上記感光
体をLBP−CXの感光体に置き換えてセツトし、
実際の画像形成テストを用つた。条件は以下の通
りである。 一次帯電後の表面電位;−700V、像露光後の
表面電位;−150V(露光量2μJ/cm2)、転写電位;
+700V、現像剤極性;負極性、プロセススピー
ド;50mm/sec、現像条件(現像バイアス);−
450V、像露光スキヤン方式;イメージスキヤン、
一次帯電前露光;501ux・secの赤色全面露光 画像形成はレーザービームを文字信号及び画像
信号に従つてラインスキヤンして行つたが、文字
画像共に良好なプリントが得られた。
[Table] Example 47 On the charge generation layer created in Example 1, 2,
A coating solution prepared by dissolving 5 g of 4,7-trinitro-9-fluorenone and 5 g of poly-4,4'-dioxydiphenyl-2,2'-propane carbonate (molecular weight 300,000) in 70 ml of tetrahydrofuran was dried. It was coated at a coating weight of 10 g/m 2 and dried. The electrostatic charge of the electrophotographic photoreceptor thus prepared was measured in the same manner as in Example 1. At this time, the charging polarity was set. The results are shown in Table 4. Table 4 V p 590 volts E 1/2 ; 3.31 ux·sec Example 48 A polyvinyl alcohol film with a thickness of 0.5 μm was formed on the aluminum surface of an aluminum vapor-deposited polyethylene terephthalate film. Next, the dispersion of the disazo pigment used in Example 1 was placed on the polyvinyl alcohol layer formed previously.
It was coated with a Mayer bar so that the film thickness after drying was 0.5μ, and dried to form a charge generation layer. Then, the structural formula A solution prepared by dissolving 5 g of pyrazoline compound and 5 g of polyarylate resin (condensation polymer of bisphenol A and terephthalic acid-isophthalic acid) in 70 ml of tetrahydrofuran was placed on the charge generation layer to determine the film thickness after drying.
It was applied to a thickness of 10μ and dried to form a charge transport layer. The charging characteristics and durability characteristics of the photoreceptor thus prepared were measured in the same manner as in Examples 1 and 4. The results are shown in Table 5. Table 5 V p :600V E 1/2 ;3.81ux・sec Durability characteristics Initial After 5000 sheets V p V L V p V L −600V −1000V −630V −125 Better sensitivity and durability than the results in Table 5 Potential stability during use is also good. Example 49 An ammonia aqueous solution of casein was coated on an aluminum plate with a thickness of 100 microns and dried to form a subbing layer with a thickness of 0.5 microns. Next, 5 g of 2,4,7-trinitro-9-fluorenone and 5 g of poly-N-vinylcarbazole (number average molecular weight 300,000) were added to 70 ml of tetrahydrofuran.
to form a charge transfer complex. This charge transfer complex compound and the above-mentioned disazo pigment No.
(26) 1 g was added to a solution in which 5 g of polyester resin (Vylon, manufactured by Toyobo) was dissolved in 70 ml of tetrahydrofuran, and dispersed. This dispersion was applied onto the undercoat layer so that the film thickness after drying was 12 microns.
Dry. The charging characteristics and durability characteristics of the photoreceptor thus prepared were measured in the same manner as in Example 1. The results are shown in Table 6. However, the charging polarity was determined. Table 6 V p : 580V E 1/2 ; 4.41ux・sec Example 50 The charge transport layer and charge generation layer of Example 1 were sequentially applied on the casein layer of the casein layer-coated aluminum plate used in Example 1. A photoforming layer was formed in the same manner as in Example 1 except that the layer structure was different from that of Example 1.
The charge was measured in the same manner as above. However, the charging polarity was determined. Charging characteristics are shown in Table 7. Table 7 V p : 600V E 1/2 ; 4.51ux・sec Example 51 An ammonia aqueous solution of casein (11.2 g of casein, 1 g of 28% ammonia water, 22.2 ml of water) was coated on an aluminum cylinder by dip coating. , and dried to form a subbing layer with a coating weight of 1.0 g/m 2 . Next, 1 part by weight of the above-mentioned disazo pigment No. 58, butyral resin (Eslec BM-2: Sekisui Chemical Co., Ltd.)
1 part by weight) and 30 parts by weight of isopropyl alcohol were dispersed for 4 hours using a ball mill disperser. This dispersion was applied onto the previously formed subbing layer by a dip coating method and dried to form a charge generation layer. The film thickness at this time was 0.3 microns. Next, 1 part by weight of the hydrazone compound used in Example 1, 1 part by weight of polysulfone resin (P1700: manufactured by Union Carbide) and 6 parts by weight of monochlorobenzene were added.
Parts by weight were mixed and dissolved by stirring with a stirrer. This liquid was applied onto the charge generation layer by dip coating and dried to form a charge transport layer. The film thickness at this time was 12 microns. A -5 kV corona discharge was applied to the photoreceptor thus prepared. The surface potential at this time was measured (initial potential V p ). Further, the surface potential of the photoreceptor was measured after it was left in the dark for 5 seconds (dark decay V K ). Sensitivity was evaluated by measuring the exposure amount (E 1/2 microjoule/cm 2 ) required to attenuate the potential V K by 1/2 after dark decay. At this time, a potassium/aluminum/arsenic ternary semiconductor laser (output: 5 mW; oscillation wavelength: 778 nm) was used as a light source. The results were as follows. V p : -520 volts V K : 94% E 1/2 : 1.3 microjoules/cm Second , a laser beam printer (Canon's LBP- CX), replace the above photoconductor with the photoconductor of LBP-CX, and set it.
An actual imaging test was used. The conditions are as follows. Surface potential after primary charging: -700V, surface potential after image exposure: -150V (exposure amount: 2 μJ/cm 2 ), transfer potential:
+700V, developer polarity: negative polarity, process speed: 50mm/sec, development conditions (development bias): -
450V, image exposure scan method; image scan,
Primary pre-charging exposure: 501 ux·sec full red exposure Image formation was performed by line-scanning a laser beam in accordance with character signals and image signals, and good prints were obtained for both character images.

Claims (1)

【特許請求の範囲】 1 導電性基体上に、下記一般式〔〕で示され
るジスアゾ顔料を含有する感光層を有することを
特徴とする電子写真感光体。 一般式〔〕 (式中、Aはフエノール性OH基を有するカプラ
ー残基を表す。Ar1及びAr2は、それぞれ、置換
基を有してもよいフエニレン基、置換基を有して
もよいビフエニレン基もしくは縮合多環芳香族基
又は2価の複素環基を表す。但し、Ar1及びAr2
が、共に置換基を有していてもよいフエニレン基
であることはない。) 2 一般式〔〕のAが、下記一般式〔〕で示
されるものである特許請求の範囲第1項記載の電
子写真感光体。 一般式〔〕 (式中、Xはベンゼン環と縮合して、置換基を有
していてもよい多環芳香族環又はヘテロ環を形成
するのに必要な残基を表わす。R1及びR2は、そ
れぞれ、水素原子、置換基を有していてもよいア
ルキル基、アラルキル基、アリール基又はヘテロ
環基を表わすか、あるいはR1とR2とで、結合す
る窒素原子と共に環状アミノ基を形成するのに必
要な残基を表わす。) 3 R1が水素原子であり、R2が下記一般式〔〕
で示されるフエニル基である特許請求の範囲第2
項記載の電子写真感光体。 一般式〔〕 (式中、R3は、ハロゲン原子、ニトロ基、シア
ノ基、トリフルオロメチル基又はアシル基を表わ
す。) 4 Aが下記一般式〔〕で示されるものである
特許請求の範囲第2項記載の電子写真感光体。 一般式〔〕 (式中、R4は置換基を有していてもよいフエニ
ル基を表わす。) 5 一般式〔〕のAが、下記一般式〔〕で示
されるものである特許請求の範囲第1項記載の電
子写真感光体。 一般式〔〕 (式中、R5は置換基を有していてもよいアルキ
ル基、アラルキル基又はアリール基を表わす。) 6 一般式〔〕のAが、下記一般式〔〕で示
されるものである特許請求の範囲第1項記載の電
子写真感光体。 一般式〔〕 (式中、R6は置換基を有していてもよいアルキ
ル基、アラルキル基又はアリール基を表わす。) 7 一般式〔〕のAが、下記一般式〔〕で示
されるものである特許請求の範囲1項記載の電子
写真感光体。 一般式〔〕 (式中、Y1は2つの窒素原子と結合した2価の
芳香族炭化水素基を表わすか、あるいは、
【式】により2価のヘテロ環基を形成す るのに必要な残基を表わす。) 8 一般式〔〕のAが、下記一般式〔〕で
示されるものである特許請求の範囲第1項記載の
電子写真感光体。 一般式〔〕 (式中、Y1は2つの窒素原子と結合した2価の
芳香族炭化水素基を表わすか、あるいは、
【式】により2価のヘテロ環基を形成す るのに必要な残基を表わす。) 9 一般式〔〕のAが、下記一般式〔〕で示
されるものである特許請求の範囲第1項記載の電
子写真感光体。 一般式〔〕 (式中、Z1はベンゼン環と縮合して、置換基を有
していてもよい多環芳香族環又はヘテロ環を形成
するのに必要な残基を表わす。R7及びR8は、そ
れぞれ、水素原子、置換されていてもよいアリー
ル基又はヘテロ環基を表わすか、あるいは、R7
とR8とが結合する炭素原子と共に5員環又は6
員環を形成するのに必要な残基を表わし、これら
5員環又は6員環は縮合芳香族環を有していても
よい。) 10 一般式〔〕のAが、下記一般式〔〕で
示されるものである特許請求の範囲第1項記載の
電子写真感光体。 一般式〔〕 (式中、Z2はベンゼン環として縮合して、置換基
を有していてもよい多環芳香族環又はヘテロ環を
形成するのに必要な残基を表わす。R9及びR10
は、それぞれ、水素原子、置換されていてもよい
アルキル基、アラルキル基、アリール基又はヘテ
ロ環基を表わす。) 11 感光層が、一般式〔〕のジスアゾ顔料の
少なくとも1種を含有する電荷発生層と電荷輸送
層とを構成分とする積層構造のものである特許請
求の範囲第1項乃至第10項のうちの1に記載の
電子写真感光体。
[Scope of Claims] 1. An electrophotographic photoreceptor comprising a photosensitive layer containing a disazo pigment represented by the following general formula [] on a conductive substrate. General formula [] (In the formula, A represents a coupler residue having a phenolic OH group. Ar 1 and Ar 2 are respectively a phenylene group which may have a substituent, a biphenylene group which may have a substituent, or a fused Represents a polycyclic aromatic group or a divalent heterocyclic group.However, Ar 1 and Ar 2
However, neither of them is a phenylene group which may have a substituent. ) 2. The electrophotographic photoreceptor according to claim 1, wherein A in the general formula [] is represented by the following general formula []. General formula [] (In the formula, X represents a residue necessary to form a polycyclic aromatic ring or a heterocycle which may have a substituent by condensation with a benzene ring. R 1 and R 2 are each , represents a hydrogen atom, an alkyl group, an aralkyl group, an aryl group, or a heterocyclic group which may have a substituent, or R 1 and R 2 together with the bonding nitrogen atom form a cyclic amino group. ) 3 R 1 is a hydrogen atom, and R 2 is the following general formula []
Claim 2, which is a phenyl group represented by
The electrophotographic photoreceptor described in . General formula [] (In the formula, R 3 represents a halogen atom, a nitro group, a cyano group, a trifluoromethyl group, or an acyl group.) 4. Claim 2, wherein A is represented by the following general formula [] electrophotographic photoreceptor. General formula [] (In the formula, R 4 represents a phenyl group which may have a substituent.) 5. Claim 1, wherein A in the general formula [] is represented by the following general formula [] electrophotographic photoreceptor. General formula [] (In the formula, R 5 represents an alkyl group, an aralkyl group, or an aryl group that may have a substituent.) 6. A patent claim in which A in the general formula [] is represented by the following general formula [] The electrophotographic photoreceptor according to item 1. General formula [] (In the formula, R 6 represents an alkyl group, an aralkyl group, or an aryl group that may have a substituent.) 7. A patent claim in which A in the general formula [] is represented by the following general formula [] The electrophotographic photoreceptor according to range 1. General formula [] (In the formula, Y 1 represents a divalent aromatic hydrocarbon group bonded to two nitrogen atoms, or
[Formula] represents a residue necessary to form a divalent heterocyclic group. ) 8 The electrophotographic photoreceptor according to claim 1, wherein A in the general formula [] is represented by the following general formula []. General formula [] (In the formula, Y 1 represents a divalent aromatic hydrocarbon group bonded to two nitrogen atoms, or
[Formula] represents a residue necessary to form a divalent heterocyclic group. ) 9 The electrophotographic photoreceptor according to claim 1, wherein A in the general formula [] is represented by the following general formula []. General formula [] (In the formula, Z 1 represents a residue necessary to form a polycyclic aromatic ring or a heterocycle which may have a substituent by condensation with a benzene ring. R 7 and R 8 are each represents a hydrogen atom, an optionally substituted aryl group or a heterocyclic group, or R 7
together with the carbon atom to which R 8 is bonded, a 5-membered ring or a 6-membered ring
Represents a residue necessary to form a membered ring, and these 5- or 6-membered rings may have a fused aromatic ring. ) 10 The electrophotographic photoreceptor according to claim 1, wherein A in the general formula [] is represented by the following general formula []. General formula [] (In the formula, Z 2 represents a residue necessary to form a polycyclic aromatic ring or a heterocycle which may have a substituent by condensation as a benzene ring. R 9 and R 10
each represents a hydrogen atom, an optionally substituted alkyl group, an aralkyl group, an aryl group, or a heterocyclic group. ) 11. Claims 1 to 10, wherein the photosensitive layer has a laminated structure consisting of a charge generation layer containing at least one disazo pigment of the general formula [] and a charge transport layer. The electrophotographic photoreceptor according to item 1.
JP11911585A 1985-05-31 1985-05-31 Electrophotographic sensitive body Granted JPS61275849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11911585A JPS61275849A (en) 1985-05-31 1985-05-31 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11911585A JPS61275849A (en) 1985-05-31 1985-05-31 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS61275849A JPS61275849A (en) 1986-12-05
JPH0417425B2 true JPH0417425B2 (en) 1992-03-25

Family

ID=14753295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11911585A Granted JPS61275849A (en) 1985-05-31 1985-05-31 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS61275849A (en)

Also Published As

Publication number Publication date
JPS61275849A (en) 1986-12-05

Similar Documents

Publication Publication Date Title
JPH0435750B2 (en)
JPH0549229B2 (en)
JPH0480386B2 (en)
JPH0454228B2 (en)
JPS6394249A (en) Electrophotographic sensitive body
JPH0448388B2 (en)
JPH0435751B2 (en)
JP2572771B2 (en) Electrophotographic photoreceptor
JPH0516586B2 (en)
JPS61251862A (en) Electrophotographic sensitive body
JP2515999B2 (en) Electrophotographic photoreceptor
JP2652389B2 (en) Electrophotographic photoreceptor
JPH0417425B2 (en)
JPH0417424B2 (en)
JPH077214B2 (en) Electrophotographic photoreceptor
JPH0417426B2 (en)
JPH0380302B2 (en)
JPH0792609B2 (en) Electrophotographic photoreceptor
JPS61173258A (en) Electrophotographic sensitive body
JPS61260250A (en) Electrophotographic sensitive body
JPS63259572A (en) Electrophotographic sensitive body
JPH0435752B2 (en)
JPH0380303B2 (en)
JPH0719066B2 (en) Electrophotographic photoreceptor
JPS6327851A (en) Electrophotographic sensitive body