JPH0417383B2 - - Google Patents

Info

Publication number
JPH0417383B2
JPH0417383B2 JP58239957A JP23995783A JPH0417383B2 JP H0417383 B2 JPH0417383 B2 JP H0417383B2 JP 58239957 A JP58239957 A JP 58239957A JP 23995783 A JP23995783 A JP 23995783A JP H0417383 B2 JPH0417383 B2 JP H0417383B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
resistor
porous body
embedded
electrochemical cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58239957A
Other languages
Japanese (ja)
Other versions
JPS59131158A (en
Inventor
Shunzo Mase
Shigeo Soejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPS59131158A publication Critical patent/JPS59131158A/en
Publication of JPH0417383B2 publication Critical patent/JPH0417383B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes

Description

【発明の詳細な説明】 本発明は構造が簡単で且つ低温作動性および耐
久性に優れた電気化学的セルおよび装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrochemical cell and device that is simple in structure, has excellent low temperature operability and durability.

電気化学的装置、例えばジルコニア固体電解質
濃淡電池による酸素センサーは約350℃以下の低
温のガス中では超電力を十分に検出できないの
で、低温で作動させるためにはセンサー素子に加
熱用抵抗体を付着させている。このとき抵抗体が
固体電解質に触れていると抵抗体電流によつて固
体電解質の電気分解が起こり、固体電解質が劣化
するという欠点があつた。また抵抗体と固体電解
質との間に例えば特開昭55−116248に開示されて
いるようにアルミナ磁器のような絶縁材を介在さ
せるという構造も提案されているが、これは固体
電解質と絶縁材との熱膨脹率の違いにより使用中
に剥離してしまうという欠点があつた。
Oxygen sensors using electrochemical devices, such as zirconia solid electrolyte concentration cells, cannot sufficiently detect superpower in gases at temperatures below about 350°C, so in order to operate at low temperatures, a heating resistor must be attached to the sensor element. I'm letting you do it. At this time, if the resistor was in contact with the solid electrolyte, electrolysis of the solid electrolyte would occur due to the resistor current, resulting in deterioration of the solid electrolyte. Furthermore, a structure in which an insulating material such as alumina porcelain is interposed between the resistor and the solid electrolyte has been proposed, as disclosed in Japanese Patent Laid-Open No. 55-116248. Due to the difference in coefficient of thermal expansion between

本発明の電気化学的セルおよび装置は前述の従
来の欠点を解決し、優れた低温作動特性を示すよ
うセルを常温から加熱することができ、かつ劣化
のすくない電気化学的装置を得ることを目的とす
るものである。
The purpose of the electrochemical cell and device of the present invention is to solve the above-mentioned conventional drawbacks, and to obtain an electrochemical device that can be heated from room temperature to show excellent low-temperature operation characteristics and that is less prone to deterioration. That is.

本発明の電気化学的セルおよび装置は固体電解
質と、該固体電解質に付着して設けられた一対の
電極と、該固体電解質内に埋め込まれた、該固体
電解質と同一の主成分よりなる多孔質体と、該多
孔質体中に埋め込まれた耐火性の抵抗体とよりな
る電気化学的セル、および前記抵抗体の両端に接
続された電源よりなり、抵抗体への電圧の印加に
ともなう加熱状態の電気化学的セルで流体中の電
極反応に関与する成分の濃度を検出または制御す
る電気化学的装置である。
The electrochemical cell and device of the present invention include a solid electrolyte, a pair of electrodes attached to the solid electrolyte, and a porous structure embedded in the solid electrolyte and made of the same main component as the solid electrolyte. an electrochemical cell consisting of a porous body, a refractory resistor embedded in the porous body, and a power source connected to both ends of the resistor, which is heated as a voltage is applied to the resistor. An electrochemical cell is an electrochemical device that detects or controls the concentration of components involved in electrode reactions in a fluid.

すなわち、本発明は多孔質の固体電解質を介し
て電気化学的セルに接触している抵抗体の両端に
交流電圧または電流電圧を印加し、抵抗体の発熱
によつて固体電解質を加熱すると固体電解質の電
気分解が起らず、従つて固体電解質の劣化がない
ことを究明したことに基くものである。
That is, the present invention applies an alternating voltage or current voltage to both ends of a resistor that is in contact with an electrochemical cell through a porous solid electrolyte, and heats the solid electrolyte by the heat generated by the resistor. This is based on the discovery that no electrolysis occurs, and therefore there is no deterioration of the solid electrolyte.

本発明の更に詳しい構成を一具体例である酸素
濃度検出器を示す第1図およびこの第1図のセル
部分の展開図である第2図に基いて説明する。
A more detailed configuration of the present invention will be explained with reference to FIG. 1, which shows an oxygen concentration detector as a specific example, and FIG. 2, which is a developed view of the cell portion of FIG. 1.

イツトリア添加ジルコニア磁器よりなる固体電
解質1の両面に白金電極2,3が設けられ、この
一方の電極3の片面にイツトリア添加ジルコニア
磁器の多孔質体4を介して白金よりなる抵抗体5
が設けられ、抵抗体5は電源20に接続されてい
る。多孔質体4は固体電解質1と同一材質の気密
層6によりおおわれている。
Platinum electrodes 2 and 3 are provided on both sides of a solid electrolyte 1 made of zirconia porcelain doped with ittria, and a resistor 5 made of platinum is provided on one side of one electrode 3 via a porous body 4 made of zirconia porcelain doped with ittria.
is provided, and the resistor 5 is connected to a power source 20. The porous body 4 is covered with an airtight layer 6 made of the same material as the solid electrolyte 1.

電極3は酸素濃淡電池の基準電極であり、その
表面は気密層6と固体電解質1との間に介在する
多孔質層4にさらされている。そして固体電解質
1の他の一面には白金よりなる電極2が被測定ガ
ス電極として設けられ、固体電解質1と電極2お
よび3で酸素濃淡電池を構成している。
The electrode 3 is a reference electrode of the oxygen concentration battery, and its surface is exposed to the porous layer 4 interposed between the airtight layer 6 and the solid electrolyte 1. An electrode 2 made of platinum is provided on the other side of the solid electrolyte 1 as a gas electrode to be measured, and the solid electrolyte 1 and electrodes 2 and 3 constitute an oxygen concentration cell.

被測定ガスは、ハウジング7の開口部8および
保温筒9の開口部10を通つて電極2の表面に達
する。一方基準ガスとなる空気はキヤツプ11の
通気孔12およびアルミナ磁器製の絶縁体13の
穴14を通つて規準電極となる電極3の表面に達
する。そして被測定ガスと空気とは支持材のフラ
ンジ15と固体電解質1との間を充填するガラス
16および封止部17により気密に遮断されてい
る。この場合封止部17はバネ18により絶縁体
13および金属ワツシヤ19を介して支持材のフ
ランジ15がハウジング7に押圧された状態で気
密に保持されている。
The gas to be measured reaches the surface of the electrode 2 through the opening 8 of the housing 7 and the opening 10 of the heat-insulating cylinder 9. On the other hand, the air serving as the reference gas passes through the vent hole 12 of the cap 11 and the hole 14 of the insulator 13 made of alumina porcelain to reach the surface of the electrode 3 serving as the reference electrode. The gas to be measured and air are hermetically sealed off by a glass 16 and a sealing part 17 that fill the gap between the support flange 15 and the solid electrolyte 1. In this case, the sealing portion 17 is held airtight by the spring 18 with the flange 15 of the supporting member being pressed against the housing 7 via the insulator 13 and the metal washer 19.

そして抵抗体5の両端に電源20が接続される
と抵抗体5を流れる電流のジユール熱により抵抗
体は発熱し、これに密接している多孔質体4およ
び固体電解質1を加熱する。
When a power source 20 is connected to both ends of the resistor 5, the resistor generates heat due to the Joule heat of the current flowing through the resistor 5, and heats the porous body 4 and the solid electrolyte 1 that are in close contact with the resistor.

多孔質体4は温度上昇にともなつて酸素イオン
導電性を示すようになる。すると抵抗体5の両端
に印加した電流の一部は多孔質体4中にも流れ
る。然しこの多孔質体4に流れ込む電流による電
気分解の生成物である酸素は多孔質層を通つて循
環し固体電解質の劣化は起らない。
The porous body 4 comes to exhibit oxygen ion conductivity as the temperature rises. Then, part of the current applied to both ends of the resistor 5 also flows into the porous body 4. However, oxygen, which is a product of electrolysis caused by the current flowing into the porous body 4, circulates through the porous layer, and no deterioration of the solid electrolyte occurs.

多孔質体としては例えばジルコニア磁器ではキ
ユービツク相であることが望ましく、更にこれに
Ta,Na等を添加して電導度を小さくしたものが
望ましい。
For example, in the case of zirconia porcelain, the porous material preferably has a Cubic phase;
It is preferable to add Ta, Na, etc. to reduce the conductivity.

なお、本発明の多孔質体が固体電解質と同一の
主成分と称するは、例えばジルコニア固体電解質
を用いたときはジルコニア質の多孔体を用いるこ
とを意味し、安定化剤、焼結助剤等の添加物成分
は問わないものとする。
Note that the porous body of the present invention has the same main components as the solid electrolyte means that, for example, when a zirconia solid electrolyte is used, a zirconia porous body is used, and stabilizers, sintering aids, etc. The additive components are not concerned.

また本発明に用いることのできる固体電解質は
ジルコニア磁器の外、β−アリミナ,チツ化アル
ミニウム,NASICON(ナシコン),SrCeO3,Bi2
O3−希土類酸化物系固溶体,La1-XCaXYO3-〓等
である。また抵抗体としては、ニツケル、銀、
金、白金、ロジウム、パラジウム、イリジウム、
ルテニウム、タングステン、モリブデン等の金属
あるいはこれらの合金が耐久性に優れ好ましいが
この他酸化亜鉛、LaCrO3,LaB6,SiC等の化合
物を用いることもできる。
In addition to zirconia porcelain, solid electrolytes that can be used in the present invention include β-alimina, aluminum titanide, NASICON, SrCeO 3 , Bi 2
O 3 − rare earth oxide solid solution, La 1-X Ca X YO 3- 〓, etc. Also, as a resistor, nickel, silver,
gold, platinum, rhodium, palladium, iridium,
Metals such as ruthenium, tungsten, and molybdenum or alloys thereof are preferred because of their excellent durability, but other compounds such as zinc oxide, LaCrO 3 , LaB 6 , and SiC may also be used.

また抵抗体の固体電解質への付与方法として
は、真空蒸着、スパツタリング、無電解メツキ、
金属塩溶液の熱分解または還元、ペーストの焼
付、サーメツトまたは溶射等、従来セラミツク等
へ電極を付与する際に用いられた公知の方法で付
与することができる。
In addition, methods for applying the resistor to the solid electrolyte include vacuum evaporation, sputtering, electroless plating,
It can be applied by any known method conventionally used for applying electrodes to ceramics, such as thermal decomposition or reduction of a metal salt solution, baking of a paste, cermet or thermal spraying.

また抵抗体が使用中に蒸発したり、汚損するこ
とを防止するために、抵抗体を耐火性の層例えば
スピネル、アルミナ等の層で保護するかあるいは
多孔質の固体電解質中に埋設するとよい。
In order to prevent the resistor from evaporating or becoming contaminated during use, the resistor may be protected with a fire-resistant layer such as spinel or alumina, or it may be embedded in a porous solid electrolyte.

また抵抗体が使用中に焼結により剥離、断線等
を生ずるのを防止したり、抵抗体の抵抗値を調節
するため、抵抗体中にジルコニア、アルミナ等の
微粉末を混入するのが望ましい。
It is also desirable to mix fine powder of zirconia, alumina, etc. into the resistor in order to prevent the resistor from peeling or disconnection due to sintering during use, and to adjust the resistance value of the resistor.

実施例 1 ZrO297モル%,Y2O3モル%よりなる粉末100
重量部に対し焼結助剤としてアルミナ1重量部、
また成形助剤としてポリビニルブチラール8重量
部、ジオクチルフタレート4重量部を加えて混合
し、この混合物により厚さ0.5mmの板状体を形成
した。
Example 1 Powder 100 consisting of 97 mol% ZrO 2 and 3 mol% Y 2 O
1 part by weight of alumina as a sintering aid per part by weight;
In addition, 8 parts by weight of polyvinyl butyral and 4 parts by weight of dioctyl phthalate were added and mixed as molding aids, and a plate-shaped body having a thickness of 0.5 mm was formed from this mixture.

そして、この板状体の両面に白金粉末95%、ジ
ルコニア粉末5%を含むペーストを印刷し、被測
定ガス電極2および基準電極3を形成したもの、
この板状体の中空部に多孔体4となるZrO292モ
ル%,Y2O38モル%よりなるペーストを詰め込
んだもの、この板状体の片面に多孔体4となる
ZrO292モル%,Y2O38モル%よりなるペースト
を印刷し、さらにその上に白金80%、ロジウム20
%の合金粉末のペーストを印刷し抵抗体5を形成
したもの、および板状体のみのものをそれぞれ準
備し、第2図に示すように順次積層して電気化学
的セルを得た。
Then, a paste containing 95% platinum powder and 5% zirconia powder is printed on both sides of this plate-shaped body to form a gas electrode 2 to be measured and a reference electrode 3.
A paste consisting of 92 mol% ZrO 2 and 8 mol% Y 2 O 3 which will become the porous body 4 is packed into the hollow part of this plate-shaped body, and one side of this plate-shaped body is filled with a paste that will become the porous body 4.
A paste consisting of 92 mol% ZrO 2 and 8 mol% Y 2 O 3 was printed, and on top of that, 80% platinum and 20% rhodium were printed.
% alloy powder paste was printed to form a resistor 5, and a plate-shaped body alone was prepared, and as shown in FIG. 2, they were sequentially laminated to obtain an electrochemical cell.

これを1400℃で焼結し、酸素濃度検出器を作成
した。その際固体電解質1はテトラゴナル相、多
孔質体4はキユービツク相であつた。この酸素濃
度検出器に12Vの直流電源20を接続し通電した
結果、通電開始後約40秒で抵抗体5は600℃に昇
温し、その時流れる電流は0.3Aであり、電極2
と3の間のインビーダンスは1KΩであり、酸素
濃度検出器として十分作動し、且つ直流電源によ
る超電力への影響もなかつた。
This was sintered at 1400℃ to create an oxygen concentration detector. At that time, the solid electrolyte 1 was in the tetragonal phase, and the porous body 4 was in the Cubic phase. As a result of connecting a 12V DC power supply 20 to this oxygen concentration detector and applying electricity, the temperature of the resistor 5 rises to 600°C in about 40 seconds after the start of electricity supply, the current flowing at that time is 0.3A, and the temperature of the resistor 5 increases to 600°C.
The impedance between and 3 was 1KΩ, and it worked well as an oxygen concentration detector, and there was no effect on superpower due to the DC power supply.

以上のべたとおり、本発明の電気化学的セルお
よび装置は構造が簡単であるにもかかわらず低温
においても低い電圧で迅速に固体電解質を加熱す
ることができるので、低温作動性に極めて優れた
ものであり、かつ加熱にともなう固体電解質の劣
化も殆んど認められず耐久性にも優れているもの
であつて、酸素は勿論のことチツ素、二酸化炭
素、水素、ナトリウム等の流体中の電極反応に関
与する成分の検出器あるいは制御器として使用で
きるものであり、特に内燃機関より排出される排
気ガス中の酸素濃度の検出器として用いれば始動
直後あるいは低速回転時の低温度の排気ガスにお
いても正確な酸素濃度を検出することができる利
点を有するものであり、産業上および公害防止上
からも極めて有用である。
As mentioned above, although the electrochemical cell and device of the present invention have a simple structure, they can quickly heat the solid electrolyte with a low voltage even at low temperatures, so they have extremely excellent low-temperature operability. Moreover, the solid electrolyte exhibits almost no deterioration due to heating and has excellent durability. It can be used as a detector or controller for components involved in reactions, and especially when used as a detector for oxygen concentration in exhaust gas discharged from an internal combustion engine, it can be used immediately after startup or in low-temperature exhaust gas during low-speed rotation. It also has the advantage of being able to accurately detect oxygen concentration, and is extremely useful from an industrial and pollution prevention perspective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電気化学的装置を酸素濃度検
出器として用いた場合の一具体例を示す説明図、
第2図は第1図の電気化学的装置の要部の展開構
造および電気的接続法を示す説明図である。 1……固体電解質、2,2′,3……電極、7
……ハウジング、8,10……開口部、9……保
温筒、11……キヤツプ、12……通気孔、13
……絶縁体、14……穴、15……フランジ、1
6……ガラス、17……封止部、18……バネ、
19……ワツシヤ、20……電源、21……電位
差計、4……多孔質体、5……抵抗体、6……気
密層、22……電流計。
FIG. 1 is an explanatory diagram showing a specific example of using the electrochemical device of the present invention as an oxygen concentration detector;
FIG. 2 is an explanatory diagram showing the expanded structure and electrical connection method of the main parts of the electrochemical device shown in FIG. 1. 1... Solid electrolyte, 2, 2', 3... Electrode, 7
... Housing, 8, 10 ... Opening, 9 ... Heat insulation tube, 11 ... Cap, 12 ... Ventilation hole, 13
... Insulator, 14 ... Hole, 15 ... Flange, 1
6...Glass, 17...Sealing part, 18...Spring,
19... Washer, 20... Power source, 21... Potentiometer, 4... Porous body, 5... Resistor, 6... Airtight layer, 22... Ammeter.

Claims (1)

【特許請求の範囲】 1 固体電解質と、該固体電解質に付着して設け
られた一対の電極と、該固体電解質内に気密に埋
め込まれた、該固体電解質と同一の主成分よりな
る多孔質体と、該多孔質体中に埋め込まれた耐火
性の抵抗体とよりなる電気化学的セル。 2 固体電解質と、該固体電解質に付着して設け
られた一対の電極と、該固体電解質内に気密に埋
め込まれた、該固体電解質と同一の主成分よりな
る多孔質体と、該多孔質体中に埋め込まれた耐火
性の抵抗体とよりなる電気化学的セル、および前
記抵抗体の両端に接続された電源よりなり、抵抗
体への電圧の印加にともなう加熱状態の電気化学
的セルで流体中の電極反応に関与する成分の濃度
を検出または制御する電気化学的装置。
[Claims] 1. A solid electrolyte, a pair of electrodes attached to the solid electrolyte, and a porous body made of the same main component as the solid electrolyte and airtightly embedded in the solid electrolyte. and a refractory resistor embedded in the porous body. 2. A solid electrolyte, a pair of electrodes attached to the solid electrolyte, a porous body made of the same main component as the solid electrolyte and airtightly embedded in the solid electrolyte, and the porous body An electrochemical cell consisting of a refractory resistor embedded therein, and a power supply connected to both ends of the resistor, the fluid being heated in the electrochemical cell by applying a voltage to the resistor. An electrochemical device that detects or controls the concentration of components involved in an electrode reaction.
JP58239957A 1982-12-24 1983-12-21 Electrochemical cell and apparatus Granted JPS59131158A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8236814 1982-12-24
GB8236814 1982-12-24

Publications (2)

Publication Number Publication Date
JPS59131158A JPS59131158A (en) 1984-07-27
JPH0417383B2 true JPH0417383B2 (en) 1992-03-25

Family

ID=10535259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58239957A Granted JPS59131158A (en) 1982-12-24 1983-12-21 Electrochemical cell and apparatus

Country Status (1)

Country Link
JP (1) JPS59131158A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085493A (en) * 2002-08-28 2004-03-18 Kyocera Corp Oxygen sensor element
JP3898603B2 (en) * 2002-08-28 2007-03-28 京セラ株式会社 Oxygen sensor element
CN104198564B (en) * 2014-09-24 2016-08-17 云南云天化股份有限公司 A kind of oxygen sensor protective layer and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116248A (en) * 1979-02-23 1980-09-06 Bosch Gmbh Robert Electrochemical feeler for measuring oxygen content of gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116248A (en) * 1979-02-23 1980-09-06 Bosch Gmbh Robert Electrochemical feeler for measuring oxygen content of gas

Also Published As

Publication number Publication date
JPS59131158A (en) 1984-07-27

Similar Documents

Publication Publication Date Title
JPH0513261B2 (en)
US4547281A (en) Gas analysis apparatus
EP0125069B1 (en) Electrochemical element and device including the element
JPS584986B2 (en) Oxygen concentration measuring device
JPH03130657A (en) Oxygen sensor
EP1635171B1 (en) Hydrocarbon sensor
EP0105993B1 (en) Heater with solid electrolyte
JPH0244392B2 (en)
JPH0343585B2 (en)
JPH10503022A (en) Solid electrolyte sensor for measuring gaseous anhydride.
JPH0417383B2 (en)
JPH05180798A (en) Solid electrolyte gas sensor
JP2598771B2 (en) Composite gas sensor
JPH0529870B2 (en)
Ratkje et al. The Transported Entropy of Oxygen Ion in Yttria‐Stabilized Zirconia
JPH0933483A (en) Co2 sensor
JP3268039B2 (en) Solid electrolyte type carbon dioxide sensor element
JP2001194337A (en) Method for measuring gas concentration
JP3865498B2 (en) Limit current type oxygen sensor and oxygen detection method
JPH03120456A (en) Oxygen sensor
JPH039420B2 (en)
JP3819117B2 (en) Concentration cell type carbon dioxide sensor
JPS6358152A (en) Industrial oxygen concentration measuring apparatus
JPS60111151A (en) Electrochemical device
JPS6217186B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term