JPH04173236A - Anisotropic conductive structural body - Google Patents

Anisotropic conductive structural body

Info

Publication number
JPH04173236A
JPH04173236A JP2301896A JP30189690A JPH04173236A JP H04173236 A JPH04173236 A JP H04173236A JP 2301896 A JP2301896 A JP 2301896A JP 30189690 A JP30189690 A JP 30189690A JP H04173236 A JPH04173236 A JP H04173236A
Authority
JP
Japan
Prior art keywords
short fibers
rubber
anisotropy
structure body
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2301896A
Other languages
Japanese (ja)
Inventor
Ryuichi Kido
隆一 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2301896A priority Critical patent/JPH04173236A/en
Publication of JPH04173236A publication Critical patent/JPH04173236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To manufacture an anisotropic conductive structural body in one process simply and quickly by embedding short fibers of high conductivity into a rubber structure body in a manner of providing anisotropy in conduction. CONSTITUTION:A test piece 1 is composed of rubber structure body 2 into which short fibers 3, 3... of high conductivity are embedded in a manner of having anisotropy in heat conduction, and the length of the short fibers 3 is set 10mm or shorter and the fibers 3 are mixed at the ratio of 2-30vol.% to the structure body 2. When the length of short fibers 3 is more than 10mm, dispersion properties, orientation properties, processing properties and the like are lowered in the case of being kneaded into a matrix. Also, when short fibers 3 are less than 2 vol.%, anisotropy in conduction cannot be obtained, while beyond 30vol.%, processing properties are lowered. An anisotropic conductive structural body can be manufactured in one process simply and quickly by only mixing short fibers 3 into rubber as a matrix in the manufacturing stage. Also, as the structure body 2 is rubber, the same is suitable for use when flexibility is required to enlarge the scope of use.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、導電異方性構造体に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a conductive anisotropic structure.

(従来の技術) 従来より、直交する3方向のうち、導電率がある一定の
方向には高く、他の方向には低く設定された構造体とし
て、例えば導電率の高い材料で所定の形状に形成された
構造体本体を中心に据え、該構造体本体の低い導電率が
要求される箇所を不導体で被覆するようにしたものが一
般に知られている。
(Prior art) Conventionally, out of three orthogonal directions, a structure with high conductivity in a certain direction and low in other directions has been constructed using, for example, a material with high conductivity in a predetermined shape. It is generally known to place the formed structure body at the center and cover the portions of the structure body where low conductivity is required with a nonconductor.

(発明が解決しようとする課題) ところが、上記の従来のものでは、2つの部材を組み合
わせることにより、導電に異方性を持たせていることか
ら、どうしても組付は工程が必要となって製作に手間が
かかるという問題があった。
(Problem to be Solved by the Invention) However, in the above-mentioned conventional product, since the two members are combined to give anisotropy to the conductivity, a process is required for assembly, making it difficult to manufacture. There was a problem that it took a lot of time.

本発明はかかる点に鑑みてなされたものであり、その目
的とするところは、製作段階で構造体を構成する母材中
に高導電性材料を一定方向に配向するよう混入すること
により、導電率がある一定の方向には高く、他の方向に
は低く設定されたいわゆる導電異方性構造体を組付は工
程を経ることなく1工程で簡単かつ迅速に得んとするこ
とにある。
The present invention has been made in view of the above points, and its purpose is to create a conductive material by mixing a highly conductive material oriented in a certain direction into the base material constituting the structure at the manufacturing stage. The object of the present invention is to easily and quickly assemble a so-called conductive anisotropic structure in which the ratio is set to be high in a certain direction and low in other directions in one step without going through any steps.

さらには、構造体に可撓性を持たせて用途の拡大化を図
らんとすることにある。
Furthermore, the purpose is to provide flexibility to the structure to expand its uses.

(課題を解決するための手段) 上記の目的を達成するため、請求項(1)に係る本発明
の解決手段は、ゴム製の構造体本体に、導電率の高い短
繊維を導電に異方性を有するように埋設して構成したこ
とである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention according to claim (1) provides anisotropically conductive short fibers with high conductivity in a rubber structure main body. It is constructed by embedding it in such a way that it has a unique character.

また、請求項(2)に係る本発明の解決手段は、」1記
の場合において、短繊維の繊維長を10mm以下に設定
したことである。
Moreover, the solution of the present invention according to claim (2) is that in the case of item 1, the fiber length of the short fibers is set to 10 mm or less.

さらに、請求項(3)に係る本発明の解決手段は、短繊
維を、構造体本体に対し2〜30容量%の割合で混入し
たことである。
Furthermore, the solution of the present invention according to claim (3) is that short fibers are mixed in the structure body at a ratio of 2 to 30% by volume.

(作用) 上記の構成により、請求項(1)に係る本発明では、ゴ
ム製の構造体本体に、導電率の高い短繊維か導電に異方
性を有するように埋設されて構成されていることから、
短繊維の配向方向では導電率か高くなり、逆に非配向方
向では導電率か低くなる。
(Function) With the above configuration, the present invention according to claim (1) is configured such that short fibers with high conductivity are embedded in the rubber structure body so as to have anisotropy in conductivity. Therefore,
The electrical conductivity increases in the direction of orientation of the short fibers, while the electrical conductivity decreases in the non-oriented direction.

しかも、この導電異方性構造体は、短繊維を製作段1茗
で母料であるゴム中に混入するだけてよいことから、煩
わしい組付は工程を経る必要かなくされて1工程で簡単
かつ迅速に得られることとなる。
Furthermore, this electrically conductive anisotropic structure can be manufactured by simply mixing the short fibers into the base material rubber in one manufacturing step, eliminating the need for a complicated assembly process and making it simple in one step. And it can be obtained quickly.

さらには、構造体本体がゴム製であるので、可撓性が要
求されるような場合に好適であり、用途の拡大化が図ら
れることとなる。
Furthermore, since the main body of the structure is made of rubber, it is suitable for cases where flexibility is required, and the range of uses will be expanded.

また、請求項(2)に係る本発明では、短繊維の繊維長
が10mm以下に設定されていることがら、短繊維を構
造体本体を構成する母材(ゴム)中に混練する際の分散
性、配向性および加工性等が確保されることとなる。
Further, in the present invention according to claim (2), since the fiber length of the short fibers is set to 10 mm or less, the short fibers are dispersed when kneaded into the base material (rubber) constituting the structure body. properties, orientation, processability, etc. are ensured.

さらに、請求項(3)に係る本発明では、短繊維が、構
造体本体に対し2〜30容量%の割合で混入されている
ことから、導電の異方性および加工性等が確保されるこ
ととなる。
Furthermore, in the present invention according to claim (3), since the short fibers are mixed at a ratio of 2 to 30% by volume with respect to the main body of the structure, conductive anisotropy and processability are ensured. It happens.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図および第2図は本発明の実施例に係る導電異方性
構造体どしての立方体形状のテストピース1を示す。該
テストピース9は、ゴム製の構造体本体2に、導電率の
高い短繊維3,3.・が導電に異方性を有するように埋
設されて構成され、かつ上記短繊維3は、繊維長が10
mm以下に設定され、さらに、この短繊維3は、構造体
本体2に対し2〜30容量%の割合で混入されている。
FIGS. 1 and 2 show a cubic-shaped test piece 1 as a conductive anisotropic structure according to an embodiment of the present invention. The test piece 9 consists of a structure body 2 made of rubber and short fibers 3, 3 . * is embedded so as to have anisotropy in conductivity, and the short fibers 3 have a fiber length of 10
mm or less, and the short fibers 3 are mixed at a ratio of 2 to 30% by volume with respect to the structure main body 2.

上記構造体本体2としては、比較的導電率が低いゴム製
のものであれば特に限定されないが、例えば天然ゴムや
、SBR,NBR,CR,EPM。
The structure main body 2 is not particularly limited as long as it is made of rubber with relatively low conductivity, and examples thereof include natural rubber, SBR, NBR, CR, and EPM.

EPDM、IR,IIR,水素化NBR,BR。EPDM, IR, IIR, hydrogenated NBR, BR.

フッ素ゴム、アクリルゴム、シリコンゴムおよびウレタ
ンゴム等の合成ゴムか用いられる。
Synthetic rubbers such as fluororubber, acrylic rubber, silicone rubber and urethane rubber are used.

また、」1記導電率の高い短繊維3としては、例えば金
属繊維、カーボン繊維及び導電性物質を表面に被覆した
金属被覆繊維、カーボン被覆繊維及び導電性物質を内部
に混入したカーボン複合繊維等か用いられる。
In addition, examples of short fibers 3 having high electrical conductivity as described in 1. include metal fibers, metal-coated fibers whose surfaces are coated with carbon fibers and conductive substances, carbon composite fibers whose interior is coated with carbon-coated fibers and conductive substances, etc. or used.

さらに、上記短繊維3の繊維長を1101n以下に設定
しているのは、コ−0mmを超えると母材(ゴム)中に
混練する際、分散性、配向性および加工性等か低下する
からである。
Furthermore, the fiber length of the short fibers 3 is set to 1101n or less because if it exceeds 0 mm, dispersibility, orientation, processability, etc. will decrease when kneading into the base material (rubber). It is.

また、上記短繊維3を、構造体本体2に対し2〜30容
量%の割合で混入しているのは、2容量%未満では導電
の異方性を得ることができなくなる一方、30容量%を
超えると加工性が低下するからである。
Furthermore, the short fibers 3 are mixed at a ratio of 2 to 30% by volume relative to the structure main body 2, because if the content is less than 2% by volume, conductive anisotropy cannot be obtained. This is because if it exceeds this, workability will decrease.

次に、上述の如く構成された導電異方性構造体として本
実施例1および本実施例11に係るテストピース1を2
種類用意し、短繊維3を混入していない比較例のものと
比較した導電率のテストデータを表コ−に示す。なお、
三者共、母材として下記に示す如き配合組成のゴム組成
物を使用し、かつ各テストピース1は一辺の長さが50
mmに設定された立方体である。そして、本実施例■で
は、上記の組成物に対し繊維長か3 mm、直径か20
μmのカーボン繊維(短繊維3)を構造体本体2に対し
]5容量%の割合で混入し、かつX軸方向に配向させた
ものである(第1図参照)。また、本実施例I+では、
短繊維3をx −y *d+て囲む平面内ではランダム
に、他の二面では各々一方向に配向させているほかは上
記本実施例■と同じである。さらに、比較例は、短繊維
3を混入せずにゴム組成物のみで成形したものである。
Next, test pieces 1 according to Example 1 and Example 11 were used as conductive anisotropic structures constructed as described above.
Table 1 shows the conductivity test data for different types of samples prepared and compared with those of comparative examples in which short fibers 3 were not mixed. In addition,
All three used rubber compositions with the following composition as the base material, and each test piece 1 had a side length of 50 mm.
It is a cube set in mm. In Example 2, the fiber length was 3 mm and the diameter was 20 mm for the above composition.
Carbon fibers (short fibers 3) of .mu.m are mixed at a ratio of 5% by volume relative to the structure main body 2, and are oriented in the X-axis direction (see FIG. 1). In addition, in this embodiment I+,
The short fibers 3 are oriented randomly within a plane surrounding x-y*d+, and the other two planes are oriented in one direction. Furthermore, the comparative example was molded only from the rubber composition without mixing the short fibers 3.

くゴム組成物の配合〉 天然ゴム         80重量部ブタジェンゴム
      20重量部カーボン(N550)    
25重量部亜鉛華           3重量部ステ
アリン酸        1重量部軟化剤      
     5重量部老化防止剤         2重
量部加硫促進剤(CBS)     2重量部加硫促進
剤(TMTD)  0.5重量部硫黄        
  1.5重量部表1 その結果は、表1のテストデータから明らかなように、
本実施例Iては、短繊維3の配向方向(X軸方向)の導
電率が1. 1− X 10−33/mと他の2つの非
配向方向(X軸方向、Z軸方向)よりも高くなり、本実
施例11ては、非配向方向(Z軸方向)の導電率が4.
6X10 ”S/m他の2つの配向方向(X軸方向、X
軸方向)よりも低くなっていた。
Blend of rubber composition> Natural rubber 80 parts by weight Butadiene rubber 20 parts by weight Carbon (N550)
25 parts by weight Zinc white 3 parts by weight Stearic acid 1 part by weight Softener
5 parts by weight anti-aging agent 2 parts by weight vulcanization accelerator (CBS) 2 parts by weight vulcanization accelerator (TMTD) 0.5 parts by weight sulfur
1.5 parts by weight Table 1 The results are as clear from the test data in Table 1.
In this Example I, the electrical conductivity in the orientation direction (X-axis direction) of the short fibers 3 is 1. 1-X 10-33/m, which is higher than the other two non-oriented directions (X-axis direction and Z-axis direction), and in this Example 11, the conductivity in the non-oriented direction (Z-axis direction) is ..
6X10”S/m Other two orientation directions (X-axis direction,
(in the axial direction).

このように、本実施例では、導電率の高い短繊維3をゴ
ム製の構造体本体2中に一定の方向に配向させたことか
ら、短繊維3の配向方向において導電率を高くすること
かでき、逆に非配向方向において導電率を低くすること
ができる。しかも、この導電異方性構造体は、短繊維3
を製作段階で母材であるゴム中に混入するたけてよいこ
とから、煩わしい組付は工程を経ずに済み]工程で簡単
かつ迅速に得ることができる。さらには、構造体本体2
がゴム製であるので、可撓性が要求されるような場合に
好適であり、用途の拡大化を図ることができる。
In this example, since the short fibers 3 with high conductivity are oriented in a certain direction in the rubber structure main body 2, it is possible to increase the conductivity in the orientation direction of the short fibers 3. On the contrary, the conductivity can be lowered in the non-oriented direction. Moreover, this electrically conductive anisotropic structure has three short fibers.
can be easily and quickly mixed into the base material rubber during the production stage, eliminating the need for troublesome assembly processes. Furthermore, the structure body 2
Since it is made of rubber, it is suitable for cases where flexibility is required, and the range of uses can be expanded.

また、上記実施例では、短繊維3の繊維長を10、mm
以下に設定していることから、短繊維3を構造体本体2
を構成する母材(ゴム)中に混練する際の分散性、配向
性および加工性等を確保することができる。
Further, in the above example, the fiber length of the short fibers 3 is 10 mm.
Since the settings are as follows, the short fiber 3 is transferred to the structure main body 2.
It is possible to ensure good dispersibility, orientation, processability, etc. when kneading into the base material (rubber) constituting the rubber.

さらに、上記実施例では、短繊維3を、構造体本体2に
対し2〜30容量%の割合で混入していることから、導
電の異方性および加工性等を確保することができる。
Further, in the above embodiment, since the short fibers 3 are mixed at a ratio of 2 to 30% by volume relative to the structure main body 2, it is possible to ensure conductive anisotropy, workability, etc.

そして、このようにして得られた導電異方性構造体を、
例えば導電マット、導電床材、導電ロールおよび感圧ゴ
ム等に適用すれば、電気を速やかに伝えることができて
好適である。
Then, the conductive anisotropic structure obtained in this way is
For example, if it is applied to conductive mats, conductive flooring materials, conductive rolls, pressure sensitive rubber, etc., it is suitable because electricity can be transmitted quickly.

(発明の効果) 以上説明したように、請求項(1)に係る本発明によれ
ば、ゴム製の構造体本体に、導電率の高い短繊維を導電
に異方性を有するように埋設したので、導電率を短繊維
の配向方向で高く、非配向方向で低くすることができる
。しかも、短繊維を製作段階でゴム中に混入するだけで
1工程で簡単かつ迅速に導電異方性構造体を得ることが
できる。さらには、構造体本体がゴム製で可撓性を有す
るので、用途の拡大化を図ることができる。
(Effects of the Invention) As explained above, according to the present invention according to claim (1), short fibers with high conductivity are embedded in the rubber structure body so as to have anisotropy in conductivity. Therefore, the electrical conductivity can be made high in the orientation direction of the short fibers and lower in the non-orientation direction. Moreover, a conductive anisotropic structure can be easily and quickly obtained in one step by simply mixing short fibers into rubber at the production stage. Furthermore, since the structure main body is made of rubber and has flexibility, it is possible to expand the range of uses.

また、請求項(2)に係る本発明によれば、短繊維の繊
維長を10mm以下に設定したので、混練時の分散性、
配向性および加工性等を確保することかできる。
Further, according to the present invention according to claim (2), since the fiber length of the short fibers is set to 10 mm or less, the dispersibility during kneading,
Orientation, workability, etc. can be ensured.

さらに、請求項(3)に係る本発明によれば、短繊維を
、構造体本体に対し2〜30容量%の割合で混入したの
で、導電の異方性および加工性等を確保することができ
る。
Furthermore, according to the present invention according to claim (3), since the short fibers are mixed at a ratio of 2 to 30% by volume relative to the main body of the structure, it is possible to ensure conductive anisotropy and processability. can.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は本実施例■に係
るテストピースの斜視図、第2図は本実施例IIに係る
テストピースの斜視図である。 1・・・テストピース(導電異方性構造体)2・・・構
造体本体 3・・・短繊維 特 許 出 願 人  バンド−化学株式会社代   
 理    人  前 1)  弘(他]名)1・・・
テストピース(導電 2・・・構造体本体 3・・・短繊維 T方性や遺体)   第 1 図 第2図
The drawings show embodiments of the present invention; FIG. 1 is a perspective view of a test piece according to Example 2, and FIG. 2 is a perspective view of a test piece according to Example II. 1...Test piece (conductive anisotropic structure) 2...Structure body 3...Short fiber patent applicant Band-Kagaku Co., Ltd.
Rinto 1) Hiroshi (other name) 1...
Test piece (Conductivity 2...Structure body 3...Short fiber T orientation and remains) Fig. 1 Fig. 2

Claims (3)

【特許請求の範囲】[Claims] (1)ゴム製の構造体本体に、導電率の高い短繊維が導
電に異方性を有するように埋設されて構成されているこ
とを特徴とする導電異方性構造体。
(1) A conductive anisotropic structure characterized in that short fibers with high conductivity are embedded in a structure body made of rubber so as to have anisotropy in conductivity.
(2)短繊維は、繊維長が10mm以下に設定されてい
ることを特徴とする請求項(1)記載の導電異方性構造
体。
(2) The electrically conductive anisotropic structure according to claim (1), wherein the short fibers have a fiber length of 10 mm or less.
(3)短繊維は、構造体本体に対し2〜30容量%の割
合で混入されていることを特徴とする請求項(1)記載
の導電異方性構造体。
(3) The electrically conductive anisotropic structure according to claim (1), wherein the short fibers are mixed at a ratio of 2 to 30% by volume relative to the main body of the structure.
JP2301896A 1990-11-06 1990-11-06 Anisotropic conductive structural body Pending JPH04173236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2301896A JPH04173236A (en) 1990-11-06 1990-11-06 Anisotropic conductive structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2301896A JPH04173236A (en) 1990-11-06 1990-11-06 Anisotropic conductive structural body

Publications (1)

Publication Number Publication Date
JPH04173236A true JPH04173236A (en) 1992-06-19

Family

ID=17902433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2301896A Pending JPH04173236A (en) 1990-11-06 1990-11-06 Anisotropic conductive structural body

Country Status (1)

Country Link
JP (1) JPH04173236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116271A (en) * 1998-05-08 2000-09-12 Firma Andreas Stihl Ag & Co. Venting valve for a fuel tank
WO2018121976A1 (en) 2016-12-28 2018-07-05 Arlanxeo Deutschland Gmbh Rubber mixtures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116271A (en) * 1998-05-08 2000-09-12 Firma Andreas Stihl Ag & Co. Venting valve for a fuel tank
WO2018121976A1 (en) 2016-12-28 2018-07-05 Arlanxeo Deutschland Gmbh Rubber mixtures

Similar Documents

Publication Publication Date Title
US5536568A (en) Variable-resistance conductive elastomer
EP1054035A3 (en) Organic-inorganic composite material and process for preparing the same
EP1279702A4 (en) Fully cured thermoplastic elastomer, process for its manufacture and applications thereof
JPH04173236A (en) Anisotropic conductive structural body
JPS591550A (en) Rubber composition having improved crack propagation resistance
França et al. Pressure sensibility of conductive rubber based on NBR-and polypyrrole-designed materials
JPH04173235A (en) Heat conductive anisotropic structural body
CN107746476A (en) A kind of high intensity selfreparing electroconductive magnetic electronic skin material and preparation method thereof
CN103408795A (en) Modified calcium carbonate with fireproof ceilings and preparation method thereof
Song et al. Study on dynamic mechanical properties of magnetorheological elastomers based on natural rubber/thermoplastic elastomer hybrid matrix
JPH0753813A (en) Electrically conductive plastic composition
JPH0471108A (en) Pressure sensitive conductive elastomer
KR101761266B1 (en) Composite master batch for high-strength golf ball core and the method thereof
CN109517295A (en) A kind of raw particles and preparation method thereof of pyrophillite fine powder and the compound electric wire and cable jacket material of polyvinyl chloride
CN105968658B (en) Graphene/fluorubber composite material and preparation method thereof
JPH04349301A (en) Deformable conductive elastomer
JP2005060204A (en) Conductive material-covered expanded graphite, graphite based conductive filler, conductive rubber material, rubber molding and method for producing rubber molding
WO2020136373A2 (en) New composition of matter
JP2001036285A (en) Electromagnetic shielding rubber sheet
JPH08127673A (en) Chloroprene-based rubber composition
JPH04253109A (en) Deformable conductive elastomer
JPH0393109A (en) Pressure-sensitive conductive elastomer
CN107778563A (en) A kind of toughness reinforcing nitrile rubber and preparation method thereof
JPS6090235A (en) Electrically conductive chloroprene rubber composition
CN113185844B (en) Ultrathin silicon rubber film and preparation method thereof