JPH04172429A - Microphotographic aparatus - Google Patents

Microphotographic aparatus

Info

Publication number
JPH04172429A
JPH04172429A JP29898990A JP29898990A JPH04172429A JP H04172429 A JPH04172429 A JP H04172429A JP 29898990 A JP29898990 A JP 29898990A JP 29898990 A JP29898990 A JP 29898990A JP H04172429 A JPH04172429 A JP H04172429A
Authority
JP
Japan
Prior art keywords
memory
information
photometry
led
photometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29898990A
Other languages
Japanese (ja)
Other versions
JP3034940B2 (en
Inventor
Shuji Nakagawa
修二 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2298989A priority Critical patent/JP3034940B2/en
Publication of JPH04172429A publication Critical patent/JPH04172429A/en
Application granted granted Critical
Publication of JP3034940B2 publication Critical patent/JP3034940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure Control For Cameras (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To clarify a position of photometry so as to enable simple and quick exposure measurement by providing an additional demonstrating means, first and second light flux dividers, a means for detecting the position of photometry, and a processing portion. CONSTITUTION:An operator moves an LED 10 being turned on and decides a position of photometry while observing a sample with his eyes close to a lens. The distance by which the LED 10 is moved is detected by a linear encoder 9 so that a position coordinate is decided. After the position is decided, the LED 10 is turned off. Then an area sensor 8 receives only a sample image and information about it is stored in a memory 14 and a picture element coordinate of the sensor 8 corresponding to a photometric position of a target is read out by the linear encoder 9 from a memory 13 and supplied as address information of the memory 14 and information about reception of the picture element of the area sensor 8 corresponding to the photometric position is read out from the memory 14 and supplied to an arithmetic circuit 15 and the arithmetic circuit calculates the optimum exposure time for photographing according to this information about reception. Actual image pickup is carried out by using a shutter control portion 16 to open and close a shutter 6 according to this exposure time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は対象物の明るさを測定し撮影露出時間を決定す
る手段を具えた顕微鏡写真撮影装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a microscopic photographing apparatus equipped with means for measuring the brightness of an object and determining a photographing exposure time.

(従来の技術) この種の顕微鏡写真撮影装置は従来より既知であり、例
えば特開昭58−214121号公報及び特公平1−3
9082号公報に開示されている。特開昭58−214
121号に開示されている装置では、物体上の測光部分
の位置確認のために観察視野と同−視野内で測光部分の
みが暗く観察できるようにしている。
(Prior Art) This type of microscopic photographing device is known from the past, for example, Japanese Patent Application Laid-Open No. 58-214121 and Japanese Patent Publication No. 1-3.
It is disclosed in Japanese Patent No. 9082. Japanese Patent Publication No. 58-214
In the device disclosed in No. 121, in order to confirm the position of the photometric portion on an object, only the photometric portion can be observed darkly within the same field of view as the observation field.

この目的のために、物体からの光束を光束分割器で分割
してレチクル板上に物体像を形成し、このレチクル板に
隣接して測光用プリズムを設けている。このプリズムは
内部に斜設された半透過面を有しており、この半透過面
で反射された光束が受光素子に入射し、その光強度が測
定されると共に、このプリズムを透過した光束が接眼鏡
に入射する。
For this purpose, the beam from the object is divided by a beam splitter to form an object image on a reticle plate, and a photometric prism is provided adjacent to the reticle plate. This prism has an oblique semi-transparent surface inside, and the light beam reflected by this semi-transparent surface enters the light receiving element and its light intensity is measured, and the light beam that has passed through this prism is incident on the eyepiece.

そして、このプリズム内に斜設された半透過面は光軸方
向に見た場合円形となるよう斜面上にだ円形状に蒸着さ
れた半透過膜からなる。このため、接眼鏡を通して観察
される視野には物体像と共に円形の半透過面像が観察で
きる。この半透過面像は測光部分であって、この像は測
光用に反射された光量の分だけ周囲より若干暗く見える
ので、測光部分の位置を観察視野と同−視野内で確認す
ることができる。
The semi-transparent surface provided obliquely within this prism is composed of a semi-transparent film deposited in an elliptical shape on the inclined surface so that it has a circular shape when viewed in the optical axis direction. Therefore, a circular semi-transparent surface image can be observed along with the object image in the field of view observed through the eyepiece. This semi-transparent surface image is the photometric area, and this image appears slightly darker than the surrounding area due to the amount of light reflected for photometry, so the position of the photometric area can be confirmed within the same field of view as the observation field. .

特公平1−39082号公報に開示されている装置では
測光部分の位置確認のために観察視野と同一視野で測光
部分のみが明るく観察できるようにしている。この目的
のために付加的な照明を用いている。この付加的な照明
により第1の反射鏡を介して測定視野絞りを照明し、更
に第2の反射鏡(ここでは方向変換反射鏡)を介して接
眼鏡に入射させて接眼鏡の視野に、物体像中に測光部分
が明るく観察できるようにしていると共に第2の反射鏡
を傾けることにより測光位置の移動を可能にしている。
In the apparatus disclosed in Japanese Patent Publication No. 1-39082, in order to confirm the position of the photometric portion, only the photometric portion can be observed brightly in the same field of view as the observation field. Additional lighting is used for this purpose. This additional illumination illuminates the measuring field diaphragm via the first reflector and is incident on the eyepiece via the second reflector (here the deflection reflector) into the field of view of the eyepiece. The photometric area is brightly observed in the object image, and the photometric position can be moved by tilting the second reflecting mirror.

露出測定のためには第1の反射鏡を旋回してこれ測定光
路から除外する必要がある。
For exposure measurement, it is necessary to rotate the first reflector to remove it from the measurement optical path.

(発明が解決しようとする課題) しかし、これらの既知の装置には重大な欠点がある。先
ず前者の装置では半透過面で反射した光を測光に用い、
透過した光を観察光学系にもどしている。このため測光
部分が測光用に反射された光量だけ減衰し周囲より若干
暗く見えるが、狭い範囲を測光する部分測光を行なう場
合測光部分と周囲との明るさの差が小さくなるため、測
光位置を明瞭に観察できなくなるという欠点がある。ま
た、受光素子に入射する光量が少ないため低照度まで測
光できないという欠点もある。
However, these known devices have significant drawbacks. First, the former device uses light reflected from a semi-transparent surface for photometry,
The transmitted light is returned to the observation optical system. For this reason, the photometering area is attenuated by the amount of light reflected for photometry and appears slightly darker than the surrounding area.However, when performing partial metering to measure light over a narrow area, the difference in brightness between the photometry area and the surroundings becomes small, so the photometry position is The disadvantage is that it cannot be observed clearly. Another drawback is that photometry is not possible at low illuminances because the amount of light incident on the light receiving element is small.

次に、後者の装置では付加的照明によって観察視野と同
一視野で測光部分を明るく際立たせることができるが、
露出測定に際しては反射鏡を旋回して光路から除外し、
かつ照明光源を移動部材により覆い、受光素子にいかな
る光も到達しないようにする必要がある。このため露出
測定のための構成が複雑になると共に操作も複雑になり
、測定を高速に行なえないという欠点がある。
Secondly, in the latter device, the photometric area can be brightly highlighted in the same field of view as the observation field by means of additional illumination;
When measuring exposure, rotate the reflector to remove it from the optical path.
Additionally, it is necessary to cover the illumination light source with a moving member to prevent any light from reaching the light receiving element. Therefore, the configuration for exposure measurement becomes complicated, the operation becomes complicated, and there is a disadvantage that measurement cannot be performed at high speed.

以上のような欠点を解消するために、本発明は顕微鏡写
真撮影において測光位置の確認を観察視野で明瞭に行な
うことができ、更に露出測定を簡単な操作で高速に行な
える顕微鏡写真撮影装置を提供することを目的とする。
In order to eliminate the above-mentioned drawbacks, the present invention provides a microscopic photographing device that can clearly confirm the photometric position in the observation field during microscopic photography, and can also perform exposure measurement at high speed with simple operations. The purpose is to provide.

(課題を解決するための手段) 上述した目的を達成するために、本発明顕微鏡写真撮影
装置は測定位置決定用のオン/オフ可能な付加的照明手
段と、付加的照明手段を標本像と平行な方向に移動させ
る手段と、付加的照明手段からの測定位置を表わす光を
標本像とともに接眼に投影する第1の光束分割器と、標
本像をカメラとエリアセンサに分ける第2の光束分割器
と、付加的照明手段の移動量の検出により測光位置を検
出する手段と、測光位置情報に基づいてエリアセンサの
当該測光位置に対応する位置の受光情報を取り出し1、
これを処理する処理部とを具えたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the microphotographing apparatus of the present invention includes additional illumination means that can be turned on and off for determining the measurement position, and an additional illumination means that is parallel to the specimen image. a first beam splitter that projects the light representing the measurement position from the additional illumination means onto the eyepiece together with the specimen image; and a second beam splitter that divides the specimen image into the camera and the area sensor. a means for detecting a photometric position by detecting the amount of movement of the additional illumination means; and a means for extracting light reception information at a position corresponding to the photometric position of the area sensor based on the photometric position information;
The present invention is characterized in that it includes a processing section that processes this.

(作 用) 本発明装置においては、測光位置を決定する時は付加的
照明手段をオンさせ、接N鏡で標本像を観察しながらこ
の照明手段を移動させて所望の測光位置を決定する。次
いで測光する際にはこの照明手段をオフさせる。このと
き測光位置検出手段からの決定された測定位置情報に基
づいて、標本像が投影されているエリアセンサの対応す
る位置の受光情報が取り出され、これに基づいて最適露
出時間が計算される。
(Function) In the apparatus of the present invention, when determining a photometric position, the additional illumination means is turned on, and the illumination means is moved while observing the specimen image with a tangent N mirror to determine the desired photometry position. Next, when performing photometry, this illumination means is turned off. At this time, based on the determined measurement position information from the photometry position detection means, the light reception information of the corresponding position of the area sensor onto which the specimen image is projected is extracted, and the optimum exposure time is calculated based on this.

(実施例) 第1図は本発明顕微鏡写真撮影装置の第1の実施例の構
成を略図示したものである。第1図において、1は標本
、2は対物レンズ、7はカメラであり、対物レンズ2と
カメラ7との間の光路内に第1及び第2の光束分割器3
及び5を設け、第1の光束分割器3で分割した光路内に
接眼鏡4を設けると共に、第2の光束分割H5で分割し
た光路内に、カメラ7と同じ光学位置すなわち共役な位
置にエリアセンサ8を設ける。更に、オン/オフ可能な
付加的照明手段、例えばLED 10を第1の光束分割
器3の接眼鏡4とは反対側に設け、このLHD 10か
らの光をその直前に設けられたピンホール11を通して
第1の光束分割器3に入射させ、標本像とともに接眼鏡
4へ投影する。このLED 10は直交する2方向X及
びYに移動可能であり、この移動量をX方向及びY方向
リニアエンコーダ9により測定する。更に、この移動量
、すなわち測光ポイントの位置情報を記憶するだめの第
1メモリ13と、エリアセンサ8からの像情報を記憶す
る第2メモ1月4と、露出時間を計算する演算回路15
とを具えた処理部12を設ける。尚、6は演算回路15
に接続されたシャッタ制御部16により開閉されるカメ
ラシャッタで、第2の光束分割器5とカメラ7との間の
光路内に設ける。
(Embodiment) FIG. 1 schematically shows the structure of a first embodiment of the microscopic photographing apparatus of the present invention. In FIG. 1, 1 is a specimen, 2 is an objective lens, and 7 is a camera, and in the optical path between the objective lens 2 and the camera 7 are first and second beam splitters 3.
and 5, an eyepiece 4 is provided in the optical path divided by the first beam splitter 3, and an area is provided in the optical path divided by the second beam splitter H5 at the same optical position as the camera 7, that is, a conjugate position. A sensor 8 is provided. Furthermore, an additional illumination means, for example an LED 10, which can be turned on/off, is provided on the opposite side of the first beam splitter 3 from the eyepiece 4, and the light from this LHD 10 is transmitted through a pinhole 11 provided immediately in front of it. through the beam splitter 3 and projected onto the eyepiece 4 together with the specimen image. This LED 10 is movable in two orthogonal directions, X and Y, and the amount of movement is measured by linear encoders 9 in the X and Y directions. Further, a first memory 13 for storing the amount of movement, that is, position information of the photometry point, a second memory 13 for storing image information from the area sensor 8, and an arithmetic circuit 15 for calculating the exposure time.
A processing section 12 is provided. In addition, 6 is an arithmetic circuit 15
The camera shutter is opened and closed by a shutter control unit 16 connected to the camera 7, and is provided in the optical path between the second beam splitter 5 and the camera 7.

この装置の使用に当っては、最初にLED 10の位置
がエリアセンサ8のどの番地に対応するのか位置出しを
行なう必要があり、これは一般に工場で行なわれる。ま
ずLED 10をオンし、これを移動させて標本像画面
全体をくまなくスキャンさせる。
When using this device, it is first necessary to determine which address of the area sensor 8 the position of the LED 10 corresponds to, and this is generally done at the factory. First, the LED 10 is turned on and moved to scan the entire specimen image screen.

最初にLED 10を基準位置(0,O)に位置させ、
この基準位置がエリアセンサ8のどの画素座標に対応す
るかをその受光情報が記憶される第2メモリ14上の記
憶位置から判断する。このエリアセンサ8の画素座標は
光径により異なるため複数の画素より成る場合もある。
First, position the LED 10 at the reference position (0, O),
Which pixel coordinate of the area sensor 8 corresponds to this reference position is determined from the storage position in the second memory 14 where the received light information is stored. Since the pixel coordinates of this area sensor 8 differ depending on the light diameter, it may consist of a plurality of pixels.

このエリアセンサ8の画素座標、即ち第2メモリ14上
の対応する記憶位置情報をX及びYリニアエンコーダ9
によりアドレスされた第1メモリ13の記憶位置(0,
0)に記憶させる。次にLED 10の位置を基準位置
からX方向に1位置移動させて位置(1,0)に位置さ
せ、この位置座標がエリアセンサ8のどの画素座標に対
応するかを決定し、その位置情報をX及びYリニアエン
コーダ9によりアドレスされた第1メモリ13の記憶位
置(1,O)に記憶させる。この動作をX方向に繰返し
、LEDIOの位置(m、、O)に対応するエリアセン
サ8の画素座標を第1メモリ13の記憶位置(m、O)
に記憶させた後、X方向にも同様の動作を行ない、最終
的に位置(m、n)までのエリアセンサ8上の対応する
画素座標を第1メモリ13に記憶させる。このようにL
ED 10を順次移動させ、X及びYリニアエンコーダ
9によりアドレスされる第1メモリ13の各記憶位置に
LEDの各位置に対応するエリアセンサ8の位置情報を
マツピングし、LEDの位置座標とエリアセンサ8の画
素座標を1対lに対応させる。斯る後に第2メモリ14
から第1メモ1月3への位置情報の伝送路を遮断する。
The pixel coordinates of this area sensor 8, that is, the corresponding storage position information on the second memory 14 are transferred to the X and Y linear encoder 9.
The storage location of the first memory 13 addressed by (0,
0). Next, move the position of the LED 10 from the reference position by one position in the is stored in the storage location (1, O) of the first memory 13 addressed by the X and Y linear encoder 9. This operation is repeated in the X direction, and the pixel coordinates of the area sensor 8 corresponding to the LEDIO position (m, , O) are set to the storage position (m, O) of the first memory 13.
After storing, the same operation is performed in the X direction, and finally the corresponding pixel coordinates on the area sensor 8 up to the position (m, n) are stored in the first memory 13. Like this L
The ED 10 is sequentially moved, and the position information of the area sensor 8 corresponding to each position of the LED is mapped to each storage position of the first memory 13 addressed by the X and Y linear encoders 9, and the position coordinates of the LED and the area sensor are mapped. The pixel coordinates of 8 correspond to 1:l. After that, the second memory 14
The transmission path for location information from to the first memo January 3 will be cut off.

実際の測光は次のようにして行なう。LED 10をオ
ンした状態で移動させ、標本を接眼で観察しながら測光
位置を決定する。このときX及びYリニアエンコーダ9
によりLED 10の移動量が検出され、目的の測光位
置にあるLEDの位置座標が決定される。この測光位置
の決定後、LED 10をオフする。
Actual photometry is performed as follows. The sample is moved with the LED 10 turned on, and the photometry position is determined while observing the sample with the eyepiece. At this time, the X and Y linear encoder 9
The amount of movement of the LED 10 is detected, and the position coordinates of the LED at the target photometry position are determined. After determining this photometry position, the LED 10 is turned off.

このときエリアセンサ8ば標本像のみを受光し、その受
光情報が第2メモτ月4に格納されると共に、X及びY
リニアエンコーダ9により目的の測光位置に対応するエ
リアセンサ8の画素座標が第1メモリ13から読出され
、これが第2メモリ14のアドレス情報として供給され
、第2メモi月4から測光位置に対応するエリアセンサ
8の画素の受光情報が読出され、演算回路15に供給さ
れ、この演算回路がこの受光情報に基づいて写真撮影の
ための最適露出時間を算出する。
At this time, the area sensor 8 receives only the specimen image, and the information about the received light is stored in the second memo τ4, and the X and Y
The pixel coordinates of the area sensor 8 corresponding to the desired photometric position are read out from the first memory 13 by the linear encoder 9, and this is supplied as address information to the second memory 14, and the coordinates corresponding to the photometric position are read from the second memory 14. The light reception information of the pixels of the area sensor 8 is read out and supplied to the arithmetic circuit 15, which calculates the optimum exposure time for photographing based on this light reception information.

実際の写真撮像はこの露出時間に基づきシャッタ制御部
16によりシャッタ6を開閉して行なわれる。
Actual photographic imaging is performed by opening and closing the shutter 6 by the shutter control section 16 based on this exposure time.

第2図は本発明装置の第2の実施例を示すものである。FIG. 2 shows a second embodiment of the device of the present invention.

本例は第1図に示す第1及び第2の光束分割器3及び5
を1つの光束分割器3′に結合したものであり、その他
の構成は第1図に示す第1の実施例と同一であり、同様
に動作する。本例によれば光学系がさらに簡単になる。
In this example, the first and second beam splitters 3 and 5 shown in FIG.
The other components are the same as the first embodiment shown in FIG. 1 and operate in the same manner. According to this example, the optical system becomes even simpler.

(発明の効果) 本発明装置によれば、付加的照明手段(LHD 10)
により接眼で標本を観察しながら同一視野で測光位置を
明瞭に確認することができる。更に、測光位置の確認後
照明手段をオフするだけで測光が電子的に行なわれるの
で、簡単な構成並びに操作で露出測定を迅速に行なうこ
とができる。また、工場調整でLED 10の位置座標
とエリアセンサ8の画素座標とを電子的に1対1に対応
させることができるので、エリアセンサの厳しい取付は
位置精度が必要なくなる。
(Effect of the invention) According to the device of the present invention, the additional lighting means (LHD 10)
This allows you to clearly check the photometry position in the same field of view while observing the specimen with the eyepiece. Further, since photometry is performed electronically by simply turning off the illumination means after confirming the photometry position, exposure measurement can be performed quickly with a simple configuration and operation. Further, since the position coordinates of the LED 10 and the pixel coordinates of the area sensor 8 can be electronically made to correspond one-to-one through factory adjustment, strict positional accuracy is no longer required for the area sensor's installation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明顕微鏡写真撮影装置の第1の実施例の概
略構成図、 第2図は本発明顕微鏡写真撮影装置の第2の実施例の概
略構成図である。 1・・・標本       2・・・対物レンズ3・・
・第1光束分割器  4・・・接眼鏡5・・・第2光束
分割器  6・・・シャッタ7・・・カメラ     
  8・・・エリアセンサ9・・・X及びYリニアエン
コーダ 10・・・付加的照明手段(LED) 11・・・ピンホール    12・・・処理部13・
・・第1メモリ    14・・・第2メモリ15・・
・演算回路     16・・・シャッタ制御部第1図 」、1
FIG. 1 is a schematic diagram of a first embodiment of a microscopic photographing apparatus of the present invention, and FIG. 2 is a schematic diagram of a second embodiment of a microscopic photographing apparatus of the present invention. 1...Specimen 2...Objective lens 3...
・First beam splitter 4... Eyepiece 5... Second beam splitter 6... Shutter 7... Camera
8... Area sensor 9... X and Y linear encoder 10... Additional lighting means (LED) 11... Pinhole 12... Processing section 13.
...First memory 14...Second memory 15...
・Arithmetic circuit 16...Shutter control section Fig. 1'', 1

Claims (1)

【特許請求の範囲】[Claims] 1、測定位置決定用のオン/オフ可能な付加的照明手段
と、付加的照明手段を標本像と平行な方向に移動させる
手段と、付加的照明手段からの測定位置を表わす光を標
本像とともに接眼に投影する第1の光束分割器と、標本
像をカメラとエリアセンサに分ける第2の光束分割器と
、付加的照明手段の移動量の検出により測光位置を検出
する手段と、測光位置情報に基づいてエリアセンサの当
該測光位置に対応する位置の受光情報を取り出し、これ
を処理する処理部とを具えたことを特徴とする顕微鏡写
真撮影装置。
1. Additional illumination means that can be turned on and off for determining the measurement position, means for moving the additional illumination means in a direction parallel to the specimen image, and light representing the measurement position from the additional illumination means together with the specimen image. a first beam splitter that projects onto the eyepiece, a second beam splitter that divides the specimen image into a camera and an area sensor, a means for detecting a photometric position by detecting the amount of movement of the additional illumination means, and photometric position information. What is claimed is: 1. A microscopic photographing apparatus comprising: a processing unit that extracts light reception information at a position corresponding to the photometric position of an area sensor based on the above, and processes the information.
JP2298989A 1990-11-06 1990-11-06 Microscope photography equipment Expired - Lifetime JP3034940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2298989A JP3034940B2 (en) 1990-11-06 1990-11-06 Microscope photography equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2298989A JP3034940B2 (en) 1990-11-06 1990-11-06 Microscope photography equipment

Publications (2)

Publication Number Publication Date
JPH04172429A true JPH04172429A (en) 1992-06-19
JP3034940B2 JP3034940B2 (en) 2000-04-17

Family

ID=17866789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2298989A Expired - Lifetime JP3034940B2 (en) 1990-11-06 1990-11-06 Microscope photography equipment

Country Status (1)

Country Link
JP (1) JP3034940B2 (en)

Also Published As

Publication number Publication date
JP3034940B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
US11561383B2 (en) Unique oblique lighting technique using a brightfield darkfield objective and imaging method relating thereto
US5604344A (en) Autofocussing microscope having a pattern imaging system
US4818865A (en) Focus detecting system for camera utilizing correction data on the aberration of the photographic lens
US4690525A (en) Eye fundus camera
US8759745B2 (en) Device for the reproducible adjustment of a pin hole opening and pin hole position in laser scanning microscopes using a reflector
KR20000057176A (en) Method for telemeasuring and telemeter
JP2005098933A (en) Instrument for measuring aberrations
JPH0139082B2 (en)
JPH07324923A (en) Device for projecting test pattern on surface under test
US5963366A (en) Focus detection unit and microscope using the focus detection unit
KR101447857B1 (en) Particle inspectiing apparatus for lens module
JP3075308B2 (en) Microscope photography equipment
JPH04172429A (en) Microphotographic aparatus
US3718400A (en) Mirror drum optical system for use in microscopic spectrophotometer
JPH01501253A (en) Method for photographing a microscopic object and apparatus for carrying out this method
US4631394A (en) Focusing device for optical systems
JP2923328B2 (en) Microscope photography equipment
JP2754663B2 (en) Gaze detection method and gaze detection device
JP3033831B2 (en) Microscope photography equipment
JP3650143B2 (en) Photomicroscope
JPH04161916A (en) Image input device for microscope
KR950009351B1 (en) Optical system for espi
JPH0210335A (en) Finder optical system with photometry means
FR2489004A1 (en) Camera setting indicating system - uses three sets of LED's sequentially illuminated by microprocessor, within viewfinder to indicate lens settings to operator
JP2003121363A (en) Photographing method and apparatus, and laser measuring apparatus