JPH0417208A - Rubber-plastic insulated electric power cable - Google Patents

Rubber-plastic insulated electric power cable

Info

Publication number
JPH0417208A
JPH0417208A JP2120657A JP12065790A JPH0417208A JP H0417208 A JPH0417208 A JP H0417208A JP 2120657 A JP2120657 A JP 2120657A JP 12065790 A JP12065790 A JP 12065790A JP H0417208 A JPH0417208 A JP H0417208A
Authority
JP
Japan
Prior art keywords
cross
linking
power cable
electric power
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2120657A
Other languages
Japanese (ja)
Inventor
Michihiro Shimada
道宏 島田
Hitoshi Kimura
木村 人司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2120657A priority Critical patent/JPH0417208A/en
Publication of JPH0417208A publication Critical patent/JPH0417208A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To improve a dielectric breakdown characteristic at a high temperature and to reduce generation of an electric tree by forming an insulation layer of cross-linking polyolefine having a melting point of 105 deg.C or higher and a cross-linking degree by the xylene method of 88% or more. CONSTITUTION:An insulation layer is formed of cross-linking polyolefine having a melting point of 105 deg.C or higher and a cross-linking degree by the xylene method of 88% or more. Namely, the melting point and the cross-linking degree by the xylene method of the cross-linking polyolefine for forming the insulation layer are determined higher in comparison to conventional cross-linking polyolefine. Consequently, at an ordinary working temperature and in the vicinity thereof in an electric power cable, molting and thermal expansion of a crystalline part and amorphous part in the cross-linking polyolefine are suppressed. Accordingly, the electric power cable having an excellent dielectric breakdown characteristic at an ordinary working temperature and in the vicinity thereof in a high voltage electric power cable, in which generation of an electric tree is suppressed even in long time use, can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温における絶縁破壊特性が優れているゴム
・プラスチック絶縁電力ケーブルに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rubber/plastic insulated power cable having excellent dielectric breakdown characteristics at high temperatures.

(従来の技術) 従来、高電圧のゴム・プラスチック絶縁電力ケーブル(
以下「電カケープル」という)は、導体上に内部半導電
層、絶縁体層及び外部半導電層を有する構造をとってい
る。このような電カケープルには、高温において絶縁体
層の絶縁破壊が起こり難いこと(即ち、絶縁破壊特性が
優れていること)が要求される。また、電気トリーの発
生によっても前記絶縁破壊は起こるため、電気トリーが
発生し難いことも必要となる。
(Conventional technology) Conventionally, high voltage rubber/plastic insulated power cables (
A power cable (hereinafter referred to as an "electric cable") has a structure having an inner semiconducting layer, an insulating layer, and an outer semiconducting layer on a conductor. Such power cables are required to have an insulating layer that is difficult to cause dielectric breakdown at high temperatures (that is, to have excellent dielectric breakdown characteristics). Further, since the dielectric breakdown occurs due to the generation of electric trees, it is also necessary that electric trees are difficult to generate.

従来の電カケープルの絶縁体層は、融点が103〜98
℃で、キシレン法による架橋度か75〜85%である架
橋ポリオレフィンから形成されている。
The insulating layer of conventional power cables has a melting point of 103 to 98
It is formed from a crosslinked polyolefin having a degree of crosslinking of 75 to 85% by the xylene method at .degree.

(発明が解決しようとする課題) 電カケープルの絶縁体層が上記の融点及び架橋度の架橋
ポリオレフィンから形成されている場合には、次の問題
がある。
(Problems to be Solved by the Invention) When the insulating layer of the electric cable is formed from a crosslinked polyolefin having the above melting point and degree of crosslinking, the following problems occur.

高電圧の電カケープルの通常使用温度は約90℃である
が、この温度付近において上記した架橋ポリオレフィン
の絶縁破壊特性が低下するという問題である。また、電
カケープルの運転電界が上昇するにともなって、電気ト
リーが発生し易くなり、これが絶縁破壊特性を低下させ
る要因になるという問題もある。
The normal operating temperature of high-voltage power cables is about 90° C., but the problem is that the above-mentioned dielectric breakdown characteristics of the crosslinked polyolefin deteriorate near this temperature. Another problem is that as the operating electric field of the power cable increases, electric trees are more likely to occur, which causes a reduction in dielectric breakdown characteristics.

そこで本発明は、高置圧電カケープルの通常使用温度及
びその付近温度においても絶縁破壊特性が優れており、
長期間の使用によっても電気トリーの発生を抑制できる
電カケープルを提供する。
Therefore, the present invention has excellent dielectric breakdown characteristics even at the normal operating temperature of the elevated piezoelectric cable and at temperatures around it.
To provide an electric cable capable of suppressing the occurrence of electric trees even after long-term use.

(課題を解決するための手段及び作用)上記目的を達成
するため本発明は、導体上に、内部半導電層、絶縁体層
及び外部半導電層を有するゴム・プラスチック電カケー
プルにおいて、該絶縁体層が、融点が105℃以上及び
キシレン法による架橋度が88%以上の架橋ポリオレフ
ィンから形成されていることを特徴とする電カケープル
を提供する。
(Means and effects for solving the problems) In order to achieve the above object, the present invention provides a rubber/plastic electric cable having an inner semiconducting layer, an insulating layer, and an outer semiconducting layer on a conductor. The present invention provides an electrical cable characterized in that the layer is formed from a crosslinked polyolefin having a melting point of 105°C or higher and a degree of crosslinking by a xylene method of 88% or higher.

本発明の電カケープルの絶縁体層は、常法により、内部
半導電層上に架橋剤等を配合した未架橋のオレフィン系
樹脂を押出被覆したのち、加熱し架橋反応させることに
より形成される。
The insulating layer of the electric cable of the present invention is formed by extrusion coating an uncrosslinked olefin resin containing a crosslinking agent etc. onto the internal semiconductive layer by a conventional method, and then heating to cause a crosslinking reaction.

未架橋のオレフィン系樹脂としては、低密度ポリエチレ
ン、直鎖状低密度ポリエチレン、超低密度ポリエチレン
、エチレン−アクリル酸エチル共重合体、エチレン−酢
酸ビニル共重合体、エチレン−アクリル酸共重合体、エ
チレン−スチレン共重合体などを挙げることができる。
Examples of uncrosslinked olefin resins include low density polyethylene, linear low density polyethylene, ultra low density polyethylene, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, Examples include ethylene-styrene copolymer.

これらは単独で又は2種以上を適宜組み合わせて用いる
ことができる。これらのなかでも融点が115℃以上の
未架橋のオレフィン系樹脂が、架橋ポリオレフィンの融
点を105℃以上にする点で好ましい。
These can be used alone or in an appropriate combination of two or more. Among these, uncrosslinked olefin resins having a melting point of 115°C or higher are preferable because they make the melting point of the crosslinked polyolefin 105°C or higher.

架橋剤としては、ジクミルペルオキシド、t−ブチルペ
ルオキシクメン、α、α°−ビス(t−ブチルペルオキ
シジイソプロピル)ベンゼン、2,5ジメチル−2,5
−ジ(t−ブチルペルオキシ)ヘキサン、2,5−ジメ
チル−2,5−ジ(t−ブチルペルオキシ)ヘキシン−
3、m−(t−ブチルペルオキシイソプロピル)イソプ
ロピルベンゼンなどを挙げることができる。これらは単
独で又は2種以上を適宜組み合わせて用いることができ
る。
As a crosslinking agent, dicumyl peroxide, t-butylperoxycumene, α, α°-bis(t-butylperoxydiisopropyl)benzene, 2,5 dimethyl-2,5
-di(t-butylperoxy)hexane, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane-
3, m-(t-butylperoxyisopropyl)isopropylbenzene, and the like. These can be used alone or in an appropriate combination of two or more.

未架橋のオレフィン系樹脂に対する架橋剤の配合量は、
該オレフィン系樹脂100重量部に対して活性酸素量換
算で0.10〜0.30重量部が好ましい。この配合割
合が0.10重量部未満の場合、架橋ポリオレフィンの
キシレン法による架橋度が88%未満になり、0.30
重量部を超える場合、架橋反応が過度に進行し、焼けが
発生し易くなるため好ましくない。特に好ましい配合量
は、活性酸素量換算で0.17〜0.2重量部である。
The amount of crosslinking agent added to uncrosslinked olefin resin is as follows:
It is preferably 0.10 to 0.30 parts by weight in terms of active oxygen amount based on 100 parts by weight of the olefin resin. If this blending ratio is less than 0.10 parts by weight, the degree of crosslinking of the crosslinked polyolefin by the xylene method will be less than 88%, and the degree of crosslinking will be less than 0.30%.
If it exceeds 1 part by weight, the crosslinking reaction proceeds excessively and burns are likely to occur, which is not preferable. A particularly preferable blending amount is 0.17 to 0.2 parts by weight in terms of active oxygen amount.

絶縁体層の形成用材料として、未架橋オレフィン系樹脂
に加えて、更に抗酸化剤を配合することができる。
In addition to the uncrosslinked olefin resin, an antioxidant can be further blended as a material for forming the insulator layer.

この抗酸化剤としては、4,4′−チオビス(3−メチ
ル−6−t−ブチルフェノール)、ビス〔2−メチル−
4−(3−n−アルキルチオプロピオニルオキシ)−5
−t−ブチルフェニルフスルフィド、2,5−ジ−t−
ブチルヒドロキノン、2.6−ジーt−ブチル−p−ク
レゾール、2゜2′−チオジエチレンビス−〔3−(3
,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロ
ピオナート、ジラウリルチオジプロピオナート、ジステ
アリルチオジプロピオネートなどを挙げることができる
。これらのなかでも4,4° 〜チオビス(3−メチル
−6−t−ブチルフェノール)が好ましい。
The antioxidants include 4,4'-thiobis(3-methyl-6-t-butylphenol), bis[2-methyl-
4-(3-n-alkylthiopropionyloxy)-5
-t-butylphenyl sulfide, 2,5-di-t-
Butylhydroquinone, 2.6-di-t-butyl-p-cresol, 2゜2'-thiodiethylenebis-[3-(3
, 5-di-t-butyl-4-hydroxyphenyl)propionate, dilaurylthiodipropionate, distearylthiodipropionate, and the like. Among these, 4,4° to thiobis(3-methyl-6-t-butylphenol) is preferred.

抗酸化剤の配合量は、未架橋のオレフィン系樹脂100
重量部に対して0.05〜1.0重量部が好ましい。こ
の配合量が0.05重量部未満の場合は酸化防止効果が
小さくなり、1.0重量部を超える場合は架橋反応を阻
害し、架橋度が低くなるため好ましくない。
The blending amount of the antioxidant is 100% of the uncrosslinked olefin resin.
It is preferably 0.05 to 1.0 parts by weight. If the amount is less than 0.05 parts by weight, the antioxidant effect will be reduced, and if it exceeds 1.0 parts by weight, the crosslinking reaction will be inhibited and the degree of crosslinking will become low, which is not preferable.

絶縁体層形成用の材料として、上記成分のほかにも滑剤
、各種充填剤などを未架橋のオレフィン系樹脂に配合す
ることができる。
In addition to the above-mentioned components, lubricants, various fillers, and the like can be blended with the uncrosslinked olefin resin as materials for forming the insulator layer.

本発明の電カケープルにおいては、絶縁体層を形成する
架橋ポリオレフィンの融点及びキシレン法による架橋度
が、従来の架橋ポリオレフィンに比べて高く設定されて
いる。このため電カケープルの通常の使用温度及びその
付近温度においても、該架橋ポリオレフィンの結晶部分
及び非晶部分が融解したり、熱膨張したりすることが抑
制される。
In the electric cable of the present invention, the melting point of the crosslinked polyolefin forming the insulating layer and the degree of crosslinking by the xylene method are set higher than those of conventional crosslinked polyolefins. Therefore, the crystalline portion and the amorphous portion of the crosslinked polyolefin are prevented from melting or thermally expanding even at the normal use temperature of the electric cable and temperatures around it.

(実施例) 実施例1〜3及び比較例1〜3 導体上に、常法により内部半導電層、絶縁体層及び外部
半導電層を被覆形成した。絶縁体層の形成用材料は第1
表に示す配合量(重量部表示)のオレフィン系樹脂を用
い、他の形成材料は公知のものを用いた。次に、これを
圧力10 kg/cm2、温度270℃の条件で加圧・
加熱して架橋反応を行わせた。その後、常法により金属
遮蔽層、外部半導電層及びシース層を被覆形成して、厚
み3mmの絶縁体層を有する6kV用の各電カケープル
を得た。なお、これらの絶縁体層の融点及び架橋度は、
各電カケープルから絶縁体層を切り出して、DSC(差
動熱量計)による融点の測定及びキシレン法による架橋
度の測定により求めた。なお、DSCは5℃/secの
昇温条件により、30〜150℃の温度範囲において測
定し、チャートのボトム値を融点とした。
(Example) Examples 1 to 3 and Comparative Examples 1 to 3 An inner semiconducting layer, an insulating layer, and an outer semiconducting layer were coated on a conductor by a conventional method. The material for forming the insulator layer is the first
The olefin resin in the amount shown in the table (expressed in parts by weight) was used, and other known forming materials were used. Next, this was pressurized at a pressure of 10 kg/cm2 and a temperature of 270°C.
The mixture was heated to cause a crosslinking reaction. Thereafter, a metal shielding layer, an external semiconducting layer, and a sheath layer were formed by a conventional method to obtain each 6 kV power cable having an insulating layer with a thickness of 3 mm. The melting point and degree of crosslinking of these insulator layers are as follows:
An insulator layer was cut out from each electric cable, and the melting point was measured using a DSC (differential calorimeter) and the degree of crosslinking was measured using a xylene method. In addition, DSC was measured in a temperature range of 30 to 150°C under a temperature increasing condition of 5°C/sec, and the bottom value of the chart was taken as the melting point.

これらの各電カケープルについて、導体温度が90℃に
なるように導体通電をしながら、インパルス破壊試験を
した。また、50Hzで90kVの交流課電を10日間
行い、その後、絶縁体層を顕微鏡により観察し、異物1
00個のうち電気トリーが発生している異物数を計数し
た。これらの結果を第1表に示す。
For each of these electric cables, an impulse breakdown test was conducted while the conductor was energized so that the conductor temperature was 90°C. In addition, AC voltage was applied at 90 kV at 50 Hz for 10 days, and then the insulator layer was observed with a microscope to find foreign particles.
The number of foreign objects in which electric trees were generated was counted among the 00 particles. These results are shown in Table 1.

(発明の効果) 本発明の電カケープルは、融点か105℃以上及びキシ
レン法による架橋度が88%以上の架橋ポリオレフィン
から形成される絶縁体層を有している。
(Effects of the Invention) The electric cable of the present invention has an insulating layer formed from a crosslinked polyolefin having a melting point of 105° C. or higher and a degree of crosslinking by a xylene method of 88% or higher.

本発明の電カケープルは、通常の使用温度においても、
絶縁体層を形成する架橋ポリオレフィンが融解したり、
熱膨張したりすることか抑制される。これにより高温に
おける絶縁破壊特性か向上する。また、長期間の使用に
よっても電気トリが発生することが少なく、長期にわた
って優れた絶縁破壊特性が維持される。更に、本発明の
電カケープルの絶縁体層は、高架橋度であるため水トリ
ーの抑制という点からも優れており、遮水層を別途設け
る必要がない。
The power cable of the present invention can be used even at normal usage temperatures.
The cross-linked polyolefin that forms the insulator layer melts,
Thermal expansion is suppressed. This improves dielectric breakdown characteristics at high temperatures. Further, even after long-term use, electrical damage is unlikely to occur, and excellent dielectric breakdown characteristics are maintained over a long period of time. Further, since the insulating layer of the power cable of the present invention has a high degree of crosslinking, it is also excellent in suppressing water trees, and there is no need to separately provide a water-blocking layer.

Claims (1)

【特許請求の範囲】[Claims]  導体上に、内部半導電層、絶縁体層及び外部半導電層
を有するゴム・プラスチック絶縁電力ケーブルにおいて
、該絶縁体層が、融点が105℃以上及びキシレン法に
よる架橋度が88%以上の架橋ポリオレフィンから形成
されていることを特徴とするゴム・プラスチック絶縁電
力ケーブル。
A rubber/plastic insulated power cable having an inner semiconducting layer, an insulating layer, and an outer semiconducting layer on a conductor, in which the insulating layer is crosslinked with a melting point of 105°C or higher and a degree of crosslinking by a xylene method of 88% or higher. A rubber/plastic insulated power cable characterized in that it is formed from polyolefin.
JP2120657A 1990-05-10 1990-05-10 Rubber-plastic insulated electric power cable Pending JPH0417208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120657A JPH0417208A (en) 1990-05-10 1990-05-10 Rubber-plastic insulated electric power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2120657A JPH0417208A (en) 1990-05-10 1990-05-10 Rubber-plastic insulated electric power cable

Publications (1)

Publication Number Publication Date
JPH0417208A true JPH0417208A (en) 1992-01-22

Family

ID=14791664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120657A Pending JPH0417208A (en) 1990-05-10 1990-05-10 Rubber-plastic insulated electric power cable

Country Status (1)

Country Link
JP (1) JPH0417208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376903A (en) * 2014-11-17 2015-02-25 中利科技集团股份有限公司 High-voltage cable for interior of electric automobile and manufacturing method of high-voltage cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376903A (en) * 2014-11-17 2015-02-25 中利科技集团股份有限公司 High-voltage cable for interior of electric automobile and manufacturing method of high-voltage cable

Similar Documents

Publication Publication Date Title
JPS5986110A (en) Crosslinked polyethylene insulated cable
JPH10283851A (en) Direct current power cable and its connection part
JPH0417208A (en) Rubber-plastic insulated electric power cable
WO2002009123A1 (en) Insulated power cable
JP2001325834A (en) Dc power cable
JPS598216A (en) Polyolefin insulated power cable with semiconductive layer
JP2651722B2 (en) Power cable connection
JPH05266721A (en) Rubber-plastic insulated dc power cable
JPH02126508A (en) Electric insulator for wire or cable
JPS6245643B2 (en)
JPH04218545A (en) Semi-conductive resin composition and rubber-plastic insulated power cable using the same
JPH04184814A (en) Rubber plastic insulation power cable
JPS60206855A (en) Electrically semiconductive composition
JPH11265621A (en) Insulated power cable and its connecting part
JP2000040419A (en) High voltage power cable
JPS63301414A (en) Rubber plastic insulated power cable
JPH01267904A (en) Extruded type semiconductive resin compound for electric power cable
JPH10134648A (en) Plastic-insulated dc power cable
JPH02297807A (en) Plastic-insulated power cable
JPS6123734B2 (en)
JP2000003622A (en) Polyolefin resin composition for power cable
JPS63289715A (en) Composition for wire-cable insulator
JPH06309931A (en) Electrically insulative composition and electric wire/ cable
JPH0524603B2 (en)
JPH10289619A (en) Dc power cable