JPH0417201Y2 - - Google Patents

Info

Publication number
JPH0417201Y2
JPH0417201Y2 JP1987133074U JP13307487U JPH0417201Y2 JP H0417201 Y2 JPH0417201 Y2 JP H0417201Y2 JP 1987133074 U JP1987133074 U JP 1987133074U JP 13307487 U JP13307487 U JP 13307487U JP H0417201 Y2 JPH0417201 Y2 JP H0417201Y2
Authority
JP
Japan
Prior art keywords
container
sample
rotor
glucopyranosyl
centrifugal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987133074U
Other languages
Japanese (ja)
Other versions
JPS6439802U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987133074U priority Critical patent/JPH0417201Y2/ja
Publication of JPS6439802U publication Critical patent/JPS6439802U/ja
Application granted granted Critical
Publication of JPH0417201Y2 publication Critical patent/JPH0417201Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、試料容器を遠心回転させることによ
つて蒸発面積を増加し又、遠心力による試料溶液
の加圧によつて突沸の危険性のない溶液の減圧蒸
留、濃縮、乾燥、回収等を簡単な操作で実行する
たるめの遠心回転式減圧濃縮装置におけるロータ
ー用2重外套容器に関するものである。 (従来の技術) 従来、この種の装置では、遠赤外線ヒーターに
よつて直接的に又は、金属容器を経て間接的に試
料の加熱を行う遠心回転式減圧濃縮装置はある
[参考:大洋科学工業株式会社製centrifugal
concentrator VC−36,VC−96取扱説明書及び、
カタログ]。しかし、濃縮する試料の加熱が熱媒
体を経て間接的に行われる遠心回転式減圧濃縮装
置は皆無である。 (考案が解決しようとする問題点) 従来の装置による場合、濃縮しようとする溶液
が水溶液の場合、水の潜熱(気化熱)が他の有機
溶媒に比較して大きいことから、水の減圧濃縮に
従つて残留する水溶液の温度が大きく低下するた
め、引き続く減圧濃縮の速度が急激に低下する。
従つて、溶液の濃縮を続けようとする場合、残留
する水溶液の温度を加熱によつて上昇させる必要
がある。従来の装置に備えられた遠赤外線ヒータ
ーによる輻射熱を利用した試料の加熱方法には(1)
ガラス試料容器壁を通じて直接試料溶液を加熱す
る方法、(2)金属製外套容器壁の加熱を通してガラ
ス試料容器壁を加熱しその結果試料溶液の加熱を
達成する方法、の2通りの方法がある。これらの
方法によつて加熱を行つた場合、試料容器壁の液
面上は速やかに加熱されるが、一方試料容器壁の
液面下は過冷された水溶液が存在するため温度上
昇が遅速にしか行われない。従つて、水溶液の液
温を充分な減圧濃縮速度が得られるまで加熱を行
つた場合、試料容器壁の液面上部分は過熱状態に
至る。一般に、溶液の濃縮を行つた場合、濃縮さ
れた溶液中の化合物は試料容器壁と液面との界面
上の器壁に析出又は、濃縮される。この場合、濃
縮しようとする試料が熱に不安定な化合物である
場合には試料の分解に至り、実験者の目的とする
必要な試料の回収を計ることが不可能である。 本考案は上記の点に鑑み開発されたもので、濃
縮する試料の加熱が2重外套容器中に含まれる熱
媒体を通して間接的に行われることから、試料容
器壁の不均一な温度上昇が派生せず従つて、必要
とする試料の過熱分解による損失を伴わない遠心
回転式減圧濃縮装置におけるローター用2重外套
容器を得ることを目的としている。 (問題点を解決するための手段) 上記目的達成の為、本考案は、真空下及び、遠
心回転下において試料を間接的に加熱し濃縮する
ようにした遠心回転式減圧濃縮装置におけるロー
ター用2重外套容器であつて、 濃縮する試料を入れた試料容器を収納する内側
外套容器と、この内側外套容器を収納し、該遠心
回転式減圧濃縮装置のローターに取り付けられる
外側外套容器とからなり、 前記外側外套容器と内側外套容器との間に、濃
縮する試料の加熱を行う熱媒体を充填する間〓が
形成されていることを特徴とする遠心回転式減圧
濃縮装置におけるローター用2重外套容器をその
要旨とした。 (考案の効果) 以上述べたように、本考案は濃縮する試料の加
温が遠赤外線ヒーターによる直接的な輻射による
のではなく、ローター用2重外套容器中の熱媒体
によつて間接的に行われる事から、試料容器壁の
不均一な温度上昇が派生せず従つて、必要とする
試料が過熱分解によつて損失するに至らない。本
考案による、濃縮する試料の加温が熱媒体を経て
間接的に行う事が可能な、遠心回転式減圧濃縮装
置におけるローター用2重外套容器を用いれば、
溶液の加熱が試料の分解を伴わずに行えることか
ら、短時間で減圧濃縮を終えることが可能であ
る。 次に、この考案の遠心回転式減圧濃縮装置にお
けるローター用2重外套容器を実施例によつて更
に詳しく説明する。 (実施例) 本考案の実施例を第1図、第2図及び、第3図
に基づいて説明する。第1図は本考案の遠心回転
式減圧濃縮装置におけるローター用2重外套容器
を示す上面図、第2図は第1図のA−B線より切
断した状態を示す断面図、第3図は試料容器及
び、熱媒体を充填した状態を側面から見た断面図
である。 第1図の各部の名称は次の通りである:外側外
套容器1、内側外套容器2。 第2図の各部の名称は次の通りである:外側外
套容器1、内側外套容器2、試料容器3、試料溶
液4、熱媒体5。 外側外套容器1及び、内側外套容器2は金属
製、ガラス製、樹脂製或は、セラミツク製であ
る。遠赤外線の吸収効率を上げるため外側を黒色
で着色することも可能である。外側外套容器1及
び、内側外套容器2の非密閉型間〓には熱媒体を
充填するようになつている。熱媒体の一例として
はシリコンオイル、DMSO、DMF、グリセリ
ン、エチレングリコール、流動パラフイン、トル
エン及び、キシレン等々が使用できる。 遠心回転式減圧濃縮装置におけるローター用2
重外套容器は第3図の状態でローターに装着され
遠心回転式減圧濃縮装置で濃縮される。 第4図に遠心回転式減圧濃縮装置の外観を図示
する。第4図の各部の名称は次のとうりである:
真空ローター室6、ローター室用蓋7、吸引ノズ
ル8(真空ポンプ又は、アスピレータへ)、真空
計9、操作パネル10、電源スイツチ11、遠心
機スイツチ12、遠赤外線ヒータースイツチ1
3、遠赤外線ヒーター調整ダイアル14及び、遠
心機回転数調整ダイアル15。 第5図は遠心回転式減圧濃縮装置におけるロー
ター用2重外套容器を装着した状態の遠心回転式
減圧濃縮装置を示した断面図である。第5図の各
部の名称は次の通りである:真空ローター室6、
ローター室用蓋7、吸引ノズル8(真空ポンプ又
は、アスピレーターへ)、遠心機回転軸16、遠
心機ローター17、第2図に示した状態の2重外
套容器18、磁石回転子19、真空リークバルブ
20、回転軸支持部分21、遠心機モーター22
及び、遠赤外線ヒーター23。 真空ローター室6はローター室用蓋7を閉める
ことによつて閉鎖系となる。真空リークバルブ2
0を閉じ吸引ノズル8から真空ポンプ又は、アス
ピレーターで吸引することによつて真空ローター
室6は真空となる。遠心機ローター17に装着さ
れた本考案の2重外套容器18は遠心機回転軸1
6が回転することによつて0−3000rpm程度の速
度で回転運動を始める。回転軸への回転の伝達
は、真空ローター室6と回転軸16との間でシー
ルレス構造をとることによつて真空洩れを防ぐ構
造となつており、そのためマグネツト・ドライブ
方式による。マグネツト・ドライブ方式とは遠心
機モーター22の回転によつて直結された磁石回
転子19を回転させる、この回転子が発生する回
転磁場に相応して遠心機回転軸16に直結された
磁石回転子19に回転運動が伝達されることによ
つて本考案の2重外外套容器18の遠心回転を実
現している。2重外套容器18内の試料溶液は真
空ローター室6内で、真空下の濃縮と、遠赤外線
ヒーターによる加熱を受けた2重外套容器内の熱
媒体からの熱伝導による加熱を受ける。その際、
遠心を受けることによつて試料液は加圧、攪拌さ
れており真空、加温の条件下においても突沸は抑
えられているため安心濃縮操作を実現している。
又、熱媒体からの間接的熱伝達による必要充分な
加熱が試料成分の分解を防ぐ面からも安心操作を
実現している。 比較例 赤キヤベツには10種類以上のアシル化アントシ
アニンが含まれていることが知られる(参考文
献:E.ldaka et al,Chemistry Letter,145−
148pp,1213−1216pp(1987))。HPLC分取によ
つて60の分画に分けた。各々の容量は30mlであ
る。溶離液組成は酢酸/アセトニトリル/水の混
合溶媒である。分画1−3は3−O−[2−O−
{β−D−グルコピラノシル}−β−D−グルコピ
ラノシル]−5−O−(β−D−グルコピラノシ
ル)シアニジン(3−0−[2−0−{β−D−
glucopyranosyl}−β−D−glucopyranosyl]−
5−0−(β−D−glucopyranosyl)cyanidin
())、分画17−21は3−O−[2−O−{β−D
−グルコピラノシル}−6−O−p−クマリル−
β−D−グルコピラノシル]−5−O−(β−D−
グルコピラノシル)シアニジン(3−0−[2−
0−{β−D−glucopyranosyl}−6−0−p−
coumaryl−β−D−glucopyranosyl]−5−0−
(β−D−glucopyranosyl)cyanidin())、分画
35−37は3−O−[2−O−{2−O−シナピル−
β−D−グルコピラノシル}−6−O−p−クマ
リル−β−D−グルコピラノシル]−5−O−(β
−D−グルコピラノシル)シアニジン(3−0−
[2−0−{2−0−sinapyl−β−D−
glucopyranosyl}−6−0−p−coumaryl−β−
D−glucopyranosyl]−5−0−(β−D−
glucopyranosyl)cyanidin())、分画41−45は
3−O−[2−O−{2−O−シナピル−β−D−
グルコピラノシル}−6−O−フエルリル−β−
D−グルコピラノシル]−5−0−(β−D−グル
コピラノシル)シアニジン(3−0−[2−0−
{2−0−sinapyl−β−D−glucopyranosyl}−
6−0−ferulyl−β−D−glucopyranosyl]−5
−0−(β−D−glucopyranosyl)cyanidin())
及び、分画50−54は3−0−[2−O−{2−O−
シナピル−β−D−グルコピラノシル}−6−O
−シナピル−β−D−グルコピラノシル]−5−
O−(β−D−グルコピラノシル)シアニジン
(3−0−[2−0−{2−0−sinapyl−β−D−
glucopyranosyl}−6−0−sinapyl−β−D−
glucopyranosyl]−5−0−(β−D−
glucopyranosyl)cyanidin())であつた。()
−()は酸の存在下35℃以上で分解して徐々に
()を生成する。これら()−()を含む各
分画を15mlずつに分け3通りの方法で遠心回転式
減圧濃縮を行つた。即ち、()加熱せずに遠心
回転式減圧濃縮装置で濃縮した場合、()従来
の遠赤外線ヒーターを備えた遠心回転式減圧濃縮
装置を用いて液温20℃で濃縮した場合及び、()
本考案の、遠心回転式減圧濃縮装置におけるロー
ター用2重外套容器を装着した状態の遠心回転式
減圧濃縮装置を用いて液温20℃で濃縮した場合で
ある。各々、()−()の化合物について()
−()の方法で濃縮した場合の所用時間と各化
合物の()への分解率を以下の表に示した。
(Industrial Application Field) The present invention increases the evaporation area by centrifugally rotating the sample container, and pressurizes the sample solution by centrifugal force to distill the solution under reduced pressure without the risk of bumping. This invention relates to a double-shroud container for a rotor in a centrifugal rotary vacuum concentrator that performs concentration, drying, recovery, etc. with simple operations. (Prior art) Conventionally, in this type of device, there is a centrifugal rotary vacuum concentration device that heats the sample directly with a far-infrared heater or indirectly through a metal container [Reference: Taiyo Kagaku Kogyo Co., Ltd. centrifugal manufactured by Co., Ltd.
concentrator VC-36, VC-96 instruction manual and
catalog]. However, there are no centrifugal rotary vacuum concentrators in which heating of the sample to be concentrated is performed indirectly via a heat medium. (Problem that the invention aims to solve) When using conventional equipment, when the solution to be concentrated is an aqueous solution, the latent heat (heat of vaporization) of water is larger than that of other organic solvents, so water cannot be concentrated under reduced pressure. Accordingly, the temperature of the remaining aqueous solution decreases significantly, and the rate of subsequent vacuum concentration decreases rapidly.
Therefore, in order to continue concentrating the solution, it is necessary to raise the temperature of the remaining aqueous solution by heating. Sample heating methods using radiant heat from far-infrared heaters installed in conventional equipment include (1)
There are two methods: heating the sample solution directly through the glass sample container wall; and (2) heating the glass sample container wall through heating of the metal envelope container wall, thereby achieving heating of the sample solution. When heating is performed using these methods, the surface above the liquid surface on the wall of the sample container is heated quickly, but on the other hand, the temperature rises slowly below the surface of the liquid on the wall of the sample container due to the presence of supercooled aqueous solution. only is done. Therefore, when heating the aqueous solution until a sufficient vacuum concentration rate is obtained, the portion of the sample container wall above the liquid level reaches an overheated state. Generally, when a solution is concentrated, compounds in the concentrated solution are precipitated or concentrated on the container wall at the interface between the sample container wall and the liquid surface. In this case, if the sample to be concentrated is a thermally unstable compound, the sample will decompose, making it impossible for the experimenter to recover the necessary sample. The present invention was developed in view of the above points, and since the heating of the sample to be concentrated is performed indirectly through the heat medium contained in the double jacket container, uneven temperature rise on the sample container wall results. Therefore, the object of the present invention is to obtain a double jacket container for a rotor in a centrifugal rotary vacuum concentrator that does not involve loss of a required sample due to overthermal decomposition. (Means for Solving the Problems) In order to achieve the above object, the present invention provides two rotors for use in a centrifugal rotary vacuum concentrator that indirectly heats and concentrates a sample under vacuum and centrifugal rotation. A heavy mantle container, consisting of an inner mantle container that stores a sample container containing a sample to be concentrated, and an outer mantle container that stores the inner mantle container and is attached to the rotor of the centrifugal rotary vacuum concentrator, A double mantle container for a rotor in a centrifugal rotary vacuum concentrator, characterized in that a gap is formed between the outer mantle container and the inner mantle container, in which a heating medium for heating the sample to be concentrated is filled. was its gist. (Effects of the invention) As described above, in the present invention, the sample to be concentrated is heated not by direct radiation from a far-infrared heater, but indirectly by the heating medium in the double envelope for the rotor. Since this is carried out, there is no uneven temperature rise of the sample container wall, and therefore, the required sample is not lost due to overthermal decomposition. By using the double envelope container for the rotor in a centrifugal rotary vacuum concentrator according to the present invention, which allows heating of the sample to be concentrated to be performed indirectly via a heat medium,
Since the solution can be heated without decomposing the sample, vacuum concentration can be completed in a short time. Next, the double envelope container for the rotor in the centrifugal rotary vacuum concentrator of this invention will be explained in more detail by way of examples. (Example) An example of the present invention will be described based on FIGS. 1, 2, and 3. Fig. 1 is a top view showing a double outer envelope for the rotor in the centrifugal rotary vacuum concentrator of the present invention, Fig. 2 is a sectional view taken along the line A-B in Fig. 1, and Fig. 3 is a FIG. 2 is a cross-sectional view of a sample container and a state filled with a heat medium, viewed from the side. The names of the parts in FIG. 1 are as follows: outer mantle container 1, inner mantle container 2. The names of the parts in FIG. 2 are as follows: outer mantle container 1, inner mantle container 2, sample container 3, sample solution 4, heating medium 5. The outer mantle 1 and the inner mantle 2 are made of metal, glass, resin, or ceramic. It is also possible to color the outside with black to increase the absorption efficiency of far infrared rays. The space between the outer mantle container 1 and the inner mantle container 2 is filled with a heat medium. Examples of the heat medium that can be used include silicone oil, DMSO, DMF, glycerin, ethylene glycol, liquid paraffin, toluene, and xylene. For rotors in centrifugal rotary vacuum concentrators 2
The heavy overcoat container is attached to a rotor in the state shown in Figure 3, and concentrated in a centrifugal rotary vacuum concentrator. FIG. 4 shows the appearance of the centrifugal rotary vacuum concentrator. The names of the parts in Figure 4 are as follows:
Vacuum rotor chamber 6, rotor chamber lid 7, suction nozzle 8 (to vacuum pump or aspirator), vacuum gauge 9, operation panel 10, power switch 11, centrifuge switch 12, far infrared heater switch 1
3. Far-infrared heater adjustment dial 14 and centrifuge rotation speed adjustment dial 15. FIG. 5 is a cross-sectional view showing the centrifugal rotary vacuum concentrator in a state in which a double outer rotor container is attached to the centrifugal rotary vacuum concentrator. The names of the parts in Figure 5 are as follows: vacuum rotor chamber 6;
Rotor chamber lid 7, suction nozzle 8 (to the vacuum pump or aspirator), centrifuge rotating shaft 16, centrifuge rotor 17, double jacket container 18 in the state shown in FIG. 2, magnet rotor 19, vacuum leak Valve 20, rotating shaft support part 21, centrifugal motor 22
and far infrared heater 23. The vacuum rotor chamber 6 becomes a closed system by closing the rotor chamber lid 7. Vacuum leak valve 2
0 is closed and suction is applied from the suction nozzle 8 with a vacuum pump or an aspirator, thereby making the vacuum rotor chamber 6 evacuated. The double jacket container 18 of the present invention attached to the centrifuge rotor 17 is connected to the centrifuge rotation shaft 1.
6 starts rotating at a speed of about 0-3000 rpm. Rotation is transmitted to the rotary shaft by a sealless structure between the vacuum rotor chamber 6 and the rotary shaft 16 to prevent vacuum leakage, and therefore by a magnetic drive system. The magnetic drive system is a magnet rotor 19 directly connected to the centrifuge rotating shaft 16 which is rotated by the rotation of the centrifuge motor 22 in response to the rotating magnetic field generated by this rotor. By transmitting the rotational motion to the container 19, the centrifugal rotation of the double-walled container 18 of the present invention is realized. The sample solution in the double-mantle container 18 is concentrated in vacuum in the vacuum rotor chamber 6 and heated by heat conduction from the heating medium in the double-mantle container heated by a far-infrared heater. that time,
By undergoing centrifugation, the sample liquid is pressurized and stirred, and bumping is suppressed even under vacuum and heating conditions, making it possible to perform safe concentration operations.
Furthermore, safe operation is achieved in that necessary and sufficient heating by indirect heat transfer from the heating medium prevents sample components from decomposing. Comparative Example It is known that red cabbage contains more than 10 types of acylated anthocyanins (Reference: E.ldaka et al, Chemistry Letter, 145-
148pp, 1213-1216pp (1987)). It was divided into 60 fractions by HPLC preparative analysis. The volume of each is 30ml. The eluent composition is a mixed solvent of acetic acid/acetonitrile/water. Fraction 1-3 is 3-O-[2-O-
{β-D-glucopyranosyl}-β-D-glucopyranosyl]-5-O-(β-D-glucopyranosyl)cyanidin (3-0-[2-0-{β-D-
glucopyranosyl}-β-D-glucopyranosyl]-
5-0-(β-D-glucopyranosyl)cyanidin
()), fraction 17-21 is 3-O-[2-O-{β-D
-glucopyranosyl}-6-O-p-coumaryl-
β-D-glucopyranosyl]-5-O-(β-D-
glucopyranosyl) cyanidin (3-0-[2-
0-{β-D-glucopyranosyl}-6-0-p-
coumaryl-β-D-glucopyranosyl]-5-0-
(β-D-glucopyranosyl)cyanidin()), fractionation
35-37 is 3-O-[2-O-{2-O-sinapyr-
β-D-glucopyranosyl}-6-O-p-coumaryl-β-D-glucopyranosyl]-5-O-(β
-D-glucopyranosyl)cyanidin (3-0-
[2-0-{2-0-sinapyl-β-D-
glucopyranosyl}-6-0-p-coumaryl-β-
D-glucopyranosyl]-5-0-(β-D-
glucopyranosyl) cyanidin ()), fractions 41-45 are 3-O-[2-O-{2-O-sinapyr-β-D-
glucopyranosyl}-6-O-ferryl-β-
D-glucopyranosyl]-5-0-(β-D-glucopyranosyl)cyanidin (3-0-[2-0-
{2-0-sinapyl-β-D-glucopyranosyl}-
6-0-ferulyl-β-D-glucopyranosyl]-5
-0-(β-D-glucopyranosyl)cyanidin())
And fraction 50-54 is 3-0-[2-O-{2-O-
Sinapyr-β-D-glucopyranosyl}-6-O
-Sinapyr-β-D-glucopyranosyl]-5-
O-(β-D-glucopyranosyl)cyanidin (3-0-[2-0-{2-0-sinapyl-β-D-
glucopyranosyl}-6-0-sinapyl-β-D-
glucopyranosyl]-5-0-(β-D-
glucopyranosyl)cyanidin()). ()
-() decomposes in the presence of acid at temperatures above 35°C to gradually produce (). Each fraction containing ()-() was divided into 15 ml portions and subjected to centrifugal rotary vacuum concentration using three methods. That is, () when concentrated using a centrifugal rotary vacuum concentrator without heating; () when concentrated at a liquid temperature of 20°C using a centrifugal rotary vacuum concentrator equipped with a conventional far-infrared heater;
This is a case of concentration at a liquid temperature of 20° C. using the centrifugal rotary vacuum concentrator of the present invention, which is equipped with a double outer envelope for the rotor of the centrifugal rotary vacuum concentrator. For each compound ()-(), ()
- The required time for concentration using method () and the decomposition rate of each compound to () are shown in the table below.

【表】 化合物の熱安定性は()−()が比較的安定
で又、お互いに同程度の安定性を有する。()
は()−()に比較して不安定な化合物であ
る。HPLC分取は段階溶出を行い、後ろの分画程
アセトニトリルの含量が増加しているため、()
→()の順に濃縮時間が比較的短縮されてい
る。 ()は()に比較して濃縮時間が長いが、
これは試料容器の上部が設定温度よりも過熱され
ている割に液温が低い事によるものと思われる。
従つて、この試料容器の上部の過熱が()に比
較して()が化合物の分解率が高い事の主因を
なしている。このことから本考案の遠心回転式減
圧濃縮装置におけるローター用2重外套容器を装
着した状態の遠心回転式減圧濃縮装置を用いて濃
縮した場合、従来の遠心回転式減圧濃縮装置を用
いて濃縮した場合に比較して、不安定な試料をよ
り安全に、速く濃縮できる事が明かとなつた。
[Table] Regarding the thermal stability of the compounds, ()-() is relatively stable, and each has the same degree of stability. ()
is an unstable compound compared to ()-(). HPLC preparative separation uses stepwise elution, and the content of acetonitrile increases in the later fractions, so ()
Concentration time is relatively short in the order of →(). () has a longer concentration time than (), but
This seems to be due to the fact that the upper part of the sample container is heated higher than the set temperature, but the liquid temperature is lower.
Therefore, this overheating of the upper part of the sample container is the main reason why the decomposition rate of the compound is higher in () than in (). Therefore, when concentrating using the centrifugal rotary vacuum concentrating device of the present invention equipped with a double rotor envelope container, it is possible to concentrate using the centrifugal rotary vacuum concentrating device of the present invention. It has become clear that unstable samples can be concentrated more safely and quickly compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の遠心回転式減圧濃縮装置にお
けるローター用2重外套容器を示した上面図、第
2図は第1図のA−B線より切断した状態を示す
断面図、第3図は試料容器及び、熱媒体を充填し
た状態の遠心回転式減圧濃縮装置におけるロータ
ー用2重外套容器の側面から見た断面図、第4図
は本考案の遠心回転式減圧濃縮装置の外観を示し
た斜視図、第5図は熱媒体を充填した状態の遠心
回転式減圧濃縮装置におけるローター用2重外套
容器を装着した状態の遠心回転式減圧濃縮装置を
示した断面図である。 符号の説明、1……外側外套容器、2……内側
外套容器、3……試料容器、4……試料溶液、5
……熱媒体、6……真空ローター室、7……ロー
ター室用蓋、8……吸引ノズル、9……真空計、
10……操作パネル、11……電源スイツチ、1
2……遠心機スイツチ、13……遠赤外線ヒータ
ースイツチ、14……遠赤外線ヒーター調整ダイ
アル、15……遠心機回転数調整ダイアル、16
……遠心機回転軸、17……遠心機ローター、1
8……2重外套容器、19……磁石回転子、20
……真空リークバルブ、21……回転軸支持部
分、22……遠心機モーター、23……遠赤外線
ヒーター。
Fig. 1 is a top view showing the double envelope container for the rotor in the centrifugal rotary vacuum concentrator of the present invention, Fig. 2 is a sectional view taken along the line A-B in Fig. 1, and Fig. 3 4 is a cross-sectional view from the side of the sample container and the rotor double jacket container in the centrifugal rotary vacuum concentrator filled with a heating medium, and FIG. 4 shows the external appearance of the centrifugal rotary vacuum concentrator of the present invention. FIG. 5 is a cross-sectional view showing the centrifugal rotary vacuum concentrator filled with a heat medium and equipped with a double outer rotor container. Explanation of symbols, 1...Outer mantle container, 2...Inner mantle container, 3...Sample container, 4...Sample solution, 5
...Heating medium, 6...Vacuum rotor chamber, 7...Rotor chamber lid, 8...Suction nozzle, 9...Vacuum gauge,
10...Operation panel, 11...Power switch, 1
2... Centrifuge switch, 13... Far infrared heater switch, 14... Far infrared heater adjustment dial, 15... Centrifuge rotation speed adjustment dial, 16
... Centrifuge rotation shaft, 17 ... Centrifuge rotor, 1
8...Double mantle container, 19...Magnetic rotor, 20
... Vacuum leak valve, 21 ... Rotating shaft support part, 22 ... Centrifugal motor, 23 ... Far infrared heater.

Claims (1)

【実用新案登録請求の範囲】 真空下及び、遠心回転下において試料を間接的
に加熱し濃縮するようにした遠心回転式減圧濃縮
装置におけるローター用2重外套容器であつて、 濃縮する試料を入れた試料容器を収納する内側
外套容器と、この内側外套容器を収納し、該遠心
回転式減圧濃縮装置のローターに取り付けられる
外側外套容器とからなり、 前記外側外套容器と内側外套容器との間に、濃
縮する試料の加熱を行う熱媒体を充填する間〓が
形成されていることを特徴とする遠心回転式減圧
濃縮装置におけるローター用2重外套容器。
[Scope of Claim for Utility Model Registration] A double jacket container for the rotor of a centrifugal rotary vacuum concentrator that indirectly heats and concentrates the sample under vacuum and centrifugal rotation, which contains the sample to be concentrated. an outer mantle container that houses the inner mantle container and is attached to the rotor of the centrifugal rotating vacuum concentrator, and a space between the outer mantle container and the inner mantle container. 1. A double-sheathed container for a rotor in a centrifugal rotary vacuum concentrator, characterized in that a space is formed for filling a heating medium for heating a sample to be concentrated.
JP1987133074U 1987-08-31 1987-08-31 Expired JPH0417201Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987133074U JPH0417201Y2 (en) 1987-08-31 1987-08-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987133074U JPH0417201Y2 (en) 1987-08-31 1987-08-31

Publications (2)

Publication Number Publication Date
JPS6439802U JPS6439802U (en) 1989-03-09
JPH0417201Y2 true JPH0417201Y2 (en) 1992-04-17

Family

ID=31390614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987133074U Expired JPH0417201Y2 (en) 1987-08-31 1987-08-31

Country Status (1)

Country Link
JP (1) JPH0417201Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914635U (en) * 1972-05-06 1974-02-07

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168504U (en) * 1984-04-19 1985-11-08 株式会社岡村製作所 Solvent evaporation device of simple solvent recovery device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914635U (en) * 1972-05-06 1974-02-07

Also Published As

Publication number Publication date
JPS6439802U (en) 1989-03-09

Similar Documents

Publication Publication Date Title
CN101432051B (en) Evaporator and method of operation thereof
KR950702708A (en) Liquid / supercritical carbon dioxide dry cleaning system
DE3277834D1 (en) Improvements in centrifuges
JPH0417201Y2 (en)
EP0240793A3 (en) Condensation process for hypoboric water vapour
JPH0513362Y2 (en)
GB2374814A (en) Compliant sheet sandwiched between a sample holder and support of a centrifugal evaporator
CN219186988U (en) Plant concentrating rotary evaporator
EP0433729B1 (en) Rotary evaporator
CN207487422U (en) A kind of graphite electrode heater
JPS607921B2 (en) Centrifugal vacuum concentrator
EP0224238A2 (en) Refrigerated centrifuge having a removable bowl
US3199216A (en) Apparatus for shell freezing of heat sensitive liquids
CN2105651U (en) Vacuum rotary drying pot
CN209049042U (en) A kind of vacuum freeze drying centrifuge concentrator
CN212720600U (en) Vacuumizing drying equipment
KR100330734B1 (en) An apparatus for a vacuum concentration of a rotating type
JP2000055547A (en) Centrifugal separator/dryer
CN214680059U (en) Batch concentration device for material evidence treatment
CN213644522U (en) Heatable centrifuge is used to chemical industry
JPS62225201A (en) Centrifugal evaporator
CN217015347U (en) Rotary evaporator for nut detection
CN217472739U (en) Evaporation instrument for organic chemistry experiments
JPS6317481B2 (en)
CN216365954U (en) Electric and steam dual-purpose medicine steaming cabinet for traditional Chinese medicine decoction pieces