JPH04171365A - Piston pin and manufacturing method thereof - Google Patents
Piston pin and manufacturing method thereofInfo
- Publication number
- JPH04171365A JPH04171365A JP29859090A JP29859090A JPH04171365A JP H04171365 A JPH04171365 A JP H04171365A JP 29859090 A JP29859090 A JP 29859090A JP 29859090 A JP29859090 A JP 29859090A JP H04171365 A JPH04171365 A JP H04171365A
- Authority
- JP
- Japan
- Prior art keywords
- piston pin
- metal
- inner layer
- fibers
- layer part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000000835 fiber Substances 0.000 claims abstract description 106
- 229910052751 metal Inorganic materials 0.000 claims abstract description 88
- 239000002184 metal Substances 0.000 claims abstract description 88
- 239000000126 substance Substances 0.000 claims abstract description 25
- 239000002245 particle Substances 0.000 claims abstract description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 14
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 13
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- 239000000956 alloy Substances 0.000 claims abstract description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011521 glass Substances 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000919 ceramic Substances 0.000 claims abstract description 10
- 239000011777 magnesium Substances 0.000 claims abstract description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 41
- 239000011159 matrix material Substances 0.000 claims description 22
- 229910001018 Cast iron Inorganic materials 0.000 claims description 21
- 230000008646 thermal stress Effects 0.000 claims description 19
- 239000002131 composite material Substances 0.000 claims description 16
- 238000011049 filling Methods 0.000 claims description 9
- 239000002657 fibrous material Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 238000005304 joining Methods 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 4
- 239000003779 heat-resistant material Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052742 iron Inorganic materials 0.000 abstract 2
- 239000004411 aluminium Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 16
- 230000035882 stress Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000002994 raw material Substances 0.000 description 8
- 239000010953 base metal Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 239000011162 core material Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000012783 reinforcing fiber Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- -1 machnesium Inorganic materials 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 206010011732 Cyst Diseases 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000109 continuous material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Pistons, Piston Rings, And Cylinders (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、自動車や二輪車等の内燃機関用のピストン等
に用いられるピストンピンおよびその製造方法に関し、
更に詳しくは、強化繊維により複合強化された金属棒状
体または中空体と該金属を覆う金属製の最外層部とから
なり、軽量で機械的強度および摺動性に優れたピストン
ピンおよびその製造方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a piston pin used in a piston for an internal combustion engine such as an automobile or a motorcycle, and a method for manufacturing the same.
More specifically, a piston pin that is lightweight and has excellent mechanical strength and slidability and is made of a metal rod-shaped body or a hollow body compositely reinforced with reinforcing fibers and a metal outermost layer covering the metal, and a method for manufacturing the same. It is related to.
内燃機関の燃費を向上させる目的で、該内燃機関を構成
する各種部品を軽量化することか図られ、特に高速運動
部品の一つであるピストンピンの軽量化が検討されてい
る。この軽量化のために、近年軽量・高強度材料として
様々な分野で注目されている材料である繊維強化金属(
FRM)を用いることか検討されている。その中で、摺
動相手材との適合性を良くするために、内層にアルミニ
ウム(Affi)やマグネシウム(Mg)合金などを母
相とするFRMを用い、外層に金属管を配設した二重構
造のピストンピンか提案されている(特開昭63−34
368号)。In order to improve the fuel efficiency of internal combustion engines, efforts are being made to reduce the weight of various parts that make up the internal combustion engine, and in particular, efforts are being made to reduce the weight of piston pins, which are one of the high-speed moving parts. To achieve this weight reduction, fiber-reinforced metal, a material that has recently attracted attention in various fields as a lightweight and high-strength material, has been developed.
FRM) is being considered. Among these, in order to improve compatibility with the sliding counterpart material, FRM with a matrix of aluminum (Affi) or magnesium (Mg) alloy is used for the inner layer, and a metal tube is arranged for the outer layer. A piston pin structure has been proposed (Japanese Patent Laid-Open No. 63-34
No. 368).
しかしながら、該構造のピストンピンは、内層部に繊維
のみて強化したFRMを用いているため繊維同士の接触
か多く、該FRMの繊維軸に平行な面内ての剪断応力に
対して弱い。また、製造時にFRMを構成する繊維間に
母相金属溶湯を十分に充填することが困難なため、未充
填欠陥を多く含むFRMとなり、機械的強度に優れたF
RMとすることができない。従って、FRM部において
は、運転時に生ずる剪断応力に対して十分な強度を有し
ていない。また、外層金属管は、摺動相手材(ピストン
、コンロッド、ブツシュ等)との間で適切な摩擦性と摺
動性を保持するへきであるが、従来技術で用いられてい
る金属管はこれら性質か乏しいため、該金属管にさらに
硬質皮膜を形成する必要かあるなと、複雑な製造工程と
なりコスト高である。さらに、金属管とFRM部界面に
機械的衝撃や熱衝撃により割れか生じやすいという問題
を有していた。However, since the piston pin of this structure uses FRM reinforced only with fibers in the inner layer, there is a lot of contact between the fibers, and the piston pin is vulnerable to shear stress in a plane parallel to the fiber axis of the FRM. Additionally, it is difficult to sufficiently fill the molten matrix metal between the fibers that make up the FRM during manufacturing, resulting in an FRM with many unfilled defects, resulting in an FRM with excellent mechanical strength.
It cannot be set as RM. Therefore, the FRM part does not have sufficient strength against the shear stress generated during operation. In addition, the outer layer metal tube is required to maintain appropriate friction and sliding properties with sliding mating materials (pistons, connecting rods, bushings, etc.), but the metal tubes used in the conventional technology do not meet these requirements. Due to its poor properties, it is necessary to further form a hard coating on the metal tube, which results in a complicated manufacturing process and high costs. Furthermore, there is a problem in that cracks tend to occur at the interface between the metal tube and the FRM part due to mechanical shock or thermal shock.
そこで発明者らは、上述の如き従来技術の問題点を解決
すべく鋭意研究し、各種の系統的実験を重ねた結果、本
発明を成すに至ったものである。Therefore, the inventors conducted intensive research to solve the problems of the prior art as described above, and as a result of various systematic experiments, they came up with the present invention.
本発明の目的は、剪断強度等の機械的強度および摺動性
に優れ、軽量で高強度のピストンピンおよびその製造方
法を提供するにある。An object of the present invention is to provide a lightweight, high-strength piston pin that has excellent mechanical strength such as shear strength and slidability, and a method for manufacturing the same.
〔第1発明の説明〕
発明の構成
本第1発明のピストンピンは、炭化珪素、アルミナ、窒
化珪素等のセラミックスや炭素、ガラス等の耐熱性物質
より選択された少なくとも一種以上の連続繊維かある程
度の間隔を持って配設された連続繊維の間隙に、炭化珪
素、アルミナ、窒化珪素等のセラミックスや炭素、ガラ
ス等の耐熱性物質より選択された少なくとも一種以上の
粒子、短繊維、ウィスカまたは板状小片体を介在させた
状態でアルミニウム、マグネシウム、またはそれらの合
金等からなる母相金属を充填させて複合化したハイブリ
ッド型繊維強化金属からなる内層部と、該内層部のハイ
ブリッド型繊維強化金属と同程度またはそれよりやや大
きい熱膨張係数を有するNi含有鋳鉄製の前記内層部の
表面に密着形成された外層部とからなる。[Description of the first invention] Structure of the invention The piston pin of the first invention is made of at least one type of continuous fiber selected from ceramics such as silicon carbide, alumina, and silicon nitride, and heat-resistant substances such as carbon and glass. At least one particle, short fiber, whisker, or plate selected from ceramics such as silicon carbide, alumina, and silicon nitride, and heat-resistant substances such as carbon and glass is placed between the continuous fibers arranged at intervals of . an inner layer made of a hybrid fiber-reinforced metal that is composited by filling a matrix metal made of aluminum, magnesium, or an alloy thereof with small pieces interposed therein; and a hybrid fiber-reinforced metal of the inner layer. and an outer layer portion formed in close contact with the surface of the inner layer portion made of Ni-containing cast iron and having a coefficient of thermal expansion comparable to or slightly larger than the inner layer portion.
発明の作用および効果
本第1発明のピストンピンは、剪断強度等の機械的強度
および摺動性に優れ、軽量で高強度である。Functions and Effects of the Invention The piston pin of the first invention has excellent mechanical strength such as shear strength and slidability, and is lightweight and high strength.
本第1発明のピストンピンが上記の如き効果を発揮する
メカニズムについては、未だ十分に明らかではないが、
次のように考えられる。Although the mechanism by which the piston pin of the first invention exerts the above-mentioned effects is still not fully clear,
It can be considered as follows.
まず、本発明のピストンピンの内層部は、ハイブリッド
型のFRMからなる。このハイブリッド型FRMは、連
続繊維の間隙に微細なウィスカや微粒子等が配置され、
繊維同士の接触か生じないために繊維/繊維間への母相
金属か十分に充填される。従って、繊維の周囲をウィス
カや微粒子等で強化された母相金属か取り囲むことによ
って、繊維軸に平行な面内での剪断応力および繊維軸に
垂直な面内ての剪断応力等の機械的強度に優れるととも
に、高い強度を有しかつ高剛性のものとすることかでき
る。また、このような構造とすることにより、密度か小
さい強化繊維という軽量性の利点を有しながら、母相と
の接合性に劣り剪断強度か低いために従来用いることが
難しかった炭素繊維の使用を可能にすることができる。First, the inner layer of the piston pin of the present invention is made of hybrid FRM. This hybrid type FRM has fine whiskers, particles, etc. placed in the gaps between continuous fibers.
The matrix metal is sufficiently filled between the fibers to prevent contact between the fibers. Therefore, by surrounding the fibers with a matrix metal reinforced with whiskers, fine particles, etc., mechanical strength such as shear stress in a plane parallel to the fiber axis and shear stress in a plane perpendicular to the fiber axis can be increased. It can be made to have excellent properties, high strength, and high rigidity. In addition, this structure allows the use of carbon fiber, which has the advantage of being lightweight and has the advantage of being a reinforcing fiber with a low density, but which has traditionally been difficult to use due to poor bonding properties with the matrix and low shear strength. can be made possible.
また、外層部は、該内層部のハイブリッド型繊維強化金
属と同程度またはそれよりやや大きい熱膨張係数を有す
るNi含有鋳鉄からなる。従って、ピストンピンか高温
環境下に曝露されたり、高温−低温の厳しい温度差雰囲
気に曝されても、内層部および外層部が熱膨張係数が同
程度であるため、内層部と外層部との接合部か剥離した
り、空隙か発生するなどの問題が生じない。また該外層
部は、Ni含有鋳鉄からなるので該鋳鉄製外層部表面に
黒鉛粒が点在しているので、ピストンピンの摺動特性に
優れており、摺動相手材を損傷させることか無く、さら
に耐摩耗性に優れているのて該ピストンピン自体の摩耗
も少ない。これより、剪断強度等の機械的強度および摺
動性に優れ、軽量で高強度のピストンピンが得られてい
るものと考えられる。Further, the outer layer portion is made of Ni-containing cast iron having a coefficient of thermal expansion comparable to or slightly larger than that of the hybrid fiber-reinforced metal of the inner layer portion. Therefore, even if the piston pin is exposed to a high-temperature environment or an atmosphere with a severe temperature difference between high and low temperatures, the inner and outer layers have the same coefficient of thermal expansion, so the inner and outer layers are There are no problems such as peeling of joints or formation of voids. In addition, since the outer layer is made of Ni-containing cast iron, the surface of the cast iron outer layer is dotted with graphite grains, so the piston pin has excellent sliding characteristics and does not damage the sliding counterpart material. Furthermore, since the piston pin itself has excellent wear resistance, there is little wear on the piston pin itself. From this, it is considered that a lightweight, high-strength piston pin with excellent mechanical strength such as shear strength and slidability was obtained.
〔第2発明の説明〕
以下に、前記第1発明をさらに具体的にした発明(第2
発明)について述べる。[Description of the second invention] Below, an invention (second invention) that further specifies the first invention will be described.
invention).
本第2発明のピストンピンの内層部は、ハイブリッド型
のFRMからなる。The inner layer of the piston pin of the second invention is made of hybrid FRM.
該ハイブリッド型FRMの連続繊維は、炭化珪素、アル
ミナ、窒化珪素等のセラミックス材料、炭素、硼素、ガ
ラス等の耐熱性非金属材料や耐熱性金属材料より選択さ
れた少なくとも一種以上の材料からなる連続繊維であり
、これら材料からなる繊維を単独で用いても、二種以上
の繊維を組合せて用いてもよい。また、該繊維の太さや
長さ、断面形状等の性状は、外層部の材質、用途、ピス
トンピンに要求される性能等によって適宜選択する。The continuous fibers of the hybrid FRM are continuous fibers made of at least one material selected from ceramic materials such as silicon carbide, alumina, and silicon nitride, and heat-resistant nonmetallic materials and heat-resistant metal materials such as carbon, boron, and glass. They are fibers, and fibers made of these materials may be used alone or in combination of two or more types of fibers. Further, the properties such as the thickness, length, cross-sectional shape, etc. of the fibers are appropriately selected depending on the material of the outer layer, the intended use, the performance required of the piston pin, etc.
連続繊維の間隙に介在させた粒子、短繊維、ウィスカま
たは板状小計体は、炭化珪素、アルミナ、窒化珪素等の
セラミックス材料、炭素、硼素、ガラス等の耐熱性非金
属材料や耐熱性金属材料より選択された少なくとも一種
以上の物質であり、これら材料からなる物質を単独で用
いても、二種以上の物質または/および形状のものを組
み合わせて用いてもよい。なお、該物質の配合量は、用
途やピストンピンに要求される性能等によって適宜選択
される。また、該物質の形状や大きさ、長さ、太さ及び
断面形状等の性状は、前記連続繊維との適合性や組合せ
、外層部の材質、用途、ピストンピンに要求される性能
等によって適宜選択する。Particles, short fibers, whiskers, or plate-like subtotal bodies interposed between continuous fibers are made of ceramic materials such as silicon carbide, alumina, and silicon nitride, heat-resistant nonmetallic materials such as carbon, boron, and glass, and heat-resistant metal materials. It is at least one kind of substance selected from these materials, and a substance made of these materials may be used alone, or two or more kinds of substances and/or shapes may be used in combination. The amount of the substance to be blended is appropriately selected depending on the application, the performance required of the piston pin, etc. In addition, the shape, size, length, thickness, cross-sectional shape, and other properties of the substance may be determined as appropriate depending on the compatibility and combination with the continuous fibers, the material of the outer layer, the intended use, and the performance required for the piston pin. select.
なお、該物質の混合量は、連続繊維に対する体積率で、
1〜150%程度であることが好ましい。In addition, the mixing amount of the substance is a volume ratio to continuous fibers,
It is preferably about 1 to 150%.
これは、該範囲とすることにより、連続繊維の体積率を
60〜20%程度に保つことができ、内層の複合部の強
度を要求性能を満足する程度にすることができるからで
ある。This is because by setting it within this range, the volume fraction of continuous fibers can be maintained at about 60 to 20%, and the strength of the composite portion of the inner layer can be made to a level that satisfies the required performance.
前記連続繊維の間隙に充填された母相金属は、アルミニ
ウム、マグネシウム、またはこれらを主成分とする合金
等からなる金属を用いる。この金属としては、繊維強化
金属の母相金属として通常用いられているものを用いる
こともできる。なお、該母相金属と連続繊維との含有比
率は、母材金属の種類、連続繊維の種類、用途やピスト
ンピンに要求される性能等によって適宜選択される。な
お、該混合量は、FRM中の体積率で35〜70%程度
であることが好ましい。これは、該混合量が35体積%
未満の場合には繊維間隔が狭くなり剪断強度が十分に得
られない虞れがあるからであり、また、該70体積%を
越えた場合は強化繊維の複合強化効果を発揮することが
できなくなる虞れがあるからである。該範囲内とするこ
とにより、内層部の強度および剛性を十分なものとする
ことができる。The matrix metal filled in the gaps between the continuous fibers is a metal such as aluminum, magnesium, or an alloy containing these as main components. As this metal, those commonly used as matrix metals of fiber-reinforced metals can also be used. The content ratio of the base metal and continuous fibers is appropriately selected depending on the type of base metal, the type of continuous fibers, the intended use, the performance required of the piston pin, and the like. Note that the mixing amount is preferably about 35 to 70% by volume in the FRM. This means that the mixing amount is 35% by volume.
If it is less than 70% by volume, the fiber spacing may become narrow and sufficient shear strength may not be obtained, and if it exceeds 70% by volume, the reinforcing fibers will not be able to exhibit the composite reinforcing effect. This is because there is a risk. By keeping it within this range, the inner layer can have sufficient strength and rigidity.
本発明のピストンピンにおいて、内層部は、前記連続繊
維と該連続繊維の間隙に介在させた粒子、短繊維、ウィ
スカまたは板状小片体からなる前記物質と、前記連続繊
維の間隙に充填された前記母相金属とからなる、ハイブ
リッド型FRMにより構成される。このハイブリッド型
FRMを用いることにより、該ハイブリッド型FRMの
連続繊維の繊維軸方向の強度は主として連続繊維か主に
分担し、連続繊維に垂直な方向の強度は前記連続繊維と
該連続繊維の間隙に介在させた粒子および前記連続繊維
の間隙に充填された母相金属か主に分担することにより
、本発明のピストンピンを繊維軸に平行な面内での剪断
応力および繊維軸に垂直な面内ての剪断応力等の機械的
強度に優れるとともに、高い強度を有しかつ高剛性のも
のとすることができる。In the piston pin of the present invention, the inner layer portion includes the continuous fibers and the substance consisting of particles, short fibers, whiskers, or small plate-like pieces interposed in the gaps between the continuous fibers, and the substance filled in the gaps between the continuous fibers. It is constituted by a hybrid type FRM consisting of the above-mentioned parent phase metal. By using this hybrid type FRM, the strength in the fiber axis direction of the continuous fibers of the hybrid type FRM is mainly shared by the continuous fibers, and the strength in the direction perpendicular to the continuous fibers is distributed between the continuous fibers. The piston pin of the present invention can be made to absorb shear stress in a plane parallel to the fiber axis and shear stress in a plane perpendicular to the fiber axis by mainly using the particles interposed in the continuous fibers and the matrix metal filled in the gaps between the continuous fibers. It has excellent mechanical strength such as internal shear stress, and can have high strength and high rigidity.
ここで、本発明の内部層は、その具体的構造について、
以下の実施態様を採りうる。Here, regarding the specific structure of the internal layer of the present invention,
The following embodiments may be adopted.
先ず、第1実施態様の内層部11は、第2図に示すよう
に、内層郡全体か棒状体のハイブリッド型FRMIIで
あって、軸方向に連続的に成る程度の間隔を持って整列
された連続繊維12と、該連続繊維の間隙に介在させた
粒子、短繊維、ウィスカまたは板状小片体からなる前記
物質13と、前記連続繊維の間隙に充填された前記母相
金属14とからなる。なお、この内層部11は、その中
心部に芯材を有していてもよい。First, as shown in FIG. 2, the inner layer section 11 of the first embodiment is a hybrid type FRMII in which the entire inner layer group is a rod-shaped body, and is arranged at continuous intervals in the axial direction. It consists of continuous fibers 12, the substance 13 consisting of particles, short fibers, whiskers, or plate-like pieces interposed in the gaps between the continuous fibers, and the matrix metal 14 filled in the gaps between the continuous fibers. Note that this inner layer portion 11 may have a core material at its center.
第2実施態様の内層部21は、第3図に示すように、内
層部か中空形状のハイブリッド型FRM21であって、
軸方向に連続的に成る程度の間隔を持って整列された連
続繊維22と、該連続繊維の間隙に介在させた粒子、短
繊維、ウィスカまたは板状小片体からなる前記物質23
と、前記連続繊維の間隙に充填された前記母相金属24
と、中空部25とからなる。なお、この内層部21の中
空部25を形成する部分は、該中空部を郭定する中空筒
体を有してもよい。The inner layer part 21 of the second embodiment is a hybrid FRM 21 with a hollow inner layer part, as shown in FIG.
The substance 23 consists of continuous fibers 22 arranged at continuous intervals in the axial direction, and particles, short fibers, whiskers, or plate-like pieces interposed in the gaps between the continuous fibers.
and the matrix metal 24 filled in the gaps between the continuous fibers.
and a hollow part 25. Note that the portion of the inner layer portion 21 forming the hollow portion 25 may have a hollow cylinder defining the hollow portion.
第3実施態様の内層部31は、第4図〜第6図に示すよ
うに、連続繊維を円周方向に連続的に整列した棒状また
は中空形状のハイブリッド型FRM31てあって、芯材
部36と、該芯材部36の円周方向に連続的に成る程度
の間隔を持って整列された連続繊維32と、該連続繊維
の間隙に介在させた粒子、短繊維、ウィスカまたは板状
小片体からなる前記物質33と、前記連続繊維の間隙に
充填された前記母相金属34とからなる。なお、前記芯
材部36は、中空部35を有していてもよい。また、該
芯材部36を消失させて中空部を形成してもよい。As shown in FIGS. 4 to 6, the inner layer part 31 of the third embodiment is a rod-shaped or hollow-shaped hybrid FRM 31 in which continuous fibers are continuously arranged in the circumferential direction. , continuous fibers 32 arranged at continuous intervals in the circumferential direction of the core portion 36 , and particles, short fibers, whiskers, or small plate-like pieces interposed in the gaps between the continuous fibers. and the matrix metal 34 filled in the gaps between the continuous fibers. Note that the core portion 36 may have a hollow portion 35. Alternatively, the core portion 36 may be eliminated to form a hollow portion.
次に、外層部は、前記内層部の表面に密着形成され、該
内層部のハイブリッド型繊維強化金属と同程度またはそ
れよりやや大きい熱膨張係数を有するNiにッケル)含
有鋳鉄製の金属からなる。Next, the outer layer portion is formed in close contact with the surface of the inner layer portion, and is made of a Ni-containing cast iron metal having a coefficient of thermal expansion comparable to or slightly larger than that of the hybrid fiber-reinforced metal of the inner layer portion. .
ここで、該金属中のNiは・、外層部の熱膨張係数を決
定する元素であり、該Ni含有量は必要とする熱膨張係
数により適宜決定される。また、鋳鉄中の黒鉛含有量は
、ピストンピンに要求される摺動特性や耐摩耗性等の特
にピストンピン表面の特性により適宜決定される。この
中でも、Ni含有量が12〜22重量%、かつ炭素含有
量か2.5〜3.2重量%であることか好ましい。この
範囲内とすることにより、内層部のハイブリッド型繊維
強化金属の径方向熱膨張係数と同等かまたはやや大きい
係数を有し、かつ外層部表面の摺動特性に優れた外層部
とすることかできる。また、前記黒鉛粒の分散状態は、
ピストンピンの少なくとも摺動部において、均一に点在
していることか好ましい。Here, Ni in the metal is an element that determines the thermal expansion coefficient of the outer layer portion, and the Ni content is appropriately determined depending on the required thermal expansion coefficient. Further, the graphite content in the cast iron is appropriately determined depending on the characteristics of the surface of the piston pin, such as the sliding characteristics and wear resistance required of the piston pin. Among these, it is preferable that the Ni content is 12 to 22% by weight and the carbon content is 2.5 to 3.2% by weight. By setting the value within this range, the outer layer can have a coefficient of radial thermal expansion that is equal to or slightly larger than the hybrid fiber-reinforced metal of the inner layer, and has excellent sliding properties on the surface of the outer layer. can. Furthermore, the dispersion state of the graphite particles is
It is preferable that they are evenly scattered at least in the sliding portion of the piston pin.
これは、黒鉛粒自体が強度か低いため、前記黒鉛粒の分
散状態が摺動部において均一でない場合、すなわち連続
して配置したり偏在したりすると、外層部に亀裂か生じ
たり応力集中が生じたりして、強度の低下を招(虞れが
あるためである。This is because graphite grains themselves have low strength, so if the graphite grains are not distributed uniformly in the sliding part, that is, if they are arranged continuously or unevenly distributed, cracks may occur in the outer layer or stress concentration may occur. This is because there is a risk that this may lead to a decrease in strength.
本発明のピストンピンの製造方法について、その具体的
な方法を簡単に説明すると以下のよってある。The specific method of manufacturing the piston pin of the present invention will be briefly explained below.
本発明のピストンピンの製造方法は、先ず、炭化珪素、
アルミナ、窒化珪素等のセラミックスや炭素、ガラス等
の耐熱性物質より選択された少なくとも一種以上の連続
繊維がある程度の間隔を持って配設され、該連続繊維の
間隙に炭化珪素、アルミナ、窒化珪素等のセラミックス
や炭素、ガラス等の耐熱性物質より選択された少なくと
も一種以上の粒子、短繊維、ウィスカまたは板状小片体
を介在させた複合材料用繊維原体を用意する。次に、該
複合材料用繊維原体と該原体の繊維間に充填される金属
によって得られる繊維強化金属の熱膨張係数と同程度ま
たはそれよりやや大きい熱膨張係数を有するNi含有鋳
鉄製の金属中空体を用意する。次に、該金属中空体の中
空部に前記複合材料用繊維原体を挿置してピストンピン
原体とし、次いで、該ピストンピン原体の金属中空体内
の繊維間に、アルミニウム、マグネシウム、またはそれ
らの合金等からなる母相金属を注入し充填させた後、冷
却・固化することによりピストンピンが得られる。The method for manufacturing a piston pin of the present invention first includes silicon carbide,
At least one kind of continuous fibers selected from ceramics such as alumina and silicon nitride, and heat-resistant substances such as carbon and glass are arranged at certain intervals, and silicon carbide, alumina, and silicon nitride are arranged in the gaps between the continuous fibers. A fiber material for a composite material is prepared in which at least one type of particles, short fibers, whiskers, or plate-like pieces selected from heat-resistant substances such as ceramics, carbon, and glass are interposed. Next, a Ni-containing cast iron material having a coefficient of thermal expansion comparable to or slightly larger than the coefficient of thermal expansion of the fiber-reinforced metal obtained by the raw material for composite materials and the metal filled between the fibers of the raw material is prepared. Prepare a hollow metal body. Next, the fiber material for composite material is inserted into the hollow part of the hollow metal body to form a piston pin material, and then aluminum, magnesium, or A piston pin is obtained by injecting and filling a matrix metal made of such an alloy, and then cooling and solidifying it.
本発明のピストンピンは、剪断強度等の機械的強度およ
び摺動性に優れ、軽量で高剛性かつ高強度であるので、
この特徴的効果を活かして、高温雰囲気下で用いられる
高爆発圧力のエンジンなどの厳しい環境下で用いられる
部材、例えばディーゼルエンジン等に適用することが好
適である。The piston pin of the present invention has excellent mechanical strength such as shear strength and slidability, is lightweight, has high rigidity, and has high strength.
Taking advantage of this characteristic effect, it is suitable to apply it to members used in harsh environments such as engines with high explosion pressure used in high-temperature atmospheres, such as diesel engines.
〔第3発明の説明〕
本第3発明は、前記第1発明および第2発明のピストン
ピンの好適な製造方法に関する発明である。[Description of the Third Invention] The third invention relates to a preferred method for manufacturing the piston pin of the first and second inventions.
発明の構成
本第3発明のピストンピンの製造方法は、耐熱性物質よ
り選択された少なくとも一種以上の連続繊維がある程度
の間隔を持って配設され、該連続繊維の間隙に耐熱性物
質より選択された沙なくとも一種以上の粒子、短繊維、
ウィスカまたは板状小片体を介在させた複合材料用繊維
原体を、該複合材料用繊維原体と該原体の繊維間に充填
される金属によって得られる繊維強化金属の熱膨張係数
と同程度またはそれよりやや大きい熱膨張係数を有する
Ni含有鋳鉄製の金属中空体の中空部に挿置し、ピスト
ンピン原体を準備する工程と、該ピストンピン原体の外
層部の側面に、前記充填金属よりも高い融点を有する金
属製の熱応力緩衝体を接合する工程と、該熱応力緩衝体
を接合したピストンピン原体の金属中空体内の繊維間に
、アルミニウム、マグネシウム、またはそれらの合金等
からなる母相金属を注入し充填させた後、冷却・固化し
、次いで前記熱応力緩衝体を切断するなどしてピストン
ピンを製造する工程と、からなることを特徴とする。Structure of the Invention In the method for manufacturing a piston pin according to the third aspect of the present invention, at least one kind of continuous fibers selected from heat-resistant materials are arranged at a certain interval, and in the gaps between the continuous fibers, continuous fibers selected from heat-resistant materials are arranged. at least one type of particles, short fibers,
The coefficient of thermal expansion of the fiber reinforced material for composite materials with whiskers or plate-like small pieces interposed therein is the same as that of the fiber reinforced metal obtained by the fiber material for composite materials and the metal filled between the fibers of the raw material. or a step of preparing a piston pin base material by inserting it into the hollow part of a metal hollow body made of Ni-containing cast iron having a slightly larger coefficient of thermal expansion; A step of joining a thermal stress buffer made of a metal having a melting point higher than that of metal, and a step of joining a thermal stress buffer made of a metal having a melting point higher than that of metal, and adding aluminum, magnesium, an alloy thereof, etc. The method is characterized by a step of manufacturing a piston pin by injecting and filling the base metal, cooling and solidifying the material, and then cutting the thermal stress buffer.
発明の作用および効果
本第3発明のピストンピンの製造方法により、剪断強度
等の機械的強度および摺動性に優れ、軽量で高強度のピ
ストンピンを得ることかできる。Functions and Effects of the Invention According to the piston pin manufacturing method of the third invention, it is possible to obtain a lightweight, high-strength piston pin that is excellent in mechanical strength such as shear strength and slidability.
この製造方法により、何故上記の如き優れた効果を有す
るピストンピンを容易に製造できるかについて、そのメ
カニズムは未だ十分に明らかではないが、次のように考
えられる。The mechanism of why a piston pin having the above-mentioned excellent effects can be easily manufactured by this manufacturing method is not yet fully clear, but it is thought to be as follows.
すなわち、本第3発明では、先ず、耐熱性物質からなる
連続繊維の間隙に前記耐熱性物質からなる微細なウィス
カや微粒子等を配置し、その後肢繊維間に母層金属を注
入し充填してFRM化するようにしたので、注湯に際し
て繊維同士の接触を極めて少なくすることができ繊維/
繊維間への母相金属を十分に充填することができる。従
って、繊維の周囲をウィスカや微粒子等で強化された母
層金属か取り囲むことによって、繊維軸に平行な面内て
の剪断応力および繊維軸に垂直な面内ての剪断応力等の
機械的強度に優れるとともに、高い強度を有しかつ高剛
性のものとすることができる。That is, in the third invention, first, fine whiskers, particles, etc. made of the heat-resistant substance are placed in the gaps between the continuous fibers made of the heat-resistant substance, and a matrix metal is injected and filled between the hindlimb fibers. By using FRM, contact between fibers can be minimized during pouring, and fibers/
The matrix metal can be sufficiently filled between the fibers. Therefore, by surrounding the fibers with a matrix metal reinforced with whiskers, fine particles, etc., mechanical strength such as shear stress in the plane parallel to the fiber axis and shear stress in the plane perpendicular to the fiber axis can be increased. It can be made to have excellent properties, high strength, and high rigidity.
よって、剪断応力力等の機械的強度に優れたピストンピ
ンとすることかできる。Therefore, the piston pin can have excellent mechanical strength such as shear stress.
また、本発明方法では、ハイブリッドFRMO熱膨張係
数と同程度またはそれよりやや大きい熱膨張係数を有す
るNi含有鋳鉄中空体を用い、該中空体内に前記複合材
料用繊維原体を挿置し、前記中空体内に母層金属を注湯
してピストンピンを作製してなる。通常金属中空体を外
殻に用いる場合、FRMを圧入するなどの方法かあるか
、本発明方法では、FRMを作製する工程とNi含有鋳
鉄中空体を接合する工程を同時に行うことにより、Ni
含有鋳鉄中空体とFRMに同一の熱履歴を与えることに
より残留応力を低減することかできるとともに、工程を
簡略化することかできる。また、ピストンピンの外層部
を成す金属中空体として、該ピストンピンの内層部を成
すハイブリッドFRMの熱膨張係数と同程度またはそれ
よりやや大きい熱膨張係数を有するNi含有鋳鉄を採用
した。Further, in the method of the present invention, a Ni-containing cast iron hollow body having a thermal expansion coefficient comparable to or slightly larger than the hybrid FRMO thermal expansion coefficient is used, the fiber material for composite material is inserted into the hollow body, and the The piston pin is made by pouring base metal into a hollow body. Normally, when a metal hollow body is used for the outer shell, there is a method such as press-fitting the FRM, but in the method of the present invention, the process of manufacturing the FRM and the process of joining the Ni-containing cast iron hollow body are performed at the same time.
By giving the same thermal history to the contained cast iron hollow body and the FRM, residual stress can be reduced and the process can be simplified. Further, as the hollow metal body forming the outer layer of the piston pin, Ni-containing cast iron having a coefficient of thermal expansion comparable to or slightly larger than that of the hybrid FRM forming the inner layer of the piston pin was used.
これにより、ピストンピン原体の金属中空体内の繊維間
にアルミニウム、マクネソウム、またはそれらの合金等
からなる母相金属を注入し充填させ、冷却・固化する工
程において、前記金属中空体とその内部の物質との間の
熱膨張係数の不一致に起因して生ずる空隙部や接合界面
の密着性不良などの欠陥のない、良質のハイブリッド型
FRMを内層に配したピストンピン素材を得ることがで
きる。As a result, in the step of injecting and filling the parent phase metal made of aluminum, machnesium, or an alloy thereof between the fibers in the hollow metal body of the piston pin base body, and cooling and solidifying the hollow metal body and its interior. It is possible to obtain a piston pin material in which a high-quality hybrid FRM is arranged in the inner layer, without defects such as voids caused by mismatch in thermal expansion coefficient with other materials and poor adhesion at the joint interface.
また、本発明の製造方法では、ピストンピン原体の外層
部の側面に、前記充填金属よりも高い融点を有する金属
からなる熱応力緩衝体を接合させ、金属中空体内に金属
を注湯してなる。これより、該熱応力緩衝体を有するピ
ストンピン原体に母相金属を注入・充填し、冷却・固化
する工程において、溶湯の凝固収縮又は/及び熱収縮が
緩和され、形成されるハイブリッド型FRMに熱応力か
蓄積するのを防ぐことかできるので、良質のハイブリッ
ド型FRMからなる内層部を形成することかできる。ま
た、本発明方法では、外層部の側面に設けた熱応力緩衝
体により、鋳造後の鋳物から製品としてのピストンピン
を容易に取り出すことかできる。Further, in the manufacturing method of the present invention, a thermal stress buffer made of a metal having a higher melting point than the filling metal is bonded to the side surface of the outer layer of the piston pin base body, and the metal is poured into the hollow metal body. Become. From this, in the step of injecting and filling the base metal into the piston pin base material having the thermal stress buffer, cooling and solidifying, the solidification shrinkage and/or thermal shrinkage of the molten metal is relaxed, and the hybrid type FRM is formed. Since it is possible to prevent thermal stress from accumulating in the structure, it is possible to form an inner layer made of a high quality hybrid FRM. Further, in the method of the present invention, the piston pin as a product can be easily taken out from the casting after casting by the thermal stress buffer provided on the side surface of the outer layer.
また、本発明の製造方法により得られるピストンピンは
、外層部は、該内層部のハイブリッド型繊維強化金属と
同程度またはそれよりやや大きい熱膨張係数を有するN
i含有鋳鉄からなる。従って、ピストンピンか高温環境
下に曝露されたり、高温−低温の厳しい温度差雰囲気に
曝されても、内層部および外層部か熱膨張係数か同程度
であるため、内層部と外層部との接合部か剥離したり、
空隙が発生するなどの問題か生じない。また、該外層部
は、表面に黒鉛粒か点在しているので、ピストンピンの
摺動特性に優れており、摺動相手材を損傷させることか
無く、さらに耐摩耗性に優れているので該ピストンピン
自体の摩耗も少ない。Further, in the piston pin obtained by the manufacturing method of the present invention, the outer layer has a coefficient of thermal expansion of N having a coefficient of thermal expansion comparable to or slightly larger than that of the hybrid fiber-reinforced metal of the inner layer.
Made of i-containing cast iron. Therefore, even if the piston pin is exposed to a high-temperature environment or an atmosphere with a severe temperature difference between high and low temperatures, the inner and outer layers have the same coefficient of thermal expansion. The joint may peel off,
There are no problems such as the formation of voids. In addition, the outer layer has graphite grains scattered on its surface, so it has excellent sliding characteristics for the piston pin, does not damage the sliding partner material, and has excellent wear resistance. There is also less wear on the piston pin itself.
これより、本発明の製造方法により、剪断強度等の機械
的強度および摺動性に優れ、軽量で高強度のピストンピ
ンを容易に製造することかできるものと考えられる。From this, it is believed that by the manufacturing method of the present invention, it is possible to easily manufacture a lightweight, high-strength piston pin that has excellent mechanical strength such as shear strength and slidability.
〔第4発明の説明〕
以下に、前記第3発明をさらに具体的にした発明につい
て述へる。[Description of the fourth invention] An invention that is a more specific version of the third invention will be described below.
本第4発明のピストンピンの製造方法は、先ず、第7図
に示すように、炭化珪素、アルミナ、窒化珪素等のセラ
ミックスや炭素、ガラス等の耐熱性物質より選択された
少なくとも一種以上の連続繊維72かある程度の間隔を
持って配設され、該連続繊維72の間隙に炭化珪素、ア
ルミナ、窒化珪素等のセラミックスや炭素、ガラス等の
耐熱性物質より選択された少なくとも一種以上の粒子、
短繊維、ウィスカまたは板状小片体73を介在させた複
合材料用繊維原体70を準備する(複合材料用繊維原体
準備工程)。本工程において用いられる連続繊維、該連
続繊維間に介在させる粒子、短繊維、ウィスカまたは板
状小片体からなる物質は、前記第2発明で説明したもの
と同様のものを用いることかできる。なお、該介在物質
として短繊維やウィスカ、または微粒子を用いる場合は
、耐熱性非金属材料を用いることか好ましい。このよう
な材料を用いることにより、繊維体と母相金属とを複合
化する際に、高温に曝露されても蒸発や溶融することな
く十分に繊維間を保持することかできる。なお、該複合
材料用繊維原体の製造方法としては、介在物となる物質
を所定量懸濁させた溶液中に超音波を照射しなから該繊
維束を浸漬し、その後に引き上げて乾燥させることか好
ましい。As shown in FIG. 7, the method for manufacturing a piston pin according to the fourth aspect of the present invention begins with at least one continuous material selected from ceramics such as silicon carbide, alumina, and silicon nitride, and heat-resistant materials such as carbon and glass. The fibers 72 are arranged at certain intervals, and in the gaps between the continuous fibers 72, at least one particle selected from ceramics such as silicon carbide, alumina, and silicon nitride, and heat-resistant substances such as carbon and glass,
A fibrillar material 70 for composite material with short fibers, whiskers, or small plate-like pieces 73 interposed therein is prepared (fibrillar material preparation step for composite material). The continuous fibers used in this step, the particles interposed between the continuous fibers, the short fibers, the whiskers, or the substances consisting of plate-like pieces may be the same as those described in the second invention. Note that when short fibers, whiskers, or fine particles are used as the intervening substance, it is preferable to use a heat-resistant nonmetallic material. By using such a material, when the fibrous body and the matrix metal are composited, the fibers can be sufficiently maintained without evaporating or melting even when exposed to high temperatures. In addition, as a method for manufacturing the fiber material for composite materials, the fiber bundle is immersed in a solution in which a predetermined amount of substances that will become inclusions are suspended, without irradiating it with ultrasonic waves, and then pulled up and dried. That's preferable.
浸漬しながら連続的に巻き取ればより効率的である。こ
のようにして作製した繊維体の一本一本の表面には均一
に介在物か付着し、繊維と繊維との間を一定間隔に保持
している。It is more efficient to wind up the material continuously while dipping it. Inclusions are uniformly attached to the surface of each of the fiber bodies produced in this manner, and the gaps between the fibers are maintained at a constant distance.
次に、第8図に示すように、前記複合材料用繊維原体と
該原体の繊維間に充填される金属によって得られる繊維
強化金属の熱膨張係数と同程度の熱膨張係数を有するN
i含有鋳鉄製の金属中空体80を準備する(金属中空体
準備工程)。該金属中空体の材料は、前記第2発明で説
明した外層部と同様のものを用いる。なお、該ピストン
ピンは、エンジン内等で高速運動するため、重量バラン
スか重要となる。従って、長手方向、径方向での重量の
分布か均一になるようにすることか好ましい。Next, as shown in FIG. 8, N has a thermal expansion coefficient comparable to that of the fiber-reinforced metal obtained by the composite material raw material and the metal filled between the fibers of the raw material.
A metal hollow body 80 made of i-containing cast iron is prepared (metal hollow body preparation step). The metal hollow body is made of the same material as the outer layer described in the second invention. Note that since the piston pin moves at high speed in an engine or the like, weight balance is important. Therefore, it is preferable to make the weight distribution uniform in the longitudinal direction and the radial direction.
二のために、該金属中空体80は、内径および外径の中
心ずれか小さく、しかも真円形状に近いものか好適であ
る。また、ピストンピンにおける外層部の厚さは、薄い
方がより軽量となるので必要な強度か保持できる程度の
肉厚であることが好ましく、該肉厚はピスンピン外径に
対して2%以上あればよい。従って、該金属中空体の肉
厚は、ピストンピン外径に対して2%の厚みに必要に応
じて加工しろを加えた厚さ程度以上あればよい。なお、
本金属中空体準備工程と前記複合材料用繊維原体準備工
程は、何れか先であってもよい。For the second reason, it is preferable that the metal hollow body 80 has a small misalignment between the inner and outer diameters, and has a shape close to a perfect circle. In addition, the thickness of the outer layer of the piston pin is preferably thick enough to maintain the necessary strength since the thinner the thinner the layer, the lighter the weight.The thickness should be at least 2% of the piston pin's outer diameter. Bye. Therefore, the wall thickness of the metal hollow body may be equal to or more than 2% of the outer diameter of the piston pin plus a machining allowance if necessary. In addition,
Either of the metal hollow body preparation step and the composite material fiber raw material preparation step may be performed first.
次いで、前記金属中空体の中空部に前記複合材料用繊維
原体を挿置し、ピストンピン原体を準備する(ピストン
ピン原体準備工程)。このとき、鋳造後にピストンピン
素材を取り出し易くするために、該ピストン原体の外面
に黒鉛微粒子や窒化硼素等を含む離型剤を塗布してもよ
い。なお、該離型剤の塗布は、鋳造の前であれば何れの
時期でもよい。Next, the fiber material for composite material is inserted into the hollow part of the metal hollow body to prepare a piston pin material (piston pin material preparation step). At this time, in order to make it easier to take out the piston pin material after casting, a mold release agent containing graphite particles, boron nitride, etc. may be applied to the outer surface of the piston material. Note that the mold release agent may be applied at any time before casting.
次に、第9図に示すように、前記ピストン原体の外層部
の側面に、前記充填金属よりも高い融点を有する金属製
の熱応力緩衝体98を接合する(熱応力緩衝体接合工程
)。二の熱応力緩衝体は、鋳造時の凝固・熱収縮による
ピストンピン外径の残留応力を防ぐために配設するもの
であるため、母相金属とは結合しにくく、しかも鋳造時
に消失しないものか好適である。また、母相金属との結
合性を弱めるために、該緩衝体に前記離型材を塗布して
もよい。熱応力緩衝体をピストン原体の外層部側面への
接合方法は、溶接で行うのか簡便であり、そのための材
質としては、鋼やステンレスなどが好適である。該接合
は、外層部側面の法線方向に、しかもピストンピン原体
の長手方向全体をカバーできるようにすることが好まし
い。前記緩衝体の接合枚数は、多い方がより効果的であ
るが、1〜3枚でも十分効果を奏することかできる。Next, as shown in FIG. 9, a thermal stress buffer 98 made of a metal having a higher melting point than the filling metal is bonded to the side surface of the outer layer of the piston body (thermal stress buffer bonding step). . The second thermal stress buffer is installed to prevent residual stress on the outer diameter of the piston pin due to solidification and thermal contraction during casting, so it must be difficult to bond with the base metal and not disappear during casting. suitable. Moreover, the above-mentioned mold release material may be applied to the buffer body in order to weaken the bonding property with the matrix metal. The thermal stress buffer can be simply joined to the side surface of the outer layer of the piston body by welding, and the material for this purpose is preferably steel, stainless steel, or the like. It is preferable that the joining be performed in the normal direction of the side surface of the outer layer part and to cover the entire longitudinal direction of the piston pin original body. The larger the number of bonded buffer bodies, the more effective the effect, but even 1 to 3 bonded buffer bodies can be sufficiently effective.
次いで、第10図に示す、ように、前記熱応力緩衝体を
接合したピストンピン原体の金属中空体内の繊維間に、
アルミニウム、マグネシウム、またはそれらの合金から
なる母相金属100を注入し充填させた後、冷却・固化
し、次いで前記熱応力緩衝体を切断するなど−してピス
トンピンを製造する(ピストンピン製造工程)。このと
き、ピストンピン原体を予め加熱しておくことが好まし
い。Next, as shown in FIG. 10, between the fibers in the metal hollow body of the piston pin base body to which the thermal stress buffer was joined,
After injecting and filling the matrix metal 100 made of aluminum, magnesium, or an alloy thereof, the piston pin is manufactured by cooling and solidifying, and then cutting the thermal stress buffer (piston pin manufacturing process). ). At this time, it is preferable to heat the piston pin material in advance.
予熱温度は、母相金属溶湯がピストンピン原体の繊維間
(二十分浸透するのに必要な温度以上であることか好ま
しい。従って、約500°C以上であることが好ましい
。また、炭素繊維を用いる場合には、加熱雰囲気を窒素
等の不活性とすることが好ましい。また、繊維間隙を母
相金属で充填するため、溶湯を注湯後、溶湯を約400
kg/cm2以上に加圧することが好ましい。また、
溶湯が凝固した後にインゴットを取り出して冷却する。The preheating temperature is preferably at least the temperature required for the molten metal to penetrate between the fibers of the piston pin material for 20 minutes. Therefore, the preheating temperature is preferably about 500°C or more. When using fibers, it is preferable to use an inert heating atmosphere such as nitrogen.Also, in order to fill the fiber gaps with the matrix metal, after pouring the molten metal, it is
It is preferable to pressurize to kg/cm2 or more. Also,
After the molten metal has solidified, the ingot is taken out and cooled.
次いで、インゴットを機械加工により端面、外周面を仕
上げ加工してピストンピンを得る。Next, the end face and outer peripheral surface of the ingot are finished by machining to obtain a piston pin.
以下、本発明の詳細な説明する。 The present invention will be explained in detail below.
第1実施例
炭素繊維(東し■製: T 300−6000−50B
)に、エチルアルコール17当り100gの炭化珪素微
粒子を懸濁させた懸濁液に超音波を照射しながら該繊維
を通して前記炭素繊維に炭化珪素微粒子(平均粒径:1
.8μm)を均一に付着させた後に、約1600束を固
め、予め作製しておいた内径34mmx長さ90mmX
肉厚2mmのニレンスト鋳鉄管(F e −3%C−2
%5i−1.5%Mn−15%Ni−5%Cu−2%C
r、熱膨張係数:19×10−@/K)に挿入した。1st Example Carbon fiber (manufactured by Toshi ■: T 300-6000-50B
), silicon carbide fine particles (average particle size: 1
.. After uniformly adhering 8μm), about 1600 bundles were solidified and prepared in advance with an inner diameter of 34mm x length of 90mm.
Nilenst cast iron pipe with wall thickness of 2 mm (Fe-3%C-2
%5i-1.5%Mn-15%Ni-5%Cu-2%C
r, coefficient of thermal expansion: 19 x 10-@/K).
次いで、この管の外周部に熱応力発生防止のために鋼製
フィンを溶接した後、加熱炉で700°C×30分子熱
し、300°Cに予熱した金型内に設置した。次いで、
即時に、750℃のAC7A合金溶湯を注ぎ、加圧パン
チにて900 kg/cm”に120秒間加圧した。次
いで、加圧・凝固の後、金型内より取り出し、切断して
二重構造のピストンピン粗形材を得た。Next, steel fins were welded to the outer periphery of this tube to prevent the generation of thermal stress, and then the tube was heated at 700°C x 30 molecules in a heating furnace and placed in a mold preheated to 300°C. Then,
Immediately, molten AC7A alloy at 750°C was poured and pressurized to 900 kg/cm'' for 120 seconds using a pressure punch.Next, after being pressurized and solidified, it was removed from the mold and cut to form a double structure. A rough piston pin material was obtained.
次いで、この粗形材の外層ニレジスト鋳鉄を肉厚1mm
程度まで切削し、所定寸法に仕上げ、本実施例にかかる
ビス1〜ンピンを得た。得られたピストンピンの端面を
拡大して観察したところ、外層部と内層部との界面部に
は剥離や空隙なとの不具合は全く発生していなかった。Next, the outer layer of Niresist cast iron of this rough shape material was made into a 1 mm thick layer.
The screws were cut to a certain extent and finished to predetermined dimensions to obtain screws 1 to 1 according to this example. When the end face of the obtained piston pin was observed under magnification, no problems such as peeling or voids occurred at the interface between the outer layer and the inner layer.
なお、得られたピストンピンのFRM部の径方向熱膨張
係数は19゜0 X 10−’/にてあった。The radial thermal expansion coefficient of the FRM portion of the obtained piston pin was 19°0 x 10-'/.
得られた該ビス1〜ンピンをディーゼルエンジン(39
00c c、4気筒)内に組付け、性能評価試験を行っ
た。なお、本実施例おいて得られたピストンピンは、試
験用エンジンにおいて従来用いられているピストンピン
(合金鋼製)に比へ、約47%軽量化されていた。性能
評価試験は、最大トルク発生の回転数と最大出力発生の
回転数時に全負荷運転を行ったが、何ら支障かなく、異
常は全く発生しなかった。また、表面粗さ計により試験
後のピストンピンの表面形状測定を行ったところ、表面
の形状変化は全んど認められなかった。The obtained screws 1 to 1 pin were put into a diesel engine (39
00cc, 4 cylinders) and a performance evaluation test was conducted. The piston pin obtained in this example was approximately 47% lighter than the piston pin (made of alloy steel) conventionally used in the test engine. In the performance evaluation test, full load operation was performed at the rotation speed at which the maximum torque was generated and at the rotation speed at which the maximum output was generated, but there were no problems and no abnormalities occurred. Furthermore, when the surface shape of the piston pin after the test was measured using a surface roughness meter, no change in surface shape was observed.
第2実施例
炭素繊維(東しく4E製: M030−6000−50
BとMO40−6000−50Bを束にしたもの)に、
第1実施例と同様にして炭化珪素ウィスカ(平均径 0
.8μm、平均長:50μm)と窒化珪素微粒子(平均
粒径。Second example carbon fiber (manufactured by Toshiku 4E: M030-6000-50
B and MO40-6000-50B bundled),
Silicon carbide whiskers (average diameter 0
.. 8 μm, average length: 50 μm) and silicon nitride fine particles (average particle size.
1μm)を体積比で1:0.20程度に均一に付着させ
た後に、約1300束を固め、予め作製しておいた内径
34mmX長さ100mmx肉厚2mmのニレジスト鋳
鉄管(F e −2,7% C−1,5%5i−1%M
n−13%Ni−5%Cu−1,7%Cr、熱膨張係数
: 19. 4 X 10−’/K)に挿入した。1μm) uniformly at a volume ratio of about 1:0.20, about 1,300 bundles were solidified, and prefabricated Niresist cast iron pipes (F e -2, 7% C-1,5%5i-1%M
n-13%Ni-5%Cu-1,7%Cr, coefficient of thermal expansion: 19. 4 x 10-'/K).
次いで、この管の外周部に熱応力発生防止のために鋼製
フィンを溶接した後、加熱炉で600’C×30分子熱
し、200°Cに予熱した金型内に設置した。次いで、
即時に、750°CのAC7A合金溶湯を注ぎ、加圧パ
ンチにて600kg/cm2に120秒間加圧した。次
いで、加圧・凝固の後、金型内より取り出し、切断して
二重構造のピストンピン粗形材を得た。Next, steel fins were welded to the outer periphery of this tube to prevent the generation of thermal stress, and then the tube was heated at 600°C x 30 molecules in a heating furnace and placed in a mold preheated to 200°C. Then,
Immediately, molten AC7A alloy at 750°C was poured into the flask and pressurized to 600 kg/cm 2 for 120 seconds using a pressure punch. Next, after being pressurized and solidified, it was taken out from the mold and cut to obtain a double-structured piston pin rough shape.
次いで、この粗形材の外層ニレジスト鋳鉄を肉厚1mm
程度まで切削し、所定寸法に仕上げ、本実施例にかかる
ピストンピンを得た。なお、得られたピストンピンのF
RM部の径方向熱膨張係数は19、 8 x 10−”
/にてあった。Next, the outer layer of Niresist cast iron of this rough shape material was made into a 1 mm thick layer.
The piston pin according to this example was obtained by cutting to a certain extent and finishing it to a predetermined size. In addition, F of the obtained piston pin
The radial thermal expansion coefficient of the RM section is 19, 8 x 10-”
It was at /.
得られた該ピストンピンをディーゼルエンジン(390
0cc、4気筒)内に組付け、性能評価試験を行った。The obtained piston pin was used in a diesel engine (390
0cc, 4 cylinders) and a performance evaluation test was conducted.
なお、本実施例おいて得られたピストンピンは、試験用
エンジンにおいて従来用いられているピストンピン(合
金鋼製)に比べ、約40%軽量化されていた。試験は、
最高回転時、および全負荷運転後にピストンピンをそれ
ぞれ取出して外観検査を行ったところ、何ら損傷は認め
られなかった。また、表面粗さ計により試験後のピスト
ンピンの表面形状測定を行ったところ、表面の形状変化
は全んど認められなかった。The piston pin obtained in this example was approximately 40% lighter than the piston pin (made of alloy steel) conventionally used in the test engine. The exam is
When the piston pins were taken out and visually inspected at maximum rotation and after full load operation, no damage was found. Furthermore, when the surface shape of the piston pin after the test was measured using a surface roughness meter, no change in surface shape was observed.
比較例1
ニレジスト鋳鉄管に代えて軟鋼(熱膨張係数:11、
8X 10−”/K)を用いたほかは上述の第1実施例
と同様の方法により比較用ピストンピンを製造したか、
この比較用ピストンピンはピストンピンへの加工時に外
層金属管と内層部の界面付近に剥離か発生していた。従
って、性能評価試験は実施しなかった。Comparative Example 1 Mild steel (thermal expansion coefficient: 11,
A comparative piston pin was manufactured in the same manner as in the first embodiment described above, except that 8X 10-"/K) was used.
In this comparative piston pin, peeling occurred near the interface between the outer metal tube and the inner layer during processing into the piston pin. Therefore, no performance evaluation test was conducted.
比較例2
二しシスト鋳鉄管に代えてステンレス鋼管(熱膨張係数
: 17. 3 X 10−6/K)を用いたほかは上
述の第2実施例と同様の方法により比較用ピストンピン
を製造した。このとき、母相金属溶湯を注湯・凝固した
ときに、外層部のステンレス鋼管と内層部との界面付近
には剥離が生じていた。Comparative Example 2 A comparative piston pin was manufactured in the same manner as in Example 2 above, except that a stainless steel pipe (thermal expansion coefficient: 17.3 x 10-6/K) was used instead of the double cyst cast iron pipe. did. At this time, when the molten base metal was poured and solidified, peeling occurred near the interface between the outer layer of the stainless steel pipe and the inner layer.
仕上げ加工して得られた比較用ピストンピンを第2実施
例と同様にして性能評価試験を行ったところ、外層部の
外周面に多(の付着物が認められた。When the comparative piston pin obtained by finishing was subjected to a performance evaluation test in the same manner as in the second example, a large number of deposits were observed on the outer circumferential surface of the outer layer.
この付着物は、運転試験時に摺動相手材か比較用ピスト
ンピンに固着したものと思われる。It is thought that this deposit adhered to the sliding mating material or the comparison piston pin during the operation test.
比較例3
繊維間に炭化珪素微粒子を介在させず内層部を非ハイブ
リッド型繊維強化金属としたほかは上述の第1実施例と
同様にして、比較用ピストンピンを製造した。得られた
比較用ピストンピンは、外観上は内層部と外層部との界
面付近の剥離や空隙は微小であった。なお、この比較用
ピストンピンOFRM部の径方向熱膨張係数は20Xl
O−6/にてあった。この比較用ピストンピンを第1実
施例と同様にして性能評価試験を行ったところ、内層部
のFRMに軸方向に割れか発生していた。Comparative Example 3 A comparative piston pin was manufactured in the same manner as in Example 1 above, except that silicon carbide fine particles were not interposed between the fibers and the inner layer was made of non-hybrid fiber reinforced metal. The comparative piston pin thus obtained had minimal peeling and voids near the interface between the inner layer and the outer layer. The radial thermal expansion coefficient of this comparative piston pin OFRM section is 20Xl.
It was at O-6/. When this comparative piston pin was subjected to a performance evaluation test in the same manner as in the first example, cracks were found in the FRM of the inner layer in the axial direction.
第1図は本発明のピストンピンの一例を示す斜視図、第
2図〜第6図は本発明の内層部の実施態様を示し、第2
図〜第5図はその斜視図、第6図は第5図の内層部の縦
断面図、第7図は本発明のピストンピンの内層部の一例
を示す概略斜視図、第8図は本発明の外層部の一例を示
す概略斜視図、第9図は本発明のピストンピンを作製す
る際に熱応力緩衝体を溶接した状態の一例を示す概略斜
視図、第10図は本発明のピストンピン製造工程の一例
を説明する断面図である。
IS II、21,31 ・・・ 内層部2.12
.22.32.72.92
・・・ 連続繊維
13.23.33.73 ・・・ 介在物質4.14.
24.34 ・・・ 母相金属25.35 ・・・
中空部
36 ・・・ 芯材部
98 ・・・ 熱応力緩衝体
9.99 ・・・ 外層部FIG. 1 is a perspective view showing an example of the piston pin of the present invention, FIGS. 2 to 6 show embodiments of the inner layer part of the present invention, and FIG.
5 to 5 are perspective views thereof, FIG. 6 is a vertical sectional view of the inner layer portion of FIG. 5, FIG. 7 is a schematic perspective view showing an example of the inner layer portion of the piston pin of the present invention, and FIG. FIG. 9 is a schematic perspective view showing an example of the outer layer portion of the invention, FIG. 9 is a schematic perspective view showing an example of a state in which the thermal stress buffer is welded when producing the piston pin of the invention, and FIG. 10 is the piston of the invention. It is a sectional view explaining an example of a pin manufacturing process. IS II, 21, 31 ... Inner layer part 2.12
.. 22.32.72.92 ... Continuous fiber 13.23.33.73 ... Intervening substance 4.14.
24.34 ... Parent phase metal 25.35 ...
Hollow part 36 ... Core material part 98 ... Thermal stress buffer 9.99 ... Outer layer part
Claims (2)
や炭素、ガラス等の耐熱性物質より選択された少なくと
も一種以上の連続繊維がある程度の間隔を持って配設さ
れた連続繊維の間隙に、炭化珪素、アルミナ、窒化珪素
等のセラミックスや炭素、ガラス等の耐熱性物質より選
択された少なくとも一種以上の粒子、短繊維、ウィスカ
または板状小片体を介在させた状態でアルミニウム、マ
グネシウム、またはそれらの合金等からなる母相金属を
充填させて複合化したハイブリッド型繊維強化金属から
なる内層部と、該内層部のハイブリッド型繊維強化金属
と同程度またはそれよりやや大きい熱膨張係数を有する
Ni含有鋳鉄製の前記内層部の表面に密着形成された外
層部とからなり、軽量で機械的強度および摺動性に優れ
たことを特徴とするピストンピン。(1) At least one kind of continuous fibers selected from ceramics such as silicon carbide, alumina, and silicon nitride, and heat-resistant materials such as carbon and glass are arranged at a certain interval. Aluminum, magnesium, or any of them with at least one kind of particles, short fibers, whiskers, or plate-like particles selected from ceramics such as silicon, alumina, and silicon nitride, and heat-resistant substances such as carbon and glass. An inner layer made of a hybrid fiber-reinforced metal filled with a matrix metal such as an alloy, and a Ni-containing cast iron having a coefficient of thermal expansion equal to or slightly larger than that of the hybrid fiber-reinforced metal in the inner layer. 1. A piston pin comprising an outer layer formed in close contact with the surface of the inner layer, and is lightweight and has excellent mechanical strength and slidability.
連続繊維がある程度の間隔を持って配設され、該連続繊
維の間隙に耐熱性物質より選択された少なくとも一種以
上の粒子、短繊維、ウィスカまたは板状小片体を介在さ
せた複合材料用繊維原体を、該複合材料用繊維原体と該
原体の繊維間に充填される金属によって得られる繊維強
化金属の熱膨張係数と同程度またはそれよりやや大きい
熱膨張係数を有するNi含有鋳鉄製の金属中空体の中空
部に挿置し、ピストンピン原体を準備する工程と、 該ピストンピン原体の外層部の側面に、前記充填金属よ
りも高い融点を有する金属製の熱応力緩衝体を接合する
工程と、 該熱応力緩衝体を接合したピストンピン原体の金属中空
体内の繊維間に、アルミニウム、マグネシウム、または
それらの合金等からなる母相金属を注入し充填させた後
、冷却・固化し、次いで前記熱応力緩衝体を切断するな
どしてピストンピンを製造する工程と、 からなることを特徴とするピストンピンの製造方法。(2) At least one kind of continuous fibers selected from a heat-resistant substance are arranged at a certain interval, and at least one kind of particles, short fibers, and whiskers selected from a heat-resistant substance are arranged in the gaps between the continuous fibers. Or, the fiber material for composite materials with plate-shaped small pieces interposed therein is made to have a coefficient of thermal expansion equal to or equal to that of the fiber-reinforced metal obtained by the fiber material for composite materials and the metal filled between the fibers of the material. A step of preparing a piston pin blank by inserting it into a hollow part of a metallic hollow body made of Ni-containing cast iron having a slightly larger thermal expansion coefficient; A step of joining a metal thermal stress buffer having a melting point higher than that of aluminum, magnesium, an alloy thereof, etc. A method for producing a piston pin, comprising the steps of: injecting and filling a matrix metal, cooling and solidifying it, and then cutting the thermal stress buffer to produce a piston pin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29859090A JPH04171365A (en) | 1990-11-02 | 1990-11-02 | Piston pin and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29859090A JPH04171365A (en) | 1990-11-02 | 1990-11-02 | Piston pin and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04171365A true JPH04171365A (en) | 1992-06-18 |
Family
ID=17861710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29859090A Pending JPH04171365A (en) | 1990-11-02 | 1990-11-02 | Piston pin and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04171365A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2373562A (en) * | 2001-03-23 | 2002-09-25 | Alireza Veshagh | Gudgeon pin with a fused surface metal coating on a ceramic-reinforced metallic core |
-
1990
- 1990-11-02 JP JP29859090A patent/JPH04171365A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2373562A (en) * | 2001-03-23 | 2002-09-25 | Alireza Veshagh | Gudgeon pin with a fused surface metal coating on a ceramic-reinforced metallic core |
GB2373562B (en) * | 2001-03-23 | 2004-07-21 | Alireza Veshagh | Gudgeon pin comprising metallic core reinforced with ceramic and with fused hard outer metal coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950014939B1 (en) | Reinforced pistons | |
EP0539011B1 (en) | Nickel coated carbon preforms | |
US4830932A (en) | Heat resistant light alloy articles and method of manufacturing same | |
JP2002542035A (en) | Dies and methods for manufacturing parts | |
JPS5893948A (en) | Engine piston | |
JPS6198948A (en) | Piston for internal-combustion engine | |
JPH03229958A (en) | Crankshaft bearing part for internal combustion engine | |
JPH04171365A (en) | Piston pin and manufacturing method thereof | |
JPH0230790B2 (en) | ||
Guseppe | Technology-driven design of MMC squeeze cast connecting-rods | |
JP3283442B2 (en) | Cast-in structure of dissimilar metal | |
US5013610A (en) | Heat resisting member reinforced locally by an inorganic fiber and a productive method of the same | |
JPH07132362A (en) | Cylinder block and its production | |
JP3214657B2 (en) | Piston for internal combustion engine and method of manufacturing the same | |
JP2572889B2 (en) | Manufacturing method of piston for diesel engine | |
JPS60243239A (en) | Manufacture of fiber reinforced composite material | |
JPS60240366A (en) | Insert-casting method of ceramic body | |
JPS60190545A (en) | Inorganic fiber-reinforced composite member | |
EP0447701B1 (en) | Reinforced heat resisting member and production method | |
JPS59229034A (en) | Piston for internal-combustion engine | |
JPH03149B2 (en) | ||
JPS60240854A (en) | Piston for internal-combustion engine made of light metal | |
JPS59229033A (en) | Piston for internal-combustion engine | |
JPH04367365A (en) | Fiber reinforced metallic cylindrical body and production thereof | |
JPH0333429B2 (en) |