JPH04170316A - Production of oxide superconducting material - Google Patents

Production of oxide superconducting material

Info

Publication number
JPH04170316A
JPH04170316A JP2300390A JP30039090A JPH04170316A JP H04170316 A JPH04170316 A JP H04170316A JP 2300390 A JP2300390 A JP 2300390A JP 30039090 A JP30039090 A JP 30039090A JP H04170316 A JPH04170316 A JP H04170316A
Authority
JP
Japan
Prior art keywords
layer
oxide superconducting
superconducting material
atom
apex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2300390A
Other languages
Japanese (ja)
Inventor
Seiji Adachi
成司 安達
Hidetaka Tono
秀隆 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2300390A priority Critical patent/JPH04170316A/en
Priority to EP19910112295 priority patent/EP0468428A3/en
Publication of JPH04170316A publication Critical patent/JPH04170316A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To effectively improve the critical temp., superconductor integration rate, etc., at the time of producing an oxide superconducting material having a crystal structure in which the first, second and third layers of specified composition are successively laminated by quenching or heat-treating the material in an inert gas. CONSTITUTION:The first layer consisting of an octahedron with copper atom at the center and oxygen atom at the apex and the second layer consisting of an octahedron with lead atom or copper atom at the center and oxygen atom at the apex are laminated so that the oxygen atom at the apex is used in common. The third layer consisting of the oxygen atom in common between the second layers, an alkaline-earth element (e.g. Sr) and a rare-earth element (e.g. La) is laminated on the second layer to produce an oxide superconducting material. In this case, quenching or heat treatment in an inert gas is applied to obtain an oxide superconducting material excellent in superconductivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高い超伝導転移温度を持つ酸化物超伝導材料
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an oxide superconducting material having a high superconducting transition temperature.

[従来の技術] 超伝導材料は、1)電気抵抗がゼロである、2)完全反
磁性である、3)ジョセフソン効果がある、といった、
他の材料にない特性を持っており、電力輸送、発電器、
核融合プラズマ閉じ込め、磁気浮上列車、磁気シールド
、高速コンピュータ等の幅広い応用が期待されている。
[Prior Art] Superconducting materials have the following properties: 1) They have zero electrical resistance, 2) They are completely diamagnetic, and 3) They have the Josephson effect.
It has properties not found in other materials, and is used in power transportation, generators, etc.
It is expected to have a wide range of applications, including fusion plasma confinement, magnetic levitation trains, magnetic shielding, and high-speed computers.

現在、実用材料として使用されているものにはNbXP
b、NbTiやN b a S nといった金属系の材
料がある。
NbXP is currently used as a practical material.
There are metal-based materials such as Nb, NbTi, and NbaSn.

ところが、金属系超伝導体では、ゼロ抵抗温度(Tc)
は最も高いものでも23に程度であり、実使用時には高
価な液体ヘリウムと大がかりな断熱装置を使って冷却し
なければならず、工業上大きな問題であった。このため
、より高温で超伝導体となる材料の探索が行われてきた
However, in metallic superconductors, the zero resistance temperature (Tc)
At its highest, the temperature was around 23, and in actual use it had to be cooled using expensive liquid helium and a large-scale insulation device, which was a major industrial problem. For this reason, efforts have been made to find materials that become superconductors at higher temperatures.

1986年にベドノルツとミュラーにより約30にとい
う高いゼロ抵抗温度(Tc)をもつ、酸化物系超伝導材
料(La   Baり 2CUO,)が■−2 見いだされ(J、G、 Bednorx and K、
A、 Muller、 2゜Phys、、 B64 (
1986) 189) 、それ以後YBa2Cu30 
 、B1−8r−Ca−Cu−0、Tl−Ba−Ca−
Cu−0などでより高い温度での超伝導転移が報告され
ている。
In 1986, Bednorx and Müller discovered an oxide-based superconducting material (LaBa2CUO) with a high zero resistance temperature (Tc) of about 30 (J, G, Bednorx and K,
A, Muller, 2゜Phys, B64 (
1986) 189), thereafter YBa2Cu30
, B1-8r-Ca-Cu-0, Tl-Ba-Ca-
Superconducting transitions at higher temperatures have been reported in Cu-0 and the like.

ゼロ抵抗温度(Tc)が高いほど、冷却が容易となり、
また同じ温度で使用した場合の臨界電流密度や臨界磁場
も大きくなる事が予想され、応用範囲も広がるものと期
待される。このため現在、これらの材料の製造法、物性
、応用等に関して多くの研究がなされている。
The higher the zero resistance temperature (Tc), the easier the cooling becomes.
Furthermore, the critical current density and critical magnetic field are expected to increase when used at the same temperature, and the range of applications is expected to expand. For this reason, much research is currently being conducted on the manufacturing methods, physical properties, applications, etc. of these materials.

[発明が解決しようとする課題] 酸化物系超伝導材料の一つとして、銅原子を中心として
頂点に酸素原子を配した八面体からなる第−層と、鉛原
子または銅原子を中心として頂点に酸素原子を配した八
面体からなる第二層とが頂点の酸素原子を共有して積層
され、かつ前記第−層と第二層に共有される酸素原子と
アルカリ土類元素および希土類元素とで第三層が構成さ
れ、これら第−層と第二層および第三層を順次積層した
結晶構造を有する酸化物超伝導材料(Pb/Cu) 5
rLaCuOが発見されたが、その臨界温度はゼロ抵抗
温度(Tc)(オンセット)=28にと、金属系超伝導
体のゼロ抵抗温度(Tc)の最高値(23K)を数に越
えた程度にとどまっていた(S、 Aaachi。
[Problem to be solved by the invention] As one of the oxide-based superconducting materials, there is a first layer consisting of an octahedron with a copper atom at the center and an oxygen atom at the apex, and a lead or copper atom at the center at the apex. a second layer consisting of an octahedron in which oxygen atoms are arranged on the vertices, and the oxygen atoms shared by the second layer and the alkaline earth element and the rare earth element. An oxide superconducting material (Pb/Cu) having a crystal structure in which the third layer is formed by sequentially stacking the third layer, the second layer, and the third layer.
rLaCuO was discovered, but its critical temperature is zero resistance temperature (Tc) (onset) = 28, which exceeds the highest value (23 K) of zero resistance temperature (Tc) of metallic superconductors. (S, Aaachi.

K、  5etsune an+I K、 Wasa、
  Jpn、  J、 Appl、  Phys、29
 (1990) 890 )。
K, 5etsune an+I K, Wasa,
Jpn, J, Appl, Phys, 29
(1990) 890).

本発明は前記した従来技術の課題を解決するため、(P
b/Cu) 5rLaCuOおよび (Pb/Cu) 
(Ba/Sr/Ca)(Ln/Y) Cub、  (た
だしLnは希土類)などの酸化物超伝導材料の臨界温度
や超伝導体積分率といった超伝導特性を向上させること
ができる酸化物超伝導材料の製造方法を提供することを
目的とする。
In order to solve the problems of the prior art described above, the present invention aims to solve the problems of the prior art described above.
b/Cu) 5rLaCuO and (Pb/Cu)
(Ba/Sr/Ca) (Ln/Y) Cub, (where Ln is a rare earth) Oxide superconductor that can improve the superconducting properties such as the critical temperature and superconducting volume fraction of oxide superconducting materials. The purpose is to provide a method for manufacturing materials.

[課題を解決するための手段] 前記目的を達成するため、本発明の酸化物超伝導材料の
製造方法は、銅原子を中心として頂点に酸素原子を配し
た八面体からなる第−層と、鉛原子または銅原子を中心
として頂点に酸素原子を配した八面体からなる第二層と
が頂点の酸素原子を共有して積層され、かつ前記第−層
と第二層に共有される酸素原子とアルカリ土類元素およ
び希土類元素とで第三層が構成され、これら第−層と第
二層および第三層を順次積層した結晶構造を有する酸化
物超伝導材料の製造において、急冷または不活性ガス中
において熱処理する工程を含むことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for producing an oxide superconducting material of the present invention includes: A second layer consisting of an octahedron with a lead atom or a copper atom at the center and an oxygen atom at the apex is stacked so as to share the oxygen atom at the apex, and the oxygen atom is shared by the first layer and the second layer. In the production of an oxide superconducting material having a crystal structure in which the third layer is composed of an alkaline earth element and a rare earth element, and the third layer, second layer, and third layer are sequentially laminated, quenching or inert It is characterized by including a step of heat treatment in a gas.

[作用] 前記した本発明方法の構成によれば、第−層と第二層お
よび第三層を順次積層した結晶構造を有する酸化物超伝
導材料を製造する際、急冷または不活性ガス中において
熱処理するので、臨界温度や超伝導体積分率といった超
伝導特性を効果的に向上させることができる。
[Function] According to the configuration of the method of the present invention described above, when producing an oxide superconducting material having a crystal structure in which a first layer, a second layer, and a third layer are sequentially laminated, the material is rapidly cooled or in an inert gas. Since heat treatment is performed, superconducting properties such as critical temperature and superconducting volume fraction can be effectively improved.

[実施例] 以下本発明の一実施例を用いてより具体的に説明する。[Example] The present invention will be explained in more detail below using an example.

発明者等は、(Pb/Cu) 5rLaCu、Oおよび
(Pb/Cu)(Ba/Sr/Ca) (Ln/Y) 
Cub、  (ただしLnは希土類)の製造方法を検討
した結果、その臨界温度が急冷操作や不活性ガス中にお
ける熱処理によって改善できることを見いだした。
The inventors have proposed (Pb/Cu) 5rLaCu, O and (Pb/Cu) (Ba/Sr/Ca) (Ln/Y)
As a result of studying the manufacturing method of Cub, (Ln being a rare earth element), it was found that its critical temperature could be improved by rapid cooling operation or heat treatment in an inert gas.

本発明方法において、急冷は50℃/分以上の冷却速度
であることが好ましい。また不活性ガス中における熱処
理は、ヘリウムガス、アルゴンガス、チッ素ガス等のガ
ス中で、350〜900 ’Cで加熱することが好まし
い。熱処理時間は、サンプルの大きさによっても異なる
が、薄膜の場合は1分程度、成形物では数時間程度が好
ましい。
In the method of the present invention, the rapid cooling is preferably performed at a cooling rate of 50° C./min or more. The heat treatment in an inert gas is preferably performed at 350 to 900'C in a gas such as helium gas, argon gas, or nitrogen gas. The heat treatment time varies depending on the size of the sample, but is preferably about 1 minute for thin films and about several hours for molded products.

次に実験例を説明する。Next, an experimental example will be explained.

実施例1 出発原料として、純度99.5%以上のPbQ、La2
03 、S rco3およびCuOの各粉末を用いた。
Example 1 As starting materials, PbQ, La2 with a purity of 99.5% or more
03, S rco3 and CuO powders were used.

配合組成を(PbQ、6 CuO,5) S r La
CuOyとし、振動ミルにて直径2mmのジルコニア(
ZrO2)ボールを用い、エタノールを分散媒として1
時間混合した。
The blending composition is (PbQ, 6 CuO, 5) S r La
CuOy and 2mm diameter zirconia (
1 using ZrO2) balls and using ethanol as a dispersion medium.
Mixed for an hour.

混合終了後、分散媒ごと全量を乾燥機中で120°Cで
乾燥し、得られた粉末を800℃で5時間、空気中で仮
焼した。振動ミルにて前述と同様の方法で1時間粉砕お
よび混合し120°Cで乾燥させた。この粉末の0.4
gを15+nmX5mmの金型中で600kg/cnf
の圧力で一軸加圧成形した。
After the mixing was completed, the entire amount including the dispersion medium was dried in a dryer at 120°C, and the obtained powder was calcined in air at 800°C for 5 hours. The mixture was ground and mixed for 1 hour using a vibrating mill in the same manner as described above, and then dried at 120°C. 0.4 of this powder
g to 600kg/cnf in a 15+nm x 5mm mold
Uniaxial pressure molding was carried out at a pressure of .

この成形体を電気炉にて酸素雰囲気中1000’cで2
時間焼成した。冷却は、酸素雰囲気中100℃/hの徐
冷と、焼成炉から瞬時に空気中に取り出す急冷の二種類
行い、それぞれの試料を試料(a)および試料(b)と
した。
This molded body was heated in an electric furnace at 1000'C in an oxygen atmosphere for 2 hours.
Baked for an hour. Two types of cooling were performed: slow cooling at 100° C./h in an oxygen atmosphere and rapid cooling in which the material was instantly taken out of the firing furnace into the air, and the respective samples were designated as sample (a) and sample (b).

得られた焼結体について粉末X線回折により結晶構造を
調べ、超伝導特性として磁化率の温度変化を測定し、マ
イスナー効果が現われ反磁化を示し始める温度(TcM
)を求めた。
The crystal structure of the obtained sintered body was investigated by powder X-ray diffraction, and the temperature change in magnetic susceptibility was measured as a superconducting property.
) was sought.

第1図に試料(a)および試料(b)の粉末X線回折パ
ターンを示す。図中の黒丸は不純物によるピークである
。他のピークはすべて(Pb/Cu) 5rLa Cu
 Oyによるものとして指数付けができ、いずれの試料
もほぼ単一相であることが確認できた。
FIG. 1 shows the powder X-ray diffraction patterns of sample (a) and sample (b). The black circles in the figure are peaks due to impurities. All other peaks are (Pb/Cu) 5rLa Cu
It was possible to index the samples based on Oy, and it was confirmed that all the samples had almost a single phase.

第2図に磁化率の温度特性を示す。4.2Kにおいて両
者は同等の体積分率で反磁化を示した。
Figure 2 shows the temperature characteristics of magnetic susceptibility. At 4.2K, both exhibited demagnetization at the same volume fraction.

TcMは試料(a)が35にで前記の文献値よりも高い
ゼロ抵抗温度(Tc)を示したが、急冷操作を行った試
料(b)においてはさらに高い38にとなり、急冷によ
るゼロ抵抗温度(Tc)向上が認められた。
Sample (a) showed a zero resistance temperature (Tc) of 35 at TcM, which was higher than the above-mentioned literature value, but sample (b), which underwent rapid cooling, showed an even higher value of 38, indicating that the zero resistance temperature due to rapid cooling was (Tc) Improvement was observed.

実施例2 次に、後処理による試料(a)の超伝導特性改善をねら
って窒素中アニールを行った。
Example 2 Next, sample (a) was annealed in nitrogen with the aim of improving its superconducting properties through post-treatment.

試料(a)を窒素中500.650.720℃で24h
熱処理し、それぞれを試料(C)、試料(d)および試
料(e)とした。粉末X線回折より試料(C)と試料(
d)が単一相、試料(e)は分解していることが確認さ
れた。
Sample (a) was heated in nitrogen at 500.650.720°C for 24 hours.
The samples were heat-treated and designated as sample (C), sample (d), and sample (e), respectively. Sample (C) and sample (
It was confirmed that sample (d) was a single phase and sample (e) was decomposed.

第2図に磁化率の温度特性を示す。TcMは、試料(C
)、試料(d)ともに27Kに上昇し、4.2Kにおけ
る反磁化の体積分率も増加していることが確認できた。
Figure 2 shows the temperature characteristics of magnetic susceptibility. TcM is the sample (C
) and sample (d) both increased to 27K, and it was confirmed that the volume fraction of demagnetization at 4.2K also increased.

また、窒素のかわりにアルゴンやヘリウムを用いても同
様の結果が得られた。
Similar results were also obtained using argon or helium instead of nitrogen.

さらに(Pb/Cu) 5rLaCuOのSr、Laを
一部Ba、Ca、Yおよび他の希土類元素で置換した系
においても同様に急冷・不活性ガス中アニールによる超
伝導特性の向上が認められた。
Furthermore, in a system in which Sr and La of (Pb/Cu)5rLaCuO were partially replaced with Ba, Ca, Y, and other rare earth elements, the superconducting properties were similarly improved by rapid cooling and annealing in an inert gas.

以上説明した通り本実施例によれば、銅原子を中心とし
て頂点に酸素原子を配した八面体からなる第−層と、鉛
原子または銅原子を中心として頂点に酸素原子を配した
八面体からなる第二層とが頂点の酸素原子を共有して積
層され、かつ前記第−層と第二層に共有される酸素原子
とアルカリ土類元素および希土類元素とで第三層が構成
され、これら第−層と第二層および第三層を順次積層し
た結晶構造を有する酸化物超伝導材料の製造において、
急冷操作または不活性ガス中における熱処理工程を採用
することにより、上記の酸化物超伝導材料の臨界温度や
超伝導体積分率といった超伝導特性を向上させることが
できる。
As explained above, according to this embodiment, the second layer consists of an octahedron with a copper atom at its center and an oxygen atom at its apex, and an octahedron with a lead or copper atom at its center and an oxygen atom at its apex. The second layer is stacked by sharing the oxygen atom at the apex, and the third layer is composed of the oxygen atom shared by the second layer and the alkaline earth element and the rare earth element. In the production of an oxide superconducting material having a crystal structure in which a first layer, a second layer, and a third layer are sequentially laminated,
By employing a rapid cooling operation or a heat treatment step in an inert gas, the superconducting properties such as the critical temperature and superconducting volume fraction of the above-mentioned oxide superconducting material can be improved.

[発明の効果] 以上説明した通り前記した本発明方法によれば、第−層
と第二層および第三層を順次積層した結晶構造を有する
酸化物超伝導材料を製造する際、急冷または不活性ガス
中において熱処理するので、臨界温度や超伝導体積分率
といった超伝導特性を効果的に向上させることができる
[Effects of the Invention] As explained above, according to the method of the present invention, when producing an oxide superconducting material having a crystal structure in which a first layer, a second layer, and a third layer are sequentially laminated, quenching or non-cooling is not necessary. Since the heat treatment is performed in an active gas, superconducting properties such as critical temperature and superconducting volume fraction can be effectively improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、試料(a)および試料(b)の粉末X線回折
パターンである。 第2図は、試料(a)〜(d)に対する磁化率の温度特
性である。 2θC) 第1図 0     10     20     30   
  1i050温度(K)
FIG. 1 shows powder X-ray diffraction patterns of sample (a) and sample (b). FIG. 2 shows the temperature characteristics of magnetic susceptibility for samples (a) to (d). 2θC) Fig. 1 0 10 20 30
1i050 temperature (K)

Claims (1)

【特許請求の範囲】[Claims] (1)銅原子を中心として頂点に酸素原子を配した八面
体からなる第一層と、鉛原子または銅原子を中心として
頂点に酸素原子を配した八面体からなる第二層とが頂点
の酸素原子を共有して積層され、かつ前記第一層と第二
層に共有される酸素原子とアルカリ土類元素および希土
類元素とで第二層が構成され、これら第一層と第二層お
よび第三層を順次積層した結晶構造を有する酸化物超伝
導材料の製造において、急冷または不活性ガス中におい
て熱処理する工程を含むことを特徴とする酸化物超伝導
材料の製造方法。
(1) A first layer consisting of an octahedron with a copper atom at the center and an oxygen atom at the apex, and a second layer consisting of an octahedron with a lead or copper atom at the center and an oxygen atom at the apex. The second layer is composed of the oxygen atoms, the alkaline earth element, and the rare earth element, which are stacked together sharing oxygen atoms, and which are shared by the first layer and the second layer, and the first layer, the second layer, and A method for producing an oxide superconducting material, which comprises a step of rapid cooling or heat treatment in an inert gas in producing an oxide superconducting material having a crystal structure in which a third layer is sequentially laminated.
JP2300390A 1990-07-25 1990-11-05 Production of oxide superconducting material Pending JPH04170316A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2300390A JPH04170316A (en) 1990-11-05 1990-11-05 Production of oxide superconducting material
EP19910112295 EP0468428A3 (en) 1990-07-25 1991-07-23 Oxide superconductor material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300390A JPH04170316A (en) 1990-11-05 1990-11-05 Production of oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH04170316A true JPH04170316A (en) 1992-06-18

Family

ID=17884208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300390A Pending JPH04170316A (en) 1990-07-25 1990-11-05 Production of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH04170316A (en)

Similar Documents

Publication Publication Date Title
JPH0440289B2 (en)
JPH0643268B2 (en) Oxide high temperature superconductor
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
JPS63222068A (en) Device and system based on novel superconductive material
JPH013015A (en) Superconducting materials and their manufacturing methods
JPH10511926A (en) Low temperature preparation of melt textured YBCO superconductors (T below 950 ° C)
JPH04170316A (en) Production of oxide superconducting material
JPH06219736A (en) Superconductor
JPH01234306A (en) Production of metal oxide superconducting material
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH04170320A (en) Production of oxide superconducting material
JP2840475B2 (en) Method for producing oxide superconducting thin film
JPH04202013A (en) Oxide superconducting material and its production
JPH04202046A (en) Production of superconducting ceramic sintered body
JPH03112810A (en) Production of oxide superconducting film
EP0468428A2 (en) Oxide superconductor material and manufacturing method thereof
JPH01305878A (en) Production of oxide superconductive material
JPH0280304A (en) Production of oxide superconducting material
JPH03199124A (en) Bi-based oxide superconductor powder and production of wire thereof
JPH01242416A (en) Production of oxide-based superconducting material
JPS63295471A (en) Production of oxide superconducting material
JPH0412023A (en) Oxide superconductor
JPH02252652A (en) Preparation of oxide superconductor
JPH06275431A (en) Oxide superconductor for current lead and its manufacture