JPH04169010A - Electric contact material - Google Patents

Electric contact material

Info

Publication number
JPH04169010A
JPH04169010A JP29641490A JP29641490A JPH04169010A JP H04169010 A JPH04169010 A JP H04169010A JP 29641490 A JP29641490 A JP 29641490A JP 29641490 A JP29641490 A JP 29641490A JP H04169010 A JPH04169010 A JP H04169010A
Authority
JP
Japan
Prior art keywords
phosphorus
plating
nickel
gold
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29641490A
Other languages
Japanese (ja)
Inventor
Taketoshi Kaimasu
貝増 武俊
Masami Ishii
石井 正巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP29641490A priority Critical patent/JPH04169010A/en
Publication of JPH04169010A publication Critical patent/JPH04169010A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide excellent wear and corrosion resistance and make a gold- plated film thin by forming a nickel-phosphorus film containing 20-25A% phosphorus on base material made of metal and non-metal with non-electrolytic plating and forming a gold-plated film thereon. CONSTITUTION:A nickel-phosphorus film 2 containing 20-25A% phosphorus is formed on base material made of metal and non-metal with non-electrolytic plating, and a gold-plated film 3 is fornW thereon. In this case, forming with non-electrolytic plating allows extremely less exposition of a substrate pin hole, therefore to reduce corrosion through the substrate. Excellent wear and corrosion resistance is thus provided to permit thin surface gold plating because ground plating material is corrosion resistant.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明に係る従来技術としては特開昭61−29021
号の公報がある。
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) The prior art related to the present invention is disclosed in Japanese Patent Application Laid-Open No. 61-29021.
There is a public notice of issue.

このものは低接触抵抗、ハンダ容易性、高耐腐食性を必
要とする電気接点用材料に於いて電気接点素材上に非晶
質合金を設け、その上に金をつけることにより高い性能
の電気接点を得るための製造方法である。
This product is a material for electrical contacts that requires low contact resistance, ease of soldering, and high corrosion resistance, and by applying an amorphous alloy on the electrical contact material and coating gold on top of it, high performance electrical contacts can be achieved. This is a manufacturing method for obtaining contacts.

又この電気接点は非晶質合金上に被覆する金の厚みが約
0.254〜0.276μmかなり、非晶質合金に薄い
合液膜を有する合金電気接点である。
Further, this electrical contact is an alloy electrical contact having a thickness of about 0.254 to 0.276 μm of gold coated on the amorphous alloy and a thin composite film on the amorphous alloy.

更に前記非晶質合金はニツケル−リン合金を電気メツキ
方式にて製造するものである。
Further, the amorphous alloy is a nickel-phosphorus alloy manufactured by electroplating.

(発明が解決しようとする課題) しかし前記電気接点材料は電気メツキ方式にて非晶質合
金層を形成しているために耐食性及び耐摩耗性が低くく
、そのために表面の金メツキの膜を厚(する必要があり
、従ってコストアップになるという問題点がある。
(Problem to be Solved by the Invention) However, the electrical contact material has low corrosion resistance and wear resistance because it forms an amorphous alloy layer using an electroplating method, and therefore, the gold plating film on the surface has low corrosion resistance and wear resistance. There is a problem in that it needs to be thicker, which increases the cost.

本発明は電気接点材料に於いて耐食性及び耐摩耗性にす
ぐれかつ金メツキの膜が薄くても良い電気接点材料を技
術的課題とするものである。
The technical object of the present invention is to provide an electrical contact material which has excellent corrosion resistance and wear resistance and which can have a thin gold plating film.

〔発明の構成] (課題を解決するための手段) 課題を解決するために講じた技術的手段は次のようであ
る。
[Structure of the invention] (Means for solving the problem) The technical means taken to solve the problem are as follows.

金属及び非金属よりなる母材上に無電解メツキ法により
、20〜25原子%のリンを含有したニツケル−リン膜
を形成し、その上に金メツキ膜を形成してなる電気接点
材料である。
An electrical contact material made by forming a nickel-phosphorus film containing 20 to 25 at% phosphorus on a base material made of metals and non-metals by electroless plating, and then forming a gold plating film on top of it. .

(作用) 20〜25原子%のリン含有ニツケル−リンメツキ膜は
対摩耗性にすぐれ(従来のものの10倍)、更に対腐食
性がある。
(Function) The nickel-phosphorus plating film containing 20 to 25 atom % of phosphorus has excellent wear resistance (10 times that of the conventional film) and also has corrosion resistance.

又前記下地メツキ材料が対腐食性があるために表面の金
メツキを薄くシても対腐食性があり電気接点材料として
最適である。
Further, since the base plating material has corrosion resistance, even if the gold plating on the surface is thinned, it has corrosion resistance and is optimal as an electrical contact material.

(実施例) 以下実施例について説明する。(Example) Examples will be described below.

第1図は本実施例の材料構成を示すもので、1は電気接
点素材であり、通常は銅又は銅合金が多く使用されてい
るが金属、非金属いずれでも良い。
FIG. 1 shows the material structure of this embodiment. Reference numeral 1 indicates an electrical contact material, which is usually made of copper or copper alloy, but may be made of either metal or non-metal.

2はリン含有率が20〜25原子%の無電解ニッケルー
リメツキ被膜であり、3は金又は金合金メツキ膜である
2 is an electroless nickel plating film with a phosphorus content of 20 to 25 atom %, and 3 is a gold or gold alloy plating film.

本実施例は下地メツキ層2のところに高リン(20〜2
5原子%)含有のニツケル−リンメツキ被膜を設けたも
のである。
In this example, high phosphorus (20 to 2
A nickel-phosphorus plating film containing 5 atom %) is provided.

以下そのメツキ膜の作成方法述べる。The method for creating the plating film will be described below.

メツキ薬品構成は、 塩化ニッケル         20〜30g/12く
えん酸三ナトリウム     40〜50g#!N−2
ヒドロキシエチル     2〜3g/!エチレンジア
ミン三ナトリウム サッカリンナトリウム       1〜2  g/l
硫酸リチウム         20〜25g/1次亜
リン酸ナトリウム       5〜log/lであり
、PHを希硫酸にて4.4〜4.9に調整しメツキ温度
を90℃に保つものである。
Metsuki chemical composition is Nickel chloride 20-30g/12 Trisodium citrate 40-50g#! N-2
Hydroxyethyl 2-3g/! Ethylenediamine trisodium saccharin sodium 1-2 g/l
Lithium sulfate: 20-25g/1 Sodium hypophosphite: 5-log/l, the pH is adjusted to 4.4-4.9 with dilute sulfuric acid, and the plating temperature is maintained at 90°C.

母材はここでは黄銅を使い、メツキ前に溶剤脱脂−浸漬
脱脂一電気脱脂一活性化処理を行うものである。
Brass is used as the base material here, and before plating, it is subjected to solvent degreasing, immersion degreasing, electrical degreasing, and activation treatment.

以上の前処理の後水洗し、母材をメツキ液に浸漬させ無
電解メツキの立上がりを電気スタートにて行う。これは
母材を陰極に、陽極をステンレスか、ニッケルあるいは
白金、金で良く、ここではステンレス板を使用する。
After the above pretreatment, the base material is washed with water, immersed in a plating solution, and electroless plating is started using an electric start. In this case, the base material can be used as a cathode, and the anode can be made of stainless steel, nickel, platinum, or gold; here, a stainless steel plate is used.

電極間に1■の電圧をかけ10〜30秒の電気メツキを
行う、通電をストップさせた後でもメツキ反応がおこり
無電解メツキが以後継続される。
Electroplating is performed for 10 to 30 seconds by applying a voltage of 1 μ between the electrodes. Even after the current supply is stopped, the plating reaction occurs and electroless plating continues thereafter.

通常無電解ニッケルメッキは銅系素材上ではメツキ反応
はしにく(、メツキ立ち上がりのきっかけを上記の電気
スタート或いは塩化パラジウムのような触媒を使う方法
が一般的である。
Normally, electroless nickel plating does not cause a plating reaction on copper-based materials (the general method for plating start-up is to use the above-mentioned electric start or a catalyst such as palladium chloride.

薄いニッケルメッキ層が素材の上に出来上がるとそれ以
後はニッケル層上の反応になるので問題なくメツキ反応
が継続される。
Once a thin nickel plating layer is formed on the material, the plating reaction can continue without any problem since the reaction occurs on the nickel layer.

以上の方法にて黄銅上にニツケル−リンメツキ膜を形成
することができるがこのニツケル−リン中のリン濃度は
20〜25原子%と高濃度となり、このリン含有率の測
定はEPMAにておこなった。
A nickel-phosphorus plating film can be formed on brass using the above method, but the phosphorus concentration in this nickel-phosphorus is as high as 20 to 25 at%, and the phosphorus content was measured using EPMA. .

以下本メツキにより作成された23原子%リン含有のニ
ツケル−リンメツキと電気ニッケルメッキ及び無電解法
による8原子%リン含有のニツケル−リンメツキとの耐
薬品性及び耐摩耗性を比較した結果を第1表に示す。
The following is a comparison of the chemical resistance and abrasion resistance of the nickel-phosphorus plating containing 23 at.% phosphorus prepared by this plating and the nickel-phosphorous plating containing 8 at.% phosphorus produced by electro-nickel plating and electroless method. Shown in the table.

以下余白 第    1    表 第1表は耐薬品性を示したもので腐食液として塩化第■
鉄溶液(Fecl 100g/f)及び希塩酸(IN 
 Hciり用い、それぞれ5amM厚5cm角のテスト
ピースを潰し観察した結果である。25原子%リン含有
ニツケル−リンメツキ以外はすべて腐食液に侵される。
Table 1 Table 1 shows the chemical resistance, and chloride as a corrosive liquid.
Iron solution (Fecl 100g/f) and dilute hydrochloric acid (IN
These are the results of crushing and observing test pieces of 5 am and 5 cm square each using Hci. All but the nickel-phosphorus plating containing 25 at.% phosphorus are attacked by the corrosive liquid.

第2図は3%塩水中にてアノード腐食させたときの腐食
電流を測定したもので、4は飽和力ロメロ電極、5は塩
橋、6はウオーキング電極、7は白金電極、8は3%塩
水、9はkcl溶液、10はマグネット、11はマグネ
ットスタラーである。
Figure 2 shows the measurement of the corrosion current when the anode was corroded in 3% salt water, where 4 is the saturation force Romero electrode, 5 is the salt bridge, 6 is the walking electrode, 7 is the platinum electrode, and 8 is the 3% 9 is a salt water, 9 is a KCl solution, 10 is a magnet, and 11 is a magnetic stirrer.

第3図はその測定の概略図で電圧スウイーブスピードは
50 m v / 30 sで試料の大きさは6×6m
mで溶液中はマグネットスタラーにて一定攪拌したもの
である。
Figure 3 is a schematic diagram of the measurement; the voltage sweep speed was 50 mv/30 s, and the sample size was 6 x 6 m.
The solution was constantly stirred using a magnetic stirrer.

第3図中の(a)は無電解メツキ法による23原子%リ
ン含有ニツケル−リンメツキ膜であり、(b)は無電解
法による8原子%リン含有ニツケル−リンメツキ膜(C
)は電気ニッケルメッキ膜である。
In Fig. 3, (a) is a nickel-phosphorus plating film containing 23 at.% phosphorus made by electroless plating method, and (b) is a nickel-phosphorous plating film containing 8 at.% phosphorus (C
) is an electro-nickel plated film.

分極電極を正側に上げていくとそれにしたがって腐食電
流が溶液中を流れるが(a)の23原子%ニツケル−リ
ンメツキ膜の電流値は最も小さく腐食されにくいことを
示している。
As the polarized electrode is raised to the positive side, a corrosion current flows in the solution, and the current value of the 23 atom % nickel-phosphorus plating film in (a) is the smallest, indicating that it is less likely to be corroded.

第4図はLFW摩擦試験を行った結果である。Figure 4 shows the results of the LFW friction test.

回転スピード62rpmで荷重は1/2ポンドで205
0回転をおこなったあとのテストピースの摩擦量を測定
したものである。
The rotation speed is 62 rpm and the load is 1/2 lb. 205
The amount of friction of the test piece after 0 rotation was measured.

第4図中の(a)、(b゛)、(c)は第3図のそれに
対応しているが、(a)の23原子%リン含有ニツケル
−リンメツキ膜の摩擦量が最も小さく耐摩耗性にすぐれ
ていることを示している。
(a), (b), and (c) in Fig. 4 correspond to those in Fig. 3, but the amount of friction of the nickel-phosphorus plating film containing 23 atom% phosphorus in (a) is the smallest and the wear resistance is It shows that you are sexually superior.

次に電解法により得られる20〜25原子%リン含有ニ
ツケル−リンメツキ膜のピンホール数を比較した結果を
第5図に示す。
Next, FIG. 5 shows the results of a comparison of the number of pinholes in nickel-phosphorus plating films containing 20 to 25 atom % phosphorus obtained by the electrolytic method.

膜厚はそれぞれ1.3μmであり試験液はアンモニア水
+渦流酸アンモニウムの溶液にて行った、浸漬時間は2
0分であり、テストピース1 cTi内でピンホール数
は無電解法によるものが極端に少ない。
The thickness of each film was 1.3 μm, and the test solution was a solution of aqueous ammonia + ammonium sulfuric acid. The immersion time was 2.
0 minutes, and the number of pinholes in test piece 1 cTi is extremely small due to the electroless method.

黄銅素地上に本発明によるニツケル−リン被膜を1.3
μmつけその上に金を0.1μmつけたものを塩水噴霧
試験にかけたあと、点状に変色し、もり上がった部分の
X線マイクロアナライザーによる定性分析を行った結果
を示す。加速電圧は20kevで分析方法はスタンダー
ドレス(Na以上)である。
1.3 nickel-phosphorus coating according to the present invention on a brass substrate
The results of a qualitative analysis using an X-ray microanalyzer of the parts that changed color and bulged up after being subjected to a salt spray test on which 0.1 μm of gold was applied on top of the 0.1 μm gold are shown. The accelerating voltage was 20 keV, and the analysis method was standardless (Na or higher).

これにより原子%で亜鉛72%、銅10%、ニッケル7
%、塩素8%、金3%という結果が得られた。すなわち
、これはニッケルメッキ部のピンホールから母材中の亜
鉛が優先的に腐食していることを示している。
This results in atomic percent of 72% zinc, 10% copper, and 7% nickel.
%, chlorine 8%, and gold 3%. In other words, this indicates that zinc in the base material is preferentially corroded through pinholes in the nickel-plated portion.

又この部分の電気抵抗は非常に高く、電気接点としての
不良につながるものである。このことから、金メツキ下
地のメツキ層のピンホール数を少なくすることは重要な
ことである。このように電気接点として金メツキの下地
メツキが耐食性に優れていなければならず腐食性及びビ
ンホーの両方の問題が解決できれば、高い信顧性が得ら
れるものである。
Furthermore, the electrical resistance of this portion is extremely high, leading to failure as an electrical contact. For this reason, it is important to reduce the number of pinholes in the plating layer underlying the gold plating. As described above, the base plating of gold plating used as an electrical contact must have excellent corrosion resistance, and if both the problems of corrosion and binho can be solved, high reliability can be obtained.

(効果) 本発明は次の効果を有する。(effect) The present invention has the following effects.

すなわち、 (1)従来電気メツキ法により作成しているのに対して
、本発明は無電解法により作成しているので、素地の露
出部(ピンホール)が極端に少なくなり、素地からの腐
食を少なくする。
That is, (1) Unlike the conventional electroplating method, the present invention uses an electroless method to create the material, so the exposed parts (pinholes) of the substrate are extremely reduced, and corrosion from the substrate is prevented. Reduce.

(2)無電解法を用いているために従来金属素地上にし
かメツキ膜が得られなかったものが、非金属上(樹脂、
ガラス等)にも成膜することができ、素地を金属と限定
する必要がなくなった。
(2) Due to the use of an electroless method, plating films could only be obtained on metal substrates;
It is also possible to form a film on glass, etc.), eliminating the need to limit the substrate to metal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例の材料構成の断面図、第2図はアノー
ド分極装置概略図、第3図はアノード分極曲線図、第4
図は摩耗特性図、第5図はメツキとピンホールの関係図
である。 ■・・・母材、2・・・20〜25原子%のリンを含有
したニツケル−リン膜。
Figure 1 is a sectional view of the material structure of this example, Figure 2 is a schematic diagram of the anode polarization device, Figure 3 is an anode polarization curve diagram, and Figure 4 is a diagram of the anode polarization curve.
The figure is a wear characteristic diagram, and FIG. 5 is a relationship diagram between plating and pinholes. ■...Base material, 2...Nickel-phosphorus film containing 20 to 25 at.% of phosphorus.

Claims (1)

【特許請求の範囲】[Claims]  金属及び非金属よりなる母材上に無電解メツキ法によ
り、20〜25原子%のリンを含有したニツケル−リン
膜を形成し、その上に金メツキ膜を形成してなる電気接
点材料。
An electrical contact material obtained by forming a nickel-phosphorous film containing 20 to 25 at % phosphorus on a base material made of a metal or a non-metal by electroless plating, and forming a gold plating film thereon.
JP29641490A 1990-10-31 1990-10-31 Electric contact material Pending JPH04169010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29641490A JPH04169010A (en) 1990-10-31 1990-10-31 Electric contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29641490A JPH04169010A (en) 1990-10-31 1990-10-31 Electric contact material

Publications (1)

Publication Number Publication Date
JPH04169010A true JPH04169010A (en) 1992-06-17

Family

ID=17833238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29641490A Pending JPH04169010A (en) 1990-10-31 1990-10-31 Electric contact material

Country Status (1)

Country Link
JP (1) JPH04169010A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773769A (en) * 1993-09-03 1995-03-17 Ngk Spark Plug Co Ltd External connecting terminal for semi-conductor package and manufacture thereof
JP2010176863A (en) * 2009-01-27 2010-08-12 Alps Electric Co Ltd Electrical contact and method of manufacturing the same
WO2017065268A1 (en) * 2015-10-14 2017-04-20 Nidec Corporation An electric motor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773769A (en) * 1993-09-03 1995-03-17 Ngk Spark Plug Co Ltd External connecting terminal for semi-conductor package and manufacture thereof
JP2010176863A (en) * 2009-01-27 2010-08-12 Alps Electric Co Ltd Electrical contact and method of manufacturing the same
WO2017065268A1 (en) * 2015-10-14 2017-04-20 Nidec Corporation An electric motor
CN108141096A (en) * 2015-10-14 2018-06-08 日本电产株式会社 Electromotor
JP2018530986A (en) * 2015-10-14 2018-10-18 日本電産株式会社 Electric motor
CN111884434A (en) * 2015-10-14 2020-11-03 日本电产株式会社 Electric motor and electric motor assembly
CN111884435A (en) * 2015-10-14 2020-11-03 日本电产株式会社 Electric motor and electric motor assembly
US10855148B2 (en) 2015-10-14 2020-12-01 Nidec Corporation Electric motor having grounding contact of a controller
JP2021073838A (en) * 2015-10-14 2021-05-13 日本電産株式会社 Electric motor and electric motor assembly
JP2022071029A (en) * 2015-10-14 2022-05-13 日本電産株式会社 Electric motor and electric motor assembly
CN111884435B (en) * 2015-10-14 2023-04-18 日本电产株式会社 Electric motor and electric motor assembly
CN111884434B (en) * 2015-10-14 2023-05-05 日本电产株式会社 Electric motor and electric motor assembly

Similar Documents

Publication Publication Date Title
US9347147B2 (en) Method and apparatus for controlling and monitoring the potential
KR0184889B1 (en) Acidic pallandium strike bath
JPH0359972A (en) Electrical contact
TW201022483A (en) Hard gold-based plating solution
JP5590008B2 (en) Current collecting plate for fuel cell and manufacturing method thereof
JP3223829B2 (en) Electric nickel plating bath or electric nickel alloy plating bath and plating method using the same
Ammar et al. A review on the electrochemistry of tin
JPH04169010A (en) Electric contact material
WO2014148201A1 (en) Silver-plated material
JP6254942B2 (en) FUEL CELL SEPARATOR, FUEL CELL CELL, FUEL CELL STACK, AND METHOD FOR MANUFACTURING FUEL CELL SEPARATOR
Azumi et al. Effect of copper pretreatment on the double zincate process of aluminum alloy films
Lim et al. Optimization of catalyzing process on Ta substrate for copper electroless deposition using electrochemical method
JP2005068445A (en) Metallic member covered with metal
JPS63137193A (en) Stainless steel contact material for electronic parts and its production
KR20040005820A (en) Electroconductive structure and electroplating method using the structure
US5182172A (en) Post-plating passivation treatment
US10629917B2 (en) Separator for fuel cells, fuel cell, fuel cell stack, and method of manufacturing separator for fuel cells
JPS5836071B2 (en) Manufacturing method for silver-plated iron and iron alloys
CN112501595A (en) Method for forming metal plating film
JP2004265695A (en) Separator for fuel cell
TWI271448B (en) Plating-pretreatment solution and plating-pretreatment method
JP2007039770A (en) Method for improving corrosion resistance of copper-free plated film on resin
JP4816839B2 (en) Method for producing separator for polymer electrolyte fuel cell
JP2002121693A (en) Free cyanogen electrolytic silver plating bath and silver plating method
JP6848022B2 (en) Manufacturing method of metal-plated stainless steel material