JPH04167990A - Device for adjusting focal distance - Google Patents

Device for adjusting focal distance

Info

Publication number
JPH04167990A
JPH04167990A JP2291101A JP29110190A JPH04167990A JP H04167990 A JPH04167990 A JP H04167990A JP 2291101 A JP2291101 A JP 2291101A JP 29110190 A JP29110190 A JP 29110190A JP H04167990 A JPH04167990 A JP H04167990A
Authority
JP
Japan
Prior art keywords
lens
temp
focal distance
focal length
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2291101A
Other languages
Japanese (ja)
Inventor
Shuji Ogawa
小川 周治
Akihiro Otani
昭博 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2291101A priority Critical patent/JPH04167990A/en
Publication of JPH04167990A publication Critical patent/JPH04167990A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain focal distance adjusting device having high reliability by providing temp. detecting means fitting a temp. detecting element to a lens, arithmetic circuit for calculating the focal distance variating quantity with this information and a vertical shifting device for adjusting the focal distance with command of this arithmetic circuit. CONSTITUTION:A lens passing through laser beam 1 and the temp. detecting means 7 fitting a contacting type temp. detecting element to the lens, are provided. The arithmetic circuit 8 for calculating the focal distance variating quantity by calculating thermal deformed quantity with the information of this temp. detecting means, is provided and the vertical shifting device 9 for adjusting the focal distance with this command, is provided. Temp. of the lens 2 having thermo-lens action, is detected with the contacting type temp. detecting means and the thermal deformed quantity of this lens is calculated with the arithmetic circuit, and as the vertical shifting device is shifted based on the command of this arithmetic result, automatic adjustment of the more accurate focal distance can be executed. By this method, mis-detection of temp. with reflection of infrared ray from a material to be machined or breakage of the temp. detecting element is eliminated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、レーザ光を集光し、集光されたレーザ光の
エネルギーにより被加工物を加工する焦点距離調整装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a focal length adjustment device that focuses laser light and processes a workpiece using the energy of the focused laser light.

[従来の技術] レーザ加工機において、レーザ光が加工レンズを通過す
ると表面の汚れ、レンズの吸収率の差等によりレンズの
温度が上昇する。その結果、レンズに熱膨張及び材質の
屈折率の変化が生じ焦点距離が変化するいわゆる熱レン
ズ作用が生じる。この焦点距離の変化を修正するものと
して、焦点距離調整装置がある。
[Prior Art] In a laser processing machine, when a laser beam passes through a processing lens, the temperature of the lens increases due to dirt on the surface, a difference in absorption rate of the lens, and the like. As a result, the lens undergoes thermal expansion and changes in the refractive index of its material, resulting in a so-called thermal lens effect in which the focal length changes. There is a focal length adjustment device that corrects this change in focal length.

第6図は特開平2−6093号公報に示された従来の焦
点距離調整装置を示す構成図である。
FIG. 6 is a block diagram showing a conventional focal length adjustment device disclosed in Japanese Patent Application Laid-Open No. 2-6093.

図中、(1)は平行光線のレーザ光、(2)はレーザ光
fi+を集光するための熱レンズ作用を生じる加工レン
ズ、(3)はレーザ光(1)によって加工される被加工
物、(14)は加工レンズ(2)を取付けるレンズマウ
ント、 +151は加工レンズ(2)等の保護と加工さ
れる点の雰囲気を清浄にし、被加工物(3)の酸化を防
ぐためのアシストガス、(16)はアシストガス(15
)をガイドするためのヘッド、(17)はレンズマウン
ト(14)とヘッド(16)を介する伸縮自在の金属ジ
ャバラ、(18)は遠赤外線を検出する第1の開封温度
センサ、(19)は同様の第2の開封温度センサ、(2
0)は第1及び第2の開封温度センサ(181,+19
1 を移動可能とした移動ステージ、(21)はレンズ
マウント(14)を上下に移動させる上下装置、(22
)は上下装置(21)を駆動するパルスモータ、(2月
は第1及び第2の開封温度センサf18+、 +191
の出力電圧をマイクロコンピュータ(図示せず)に入力
する入力配線、(29)はマイクロコンピュータの演算
結果によって上下装置(21)を上下する指令をパルス
モータに与える出力配線、(33)はレーザ光(11が
被加工物(3)によって反射された反射光である。
In the figure, (1) is a parallel laser beam, (2) is a processing lens that produces a thermal lens effect to focus the laser beam fi+, and (3) is the workpiece to be processed by the laser beam (1). , (14) is a lens mount for attaching the processing lens (2), and +151 is an assist gas for protecting the processing lens (2), etc., cleaning the atmosphere at the point being processed, and preventing oxidation of the workpiece (3). , (16) is the assist gas (15
), (17) is a telescopic metal bellows that passes through the lens mount (14) and the head (16), (18) is the first unsealed temperature sensor that detects far infrared rays, and (19) is the A similar second unsealed temperature sensor, (2
0) are the first and second unsealed temperature sensors (181, +19
1 is a movable stage, (21) is a vertical device that moves the lens mount (14) up and down, (22)
) is a pulse motor that drives the vertical device (21), (in February, the first and second unsealed temperature sensors f18+, +191
(29) is an output wire that gives commands to the pulse motor to raise and lower the vertical device (21) according to the calculation results of the microcomputer, (33) is a laser beam. (11 is the reflected light reflected by the workpiece (3).

次に動作について説明する。Next, the operation will be explained.

今、作業者が被加工物(3)をヘッド(16)の前に設
置する。レーザ加工機のスイッチを投入すると、加工レ
ンズ(2)の焦点距離が最適となるようパルスモーク(
22)が駆動し上下装置(21)を動作させる。
Now, the operator places the workpiece (3) in front of the head (16). When the laser processing machine is turned on, the pulse smoke (
22) is driven to operate the up and down device (21).

次に、被加工物(3)の加工を開始させると、レーザ光
(11は、加工レンズ(2)を通過して集光し被加工物
(3)を加工する。ここで、レーザ光(11が、加工レ
ンズ(2)を通過することによって加工レンズ(2)の
光の吸収率が増加する。このため加工レンズ(2)自体
の温度が上昇する。従って、加工レンズ(2)が熱を生
じるため赤外線を周囲に放射する。放射した赤外線のう
ち、遠赤外線を第1及び第2の開封温度センサ(18)
、(19)によって加工レンズ(2)の全面をスキャン
ニングして各ポイントの温度を測定する。各ポイントの
測定データは配線(2月を通して熱解析ソフトを有する
マイクロコンピュータへ入力され、その結果、マイクロ
コンビニーりは、レンズの熱変形量を演算し該熱変形量
から焦点距離変化量を演算し、その結果を制御指令とし
配線(29)を通してパルスモーク(22)を駆動する
。パルスモータ(22)により上下装置(21)は、レ
ンズマウント(14)を上下してレンズの位置をレーザ
光(11の焦点が常に被加工物上に結ぶよう制御する。
Next, when processing of the workpiece (3) is started, the laser beam (11) passes through the processing lens (2) and is focused to process the workpiece (3). 11 passes through the processing lens (2), the absorption rate of light of the processing lens (2) increases. Therefore, the temperature of the processing lens (2) itself increases. Therefore, the processing lens (2) Infrared rays are emitted to the surroundings to generate a
, (19) to scan the entire surface of the processed lens (2) and measure the temperature at each point. The measurement data at each point is input to a microcomputer with thermal analysis software through the wiring (February), and as a result, the microcomputer calculates the amount of thermal deformation of the lens and calculates the amount of change in focal length from the amount of thermal deformation. The result is used as a control command to drive the pulse smoke (22) through the wiring (29).The pulse motor (22) causes the up and down device (21) to move the lens mount (14) up and down to adjust the position of the lens using the laser beam. (Control is performed so that the focal point of No. 11 is always focused on the workpiece.

[発明が解決しようとする課題] 従来のレーザ加工機における焦点距離調整装置は加工レ
ンズ(2)の温度を第1及び第2の開封温度センサ(1
8)、(19)によって検出していたため、被加工物(
3)がレーザ光(11を反射し易い金属等の場合、被加
工物(3)からの反射光(33)が加工レンズ(2)を
通過し、第1及び第2の開封温度センサf181. +
19+を誤動作させたり該センサー自身を破損させると
いう問題点があった。
[Problems to be Solved by the Invention] A focal length adjustment device in a conventional laser processing machine measures the temperature of a processing lens (2) using first and second unsealing temperature sensors (1).
8) and (19), the workpiece (
3) is a metal or the like that easily reflects the laser beam (11), the reflected light (33) from the workpiece (3) passes through the processing lens (2), and the first and second unsealing temperature sensors f181. +
There was a problem that the 19+ could malfunction or the sensor itself could be damaged.

本発明は、かかる問題点を解決するためになされたもの
で、被加工物がレーザ光を反射しやすい金属等であって
も加工レンズの温度をより正確に検出することによって
、自動的に被加工物と加工レンズとの最適な焦点距離を
得るレーザ加工機の焦点距離調整装置を提供しようとす
るものである。
The present invention was made to solve this problem, and even if the workpiece is a metal or the like that easily reflects laser light, the temperature of the processing lens can be detected more accurately to automatically prevent the workpiece from being exposed. It is an object of the present invention to provide a focal length adjustment device for a laser processing machine that obtains an optimal focal length between a workpiece and a processing lens.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る焦点距離調整装置は、レーザ光を通過さ
せるレンズと、上記レンズに接触式の温度検出素子を取
付けた温度検出手段と、上記温度検出手段の情報によっ
て熱変形量を演算し、焦点距離変化量を演算する演算回
路と、上記演算回路の指令によって焦点距離を調整する
上下移動装置とを有するようにしたものである。
A focal length adjustment device according to the present invention includes a lens that allows laser light to pass through, a temperature detection means in which a contact type temperature detection element is attached to the lens, and an amount of thermal deformation calculated based on information from the temperature detection means, and a focus This apparatus includes an arithmetic circuit that calculates the amount of change in distance, and a vertical movement device that adjusts the focal length according to a command from the arithmetic circuit.

〔作用〕[Effect]

上記のように構成された焦点距離調整装置は熱レンズ作
用を有するレンズを接触式の温度検出手段によって該レ
ンズの温度を検出し、演算回路によって該レンズの熱変
形量を演算させ、その演算結果の指令に基づき上下装置
を移動させるようにしたので、より正確な焦点距離の自
動調整をすることができる。
The focal length adjustment device configured as described above detects the temperature of a lens having a thermal lens effect using a contact temperature detection means, calculates the amount of thermal deformation of the lens using a calculation circuit, and calculates the result of the calculation. Since the vertical device is moved based on the command, it is possible to automatically adjust the focal length more accurately.

[発明の実施例] この発明の第1の一実施例を第1図、第2図により説明
する。図中、従来例と同じ符号で示されたものは、従来
例のそれと同一もしくは同等なものを示す、第1図は、
焦点距離調整装置の構成図である。
[Embodiment of the Invention] A first embodiment of the invention will be described with reference to FIGS. 1 and 2. In the figure, the same reference numerals as in the conventional example indicate the same or equivalent elements as in the conventional example.
FIG. 2 is a configuration diagram of a focal length adjustment device.

(6)はレーザ光(1)を発生させるレーザ発振器、(
4)はレーザ光(1)を取り出す部分反射鏡、(5)は
レーザ光+11 を反射し方向を変化させる反射鏡、(
7)は加工レンズ(2)の温度を検出する温度検出手段
であり加工レンズ(2)の温度を直接検出しレーザ光f
ilが通過しない箇所に取付けている。−般に、レーザ
光filが通過しない部分は加工レンズ(2)の端とな
る。従って本実施例においてもレンズ端に温度検出素子
を取付けている。一般に温度検出素子(7)は接触式の
熱電対、あるいは温度によって抵抗が変化する白金抵抗
線、サーミスク等を用いる。
(6) is a laser oscillator that generates laser light (1), (
4) is a partial reflecting mirror that takes out the laser beam (1), (5) is a reflecting mirror that reflects the laser beam +11 and changes its direction, (
7) is a temperature detection means for detecting the temperature of the processing lens (2), which directly detects the temperature of the processing lens (2) and emits the laser beam f.
It is installed in a place where il does not pass through. - Generally, the portion through which the laser beam fil does not pass is the end of the processing lens (2). Therefore, in this embodiment as well, a temperature detection element is attached to the end of the lens. Generally, the temperature detection element (7) uses a contact thermocouple, a platinum resistance wire whose resistance changes depending on the temperature, a thermistorc, or the like.

(8)は温度検出素子(7)の検出値を基に加工レンズ
(2)の端と中央の温度差を推定し、その温度差より加
工レンズ(4)のレーザ光(1)の吸収率、屈折率等を
考慮していわゆる熱レンズ作用による最適焦点距離を演
算する演算回路である。(9)は加工レンズ(2) と
被加工物(3)との相対距離を制御する上下移動装置で
ある。
(8) estimates the temperature difference between the edge and center of the processing lens (2) based on the detected value of the temperature detection element (7), and uses the temperature difference to estimate the absorption rate of the laser beam (1) of the processing lens (4). This is an arithmetic circuit that calculates the optimum focal length by a so-called thermal lens effect, taking into account the refractive index and the like. (9) is a vertical movement device that controls the relative distance between the processing lens (2) and the workpiece (3).

第2図はレーザ光+11が通過している場合の加工レン
ズ(2)の温度分布を示す曲線である0図中X軸は加工
レンズ(2)の中心からの半径方向の距離を示す、従っ
て、中心からの距離が長くなる程レンズの端部となる。
Figure 2 is a curve showing the temperature distribution of the processing lens (2) when the laser beam +11 is passing through it. , the longer the distance from the center, the closer it becomes to the edge of the lens.

又、Y軸は加工しノンズ(2)の温度であり中心部はど
温度が高く又、端部はと低くなっている。これは加工レ
ンズ(2)の端部が水等によって冷却されるためであり
更に、加工レンズ(2)の端部はレーザ光(1)が通過
しないことにもよる。
Moreover, the Y-axis is the temperature of the processed nons (2), and the temperature is high at the center and very low at the ends. This is because the end of the processing lens (2) is cooled by water or the like, and also because the laser beam (1) does not pass through the end of the processing lens (2).

以上のように構成されたレーザ加工機の焦点距離調整装
置の動作につき説明する。今、レーザ加工機が動作前の
状態において、最適な焦点距離を上下装置(9)によっ
て設定する。同時に加工レンズ(2)の温度Tlを温度
検出素子(7)にて測定し、演算回路(8)へ入力し記
憶する。次に、被加工物(3)を加工するためレーザ光
(11をレーザ発振器(6)を通じて発生させる。この
ためレーザ光(1)が加工レンズ(2)を通過すること
によって焦光し被加工物(3)を熱して加工する。これ
と同時に加工レンズ(2)はレーザ光(1)を吸収し温
度が上昇する。このときの温度T2を温度検出素子(7
)にて測定し演算回路(8)へ入力する。
The operation of the focal length adjusting device for a laser processing machine configured as above will be explained. Now, while the laser processing machine is in a pre-operation state, the optimum focal length is set by the up/down device (9). At the same time, the temperature Tl of the processing lens (2) is measured by the temperature detection element (7), and is input to the arithmetic circuit (8) and stored. Next, in order to process the workpiece (3), a laser beam (11) is generated through a laser oscillator (6). For this purpose, the laser beam (1) passes through the processing lens (2) and is focused to the workpiece. The object (3) is heated and processed. At the same time, the processing lens (2) absorbs the laser beam (1) and its temperature rises. The temperature T2 at this time is detected by the temperature detection element (7).
) and input it to the calculation circuit (8).

演算回路(8)では初期の温度T1と上昇後の温度T2
の差TI−T2・八Tを演算し、次に、第2図の如き加
工レンズ(2)の温度分布から熱変形量を演算し該熱変
形量から焦点距離変化量を演算する。その演算結果を指
令として上下移動装置(9)に伝え加工レンズ(2)を
上下装置(9)によって上下してレンズの位置をレーザ
光(1)の焦点が常に被加工物(3)上に結ぶよう制御
する。
The arithmetic circuit (8) calculates the initial temperature T1 and the temperature T2 after the rise.
Then, the amount of thermal deformation is calculated from the temperature distribution of the processed lens (2) as shown in FIG. 2, and the amount of change in focal length is calculated from the amount of thermal deformation. The calculation result is sent as a command to the vertical movement device (9), and the processing lens (2) is moved up and down by the vertical movement device (9) to adjust the lens position so that the focus of the laser beam (1) is always on the workpiece (3). Control to tie.

尚、温度検出の時期は加工レンズ(2)が定常状態に達
した後の温度であることは必ずしも必要でない。例えば
、レーザ光fl)が発生する前の加工レンズ温度TIを
検出した後、レーザ光il+が発生して加工レンズ(2
)を通過した短い時間(加工レンズの熱時定数に比べ充
分短い時間)経過後、加工レンズ(2)の温度T2を測
定し演算回路(8)へ入力する。演算回路(8)では、
加工レンズ(2)の定常状態の温度を演算し、その後加
工レンズ(2)の熱変形量を演算し該熱変形量から焦点
距離変化量を演算し上記と同様に焦点距離を調整しても
よい。
Note that the timing of temperature detection does not necessarily have to be after the processing lens (2) has reached a steady state. For example, after detecting the processing lens temperature TI before the laser beam fl) is generated, the laser beam il+ is generated and the processing lens (2
) After a short time (sufficiently short time compared to the thermal time constant of the processed lens) has passed, the temperature T2 of the processed lens (2) is measured and input to the arithmetic circuit (8). In the arithmetic circuit (8),
The steady state temperature of the processed lens (2) is calculated, then the amount of thermal deformation of the processed lens (2) is calculated, the amount of change in focal length is calculated from the amount of thermal deformation, and the focal length is adjusted in the same way as above. good.

第3図〜第5図はこの発明の他の実施例を示す。3 to 5 show other embodiments of the invention.

第1の実施例と同一符号は同一または相当部分を示す。The same reference numerals as in the first embodiment indicate the same or corresponding parts.

第3図はこの発明の第2の一実施例であり。FIG. 3 shows a second embodiment of the invention.

温度検出素子(7)を部分反射鏡(4)に取付けたもの
である0部分反射鏡(4)も加工レンズ(2)と同様に
熱レンズ作用を生じるからである。
This is because the zero partial reflector (4), which is a partial reflector (4) with a temperature detection element (7) attached thereto, also produces a thermal lens effect in the same way as the processed lens (2).

第4図はこの発明の第3の一実施例であり温度検出素子
(7)を部分反射鏡(4)及び加工レンズ(2)に取付
けたものである。夫々のレンズによって生じる熱レンズ
作用による焦点距離のズレを修正することか可能となる
FIG. 4 shows a third embodiment of the present invention, in which a temperature detecting element (7) is attached to a partially reflecting mirror (4) and a processing lens (2). It becomes possible to correct focal length deviations caused by thermal lens effects caused by each lens.

第5図はこの発明の第4の一実施例であり不安定形共振
器方式のレーザ発振器のレーザビーム取り出し窓(lO
)に温度検出素子(7)を取付けたものである。レーザ
ビーム取り出し窓(10)も加工レンズ(2)と同様に
熱レンズ作用を生じるからである。
FIG. 5 shows a fourth embodiment of the present invention, which is a laser beam extraction window (lO
) with a temperature detection element (7) attached. This is because the laser beam extraction window (10) also produces a thermal lens effect like the processing lens (2).

[発明の効果1 この発明の焦点距離調整装置は、熱レンズ作用が生じる
レンズ自体に接触式の温度検出手段を設けることよりレ
ンズの温度を検出し、この検出温度から焦点距離を最適
となるよう7V4算回路にて演算し、該演算結果によっ
て上下装置を駆動し焦点距離を自動調整するようにした
ので、被加工物からの赤外線の反射による温度の誤検出
あるいは温度検出素子の破壊がない偲顛性の高いレーザ
加工機の焦点距離調整装置を得る効果がある。
[Effect of the Invention 1] The focal length adjustment device of the present invention detects the temperature of the lens by providing a contact temperature detection means on the lens itself where a thermal lens effect occurs, and optimizes the focal length based on the detected temperature. The calculation is performed using a 7V4 arithmetic circuit, and the vertical device is driven based on the calculation result to automatically adjust the focal length, so there is no possibility of false temperature detection or destruction of the temperature detection element due to reflection of infrared rays from the workpiece. This has the effect of providing a highly flexible focal length adjustment device for a laser processing machine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図はこの発明の一実施例に係る構成図、
曲線であり、第1図はこの発明の一実施例を示す焦点距
離調整装置の構成図、iJ!2図は同様に一実施例を示
す焦点距離調整装置の構成図、第6区は従来の焦点距離
調整装置を示す構成図である。 図において、f1+はレーザ光、(2)は加工レンズ、
(4)は部分反射鏡、(7)は温度検出手段(温度検出
素子)、(91は上下移動装置、(10)はレーザビー
ム取り出し窓である。 なお、各図中、同一符号は同一、又は相当部分を示す。
1 to 5 are configuration diagrams according to an embodiment of the present invention,
FIG. 1 is a block diagram of a focal length adjustment device showing an embodiment of the present invention, iJ! Similarly, FIG. 2 is a configuration diagram of a focal length adjustment device showing one embodiment, and Section 6 is a configuration diagram showing a conventional focal length adjustment device. In the figure, f1+ is a laser beam, (2) is a processing lens,
(4) is a partial reflecting mirror, (7) is a temperature detection means (temperature detection element), (91 is a vertical moving device, and (10) is a laser beam extraction window. In each figure, the same reference numerals are the same, or a corresponding portion.

Claims (1)

【特許請求の範囲】[Claims] レーザ光を通過させるレンズと、上記レンズに接触式の
温度検出素子を取付けた温度検出手段と、上記温度検出
手段の情報によって熱変形量を演算し焦点距離変化量を
演算する演算回路と、上記演算回路の指令によって焦点
距離を調整する上下移動装置とを有する焦点距離調整装
置。
a lens that allows laser light to pass through; a temperature detection means having a contact type temperature detection element attached to the lens; an arithmetic circuit that calculates an amount of thermal deformation based on information from the temperature detection means and calculates an amount of change in focal length; A focal length adjustment device that includes a vertical movement device that adjusts the focal length according to a command from an arithmetic circuit.
JP2291101A 1990-10-29 1990-10-29 Device for adjusting focal distance Pending JPH04167990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2291101A JPH04167990A (en) 1990-10-29 1990-10-29 Device for adjusting focal distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2291101A JPH04167990A (en) 1990-10-29 1990-10-29 Device for adjusting focal distance

Publications (1)

Publication Number Publication Date
JPH04167990A true JPH04167990A (en) 1992-06-16

Family

ID=17764467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2291101A Pending JPH04167990A (en) 1990-10-29 1990-10-29 Device for adjusting focal distance

Country Status (1)

Country Link
JP (1) JPH04167990A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899678A2 (en) * 1997-08-25 1999-03-03 Nec Corporation Autofocus bar code reader
GB2354845A (en) * 1999-09-15 2001-04-04 Whitney Co W Real time control of laser beam characteristics in a laser equipped machine tool
WO2006134785A1 (en) * 2005-06-13 2006-12-21 The Japan Steel Works, Ltd. Laser irradiation method and device thereof
JP2008114228A (en) * 2006-10-31 2008-05-22 Mitsubishi Electric Corp Laser beam machine
JP2012157893A (en) * 2011-02-01 2012-08-23 Amada Co Ltd Laser beam machining method and laser beam machine
WO2012137579A1 (en) * 2011-04-08 2012-10-11 三菱電機株式会社 Laser machining device
JP2013173176A (en) * 2012-02-27 2013-09-05 Mitsubishi Electric Corp Laser machining apparatus
JP2017047455A (en) * 2015-09-02 2017-03-09 トヨタ自動車株式会社 Laser welding method
CN110238393A (en) * 2019-06-20 2019-09-17 江西科欧科技有限公司 A kind of Three-Dimensional Dynamic focusing printing equipment and method based on laser 3d printing technique

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899678A2 (en) * 1997-08-25 1999-03-03 Nec Corporation Autofocus bar code reader
EP0899678A3 (en) * 1997-08-25 2000-05-17 Nec Corporation Autofocus bar code reader
US6315203B1 (en) 1997-08-25 2001-11-13 Nec Corporation Autofocus bar code reader
US6420674B1 (en) * 1999-04-30 2002-07-16 W. A. Whitney Co. Heavy-duty laser plate cutting machine
GB2354845A (en) * 1999-09-15 2001-04-04 Whitney Co W Real time control of laser beam characteristics in a laser equipped machine tool
US6392192B1 (en) * 1999-09-15 2002-05-21 W. A. Whitney Co. Real time control of laser beam characteristics in a laser-equipped machine tool
US6462301B1 (en) * 1999-09-15 2002-10-08 W. A. Whitney Co. Heavy-duty plate laser with linear motors for X and Y position control
GB2354845B (en) * 1999-09-15 2004-03-24 Whitney Co W Real time control of laser beam characteristics in a laser equipped tool
WO2006134785A1 (en) * 2005-06-13 2006-12-21 The Japan Steel Works, Ltd. Laser irradiation method and device thereof
US7471712B2 (en) 2005-06-13 2008-12-30 The Japan Steel Works, Ltd. Laser irradiating method and device for same
US7680163B2 (en) 2005-06-13 2010-03-16 The Japan Steel Works, Ltd. Laser irradiating method including maintaining temperature of a lens
JP2008114228A (en) * 2006-10-31 2008-05-22 Mitsubishi Electric Corp Laser beam machine
JP2012157893A (en) * 2011-02-01 2012-08-23 Amada Co Ltd Laser beam machining method and laser beam machine
WO2012137579A1 (en) * 2011-04-08 2012-10-11 三菱電機株式会社 Laser machining device
JP5558629B2 (en) * 2011-04-08 2014-07-23 三菱電機株式会社 Laser processing equipment
US9289850B2 (en) 2011-04-08 2016-03-22 Mitsubishi Electric Corporation Laser machining device
JP2013173176A (en) * 2012-02-27 2013-09-05 Mitsubishi Electric Corp Laser machining apparatus
JP2017047455A (en) * 2015-09-02 2017-03-09 トヨタ自動車株式会社 Laser welding method
CN110238393A (en) * 2019-06-20 2019-09-17 江西科欧科技有限公司 A kind of Three-Dimensional Dynamic focusing printing equipment and method based on laser 3d printing technique

Similar Documents

Publication Publication Date Title
KR100899910B1 (en) Apparatus and method for focal point control for laser machining
JP2720744B2 (en) Laser processing machine
KR100420722B1 (en) Method and apparatus for monitoring and positioning beams or jets for machining on a workpiece
JP3613708B2 (en) Cross-sectional shape measuring device
JPH04167990A (en) Device for adjusting focal distance
JP2005034885A (en) Laser beam welding apparatus
JPH01122688A (en) Automatic focal distance adjusting device for lens for laser beam machining
JP6987453B2 (en) Evaluation device and evaluation method
JP2001246489A (en) Laser material processing device
US20220161356A1 (en) Laser processing system and jig
KR102533457B1 (en) laser processing device
US20210370438A1 (en) Laser processing device
JP3542359B2 (en) Pulse laser device and exposure apparatus using the same
KR200164249Y1 (en) Laser processing apparatus
JP3287133B2 (en) Laser processing machine
JPH1158053A (en) Laser beam machine
JP2809106B2 (en) Processing state monitoring device in laser processing equipment
JP2627695B2 (en) Melt level control device and control method in CZ method
JPH0585276B2 (en)
JP4880359B2 (en) Ranging device, ranging method and projector
KR20020028603A (en) Vision sensor equipped with automatic cooling and heating system by measuring temperature sensor
JPH0491880A (en) Detector for completion of piercing for laser beam machine
KR100398422B1 (en) Protective window replacement-warning system of vision sensor, making use of laser output variation
JP2017196639A (en) Laser processor and laser processing method
JPH07332927A (en) Work-position detector